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ABSTRACT

Reliable transmission of 3D video signals is nowadays an in-
teresting research issue both for the new coding challenges
that three-dimensional video signals pose and for the wide
diffusion of multimedia communications over wireless net-
works. In order to deal effectively with packet losses over
radio channels, several robust source coding schemes have
been proposed. This article presents a reconfigurable and
flexible architecture (named Cognitive Source Coder in anal-
ogy with Cognitive Radio systems) that implements different
robust source coding solutions and adaptively adopts them
according to channel conditions. The proposed approach
permits improving the quality of the 3D scene reconstructed
at the end terminal with respect to the corresponding non-
adaptive approaches.

1. INTRODUCTION

Wireless networks are nowadays intended to provide a wide
variety of multimedia applications, which are character-
ized by intense bandwidth requirements and high sensi-
tivity to packet losses. The recent advent of 3D video
transmission has utterly exacerbated these peculiarities since
three-dimensional video streams are characterized by great
amounts of data and poor resilience to delays and errors. As
a matter of fact, novel protocols and transmission strategy
have been designed in order to grant a certain Quality-of-
Experience (QoE) to the end user by minimizing the loss of
crucial data and limiting delays and jitters. Among these,
cross-layer (CL) solutions are able to maximize the qual-
ity of the received multimedia content by jointly tuning the
transmission parameters of the different layers in the protocol
stack. In this way, it is possible to combine different protec-
tion and retransmission strategies to satisfy the requirements
related to the specific application. Within the existing cross-
layer solutions, a subset of the proposed approaches adapt the
chosen source coder to the characteristics of the transmitted
video sequence and to the network state. In this paper we will
refer to these solutions with the term Cognitive Source Cod-
ing (CSC) scheme in analogy with Cognitive Radio schemes.
Cognitive Radio (CR) architectures are wireless systems that
can sense the transmission environment, identify which spec-
trum frequencies are available, and change the modulation
scheme in order to be able to transmit over the available chan-
nels [1]. It is possible to notice that CSC schemes presents
many features in common with CR solutions. CSC architec-
tures implement many source coding strategy and adaptively
switch from one to another depending on the channel state.
In a similar way, CR schemes implement many modulation
schemes and can adaptively switch from one to another de-
pending on which portion of the radio spectrum they want to
use. Moreover, CSC schemes, as well as CR solutions, must

sense the transmission environment in order to understand
howmany transmission channels are available and what their
states are. Both CSC and CR must present a high degree of
flexibility and reconfigurability in order to change configu-
ration without requiring exceeding computational complex-
ity and hardware resources on the transmitting and receiving
terminals.

The paper present a CSC video coding solution that
reuses the building blocks of the H.264/AVC FRExt coder
and presents a limited computational complexity. The
proposed approach includes a single description standard
H.264/AVC coder (SDC), a Multiple Description video coder
based on a polyphase sub-sampling, and a Wyner-Ziv coder
that is used to characterize the residual signal after prediction
in the standard H.264/AVC and in the MDC coders. These
elements can be obtained by a simple rewiring of the signals
in the H.264/AVC coder. An additional FEC coder is also ap-
plied on the video RTP packets in order to protect the video
packet stream against losses. The designed CSC coder is ap-

plied to a video+depth 3D signals1 sequence optimizing both
the quality of the reconstructed view and the accuracy of the
received depth map. More precisely, the optimization strat-
egy distinguishes the static elements in the sequence from the
dynamic ones and chooses the most appropriate coding con-
figuration according to the characteristics of the coded video
sequence and to the channel state. In the following, Section 2
presents the adopted CSC scheme in detail by specifying its
basic building blocks. Section 3 presents how the source cod-
ing strategy is optimized according to the characteristics of
the video and depth signals. Experimental results in Sec-
tion 4 show how it is possible to improve the 3D experience
provided to the end user. Conclusions are drawn in Section 5.

2. THE PROPOSED COGNITIVE SOURCE CODING
SCHEME

The adopted scheme (see Fig. 1) implements a set of differ-
ent video coding strategies that can be adaptively employed
to maximize the quality of the sequence reconstructed at the
decoder. More precisely, the designed architectures com-
bines a simpleMultiple Description Coding with a traditional
H.264/AVC scheme and aWyner-Ziv (WZ) video coding. As
a matter of fact, we adopted MDC and WZ schemes whose
building blocks present many similarities with those of the
H.264/AVC encoder. In this way, it is possible to reuse many
functional units since each different source coding solution
can be implemented by rewiring the connections between
different blocks. From these premises, we adopted the MDC
scheme in [3] and the WZ coding solution in [4] since they

1This 3D video format is also called Depth Image Based Rendering
(DIBR) [2].
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Figure 1: Block diagram for the encoder.

inherit most of the building blocks of H.264/AVC with the
addition of some low-complexity functional blocks. The re-
sulting CSC coder requires the same computational complex-
ity of the H.264/AVC coder. The output packet stream can be
protected by adding extra FEC packets generated by an era-
sure code as defined in the RFC2733 [5]. In the following,
we will describe the different units of the CSC encoder and
their possible configurations.

2.1 Object identification unit

The input video and depth signals are processed by an object
identification unit (see the block 1© in Fig. 1), which ana-
lyzes the captured scene and the different objects within the
frame distinguishing fast-moving objects in the foreground
from slowly-moving objects and background elements. Ac-
cording to the spatial-temporal characteristics of the signals
associated to the different objects it is possible to vary the
configuration of the coder in order to maximize the 3D vi-
sual quality experienced by the end user.

In our approach, we distinguished two separate classes
of objects in the captured scene. The first class includes fast-
moving elements close to the point of view, which have a
stronger impact on the final visual quality and proves to be af-
fected more significantly by packet losses. The second class
comprises elements in the background and slowly moving
objects in the foreground: the first have a minor impact on the
final visual quality, while the latter can be easily estimated in
case of packet losses with a limited channel distortion. This
classification can be performed by segmenting [6] the input
frames into multiple small portions according to the informa-
tion provided by the depth signal. The different segments are
then fused together according to the following procedure.

Let Rk, with k = 0, . . . ,NR − 1, be NR regions of pixels
obtained segmenting the current depth map frame via the al-
gorithm in [6]. The object detection algorithm computes the

average depth value d within each region Rk and the MSE
between the pixels in Rk of the current video frame and the
corresponding pixels of the previous video frame. In case the
MSE is lower than the threshold T1, the region Rk is assigned
to the class of static objects and background. As for the re-
maining regions, the object detection routine clusters the set

of regions according to the associated value d and fuses them
together into a new set of regions R′

k. In the end, the average

depth values d
′
for the regions R′

k are then quantized into two

classes, and the associated regions R′
k are merged together.

According to the average MSE values for the pixels in the

last two regions, pixels are associated to the class of moving
objects or to the class of static elements.

The results of the object identification unit are two pixel
masks RF (containing the moving objects in the foreground)
and RB (containing background and static objects). Pixel
masks can be used to distinguish the image regions in an
object-based video coder and characterize them separately.
In the current version of the codec, we leave this possibility
for the future versions of the CSC architecture, and, in or-
der to limit the additional computational complexity related
to the processing of masks both at the encoder and at the de-
coder, we employ the obtained pixel masks to partition the
input frames into two Regions-Of-Interest (ROI). The first
one is made of macroblocks MF related to RF (front ROI),
while the second one is made of macroblocks MB related to
RB (back ROI). As a result, four frame sequences are gener-
ated: the sequences of front macroblocks for both the video
and the depth signals (named VF and DF respectively), and
the sequences of backgroundmacroblocks (namedVB andDB

respectively). The four subsequencesVF , VB, DF , and DB are
then coded by different source coding strategy according to
the characteristics of the processed signal and of the trans-
mission channel.

(a) Input view (b) Input depth

(c) Regions Rk (d) Resulting front ROI

Figure 2: Video signals in the object detection algorithm.

2.2 MDC subsampling

The MDC subsampling unit permits splitting the input video
or depth signal into two descriptions via a polyphase sub-
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sampling (see the block 2© in Fig. 1). The odd and the even
pixel rows of the input ROI are separated into two fields cre-
ating a couple of subsequences that are coded independently
by the following video source coder into two packet streams.
In case both descriptions associated to the current ROI are
correctly received and decoded, the input sequence can be
reconstructed without any additional channel distortion. In
case only one description is received, the vertical correlation
among adjacent pixels of the even and the odd rows allows
the Error Concealment unit (block 5© in Fig. 1) to estimate
the lost description by interpolating the missing rows from
the available ones.

In case both descriptions are lost, the Error Concealment
unit replaces the missing information by copying the corre-
sponding pixels of the previous frame. The following subsec-
tion describes how the generated subsequences are processed
by the source coding unit.

2.3 Residual coding unit

After the object detection and the MDC subsampling units,
the video or depth signal is coded into a packet stream that
is transmitted to the end user. The input frame/field is parti-
tioned into blocks x of 4×4 pixels which are approximated
by the Motion Estimation unit that searches for a predictor
block xp in the previous frames/fields. According to the se-
lected residual coding/decoding strategy (employed at block
3© in Fig. 1), the input signal x is then processed into dif-
ferent manners. Whenever the adopted residual coding strat-
egy involves characterizing the Displaced Frame Difference
(DFD), the source coder computes the prediction error block
d = x− xp, which is then transformed into the block D

via an approximated DCT transform defined within the stan-
dard H.264/AVC FRExt [7]. The block D is then quantized
into the coefficients Dq, which are coded into a binary bit
stream which is then packetized into a stream of RTP pack-
ets. The reconstructed signal can be obtained by dequan-
tizing and inversely-transforming the block Dq into the de-
coded residual signal dr = d + er, which permits approx-
imating the original block x with xr = dr + xp = x + er.
Throughout these operations, the DFD coding strategy pro-
duces a H.264/AVC-compliant packet stream.

The error signal er is related to the quantization of d

operated in the transform domain. Whenever the packet
stream is affected by losses, the predictor block x

′
p at the

decoder differs from xp since an additional channel distor-
tion is present in the sequence such that x

′
p = xp + ec and

xr = x+ er + ec. As a matter of fact, the distortion propa-
gates throughout the sequence and degrades significantly the
quality of the reconstructed sequence.

It is possible to mitigate this effect by choosing a more
robust characterization of the residual signal. As it was pro-
posed in [4], a source coding techniques that relies on the
principle of Wyner-Ziv Coding (WZ) generates a set of sym-
bols (called syndromes) which permits reconstructing the sig-
nal x from a set of different predictors. For each pixel x(i, j)
in x and its predictor xp(i, j) in xp, the WZ residual coding
block computes the number of bits n(i, j) associated to the
syndrome s(i, j) as

n(i, j) =

{

log2 (|d(i, j)|)+2 if |d(i, j)| > δ

0 otherwise,
(1)

where |d(i, j)| = |x(i, j)−xp(i, j)| and δ is a threshold value

depending on the Quantization Parameter (QP) chosen for
the current block (in our setting, we have set δ = ∆/12 where
∆ is the quantization step associated to the current QP). Then,
the coding unit computes the maximum value nmax of the
syndrome bits n(i, j) within the current block, and, in case
nmax is higher than 0, it generates a block s of syndromes
s(i, j) via the following equation

s(i, j) = x(i, j)&(2nmax −1) (2)

where the symbol & denotes a bitwise AND operators. The
block s is then processed like the blockd in the DFD strategy
generating the block Sq of quantized transformed syndromes
and the reconstructed syndromes sr = s + er. Each re-
constructed syndrome sr(i, j) identifies a different quantizer
Qsr(i, j) with quantization step 2nmax and offset sr(i, j) such

that the reconstruction levels can be expressed as sr(i, j) +
k 2nmax , k ∈ Z.

Given the predictor block xp, it is possible to recon-
struct the coded pixel xr(i, j) = x(i, j)+ er(i, j) by quantiz-
ing xp(i, j) using the quantizer Qsr(i, j). Note that the sig-

nal xr(i, j) can be reconstructed using a different predictor
x′p(i, j) 6= xp(i, j) provided that the correlation between x and

x
′
p is the same or higher (see [4]).

2.4 FEC coder

At packet level it is possible to reduce the amount of artifacts
introduced by packet losses employing a protection strategy
based on a cross-packet FEC code (see block 4© in Fig. 1).
According to the protection strategy defined in the RFC 2733
[5], it is possible to generate in the RTP packet stream addi-
tional redundant packets which are correlated to the original
packet sequence and permit recovering the lost data up to a
certain number of lost packets. This protection scheme can
be combined with the previous ones in order to maximize the
final performance. In the following, the adopted configura-
tion will be presented.

2.5 The adopted configurations

The presented video coder implements a hybrid highly-
flexible architecture which needs to be appropriately tuned.
In the following we will consider some of the possible con-
figurations that will be adaptively employed to code the sig-
nals VF , VB, DF , and DB in order to maximize the final per-
formance.

• SD-DFD: The input ROIs are coded into a single descrip-
tion, whose prediction residual is coded with the DFD
configuration. The output packets are protected by addi-
tional FEC packets generated using block 4©.

• MD-DFD: The input ROIs are split into two descriptions,
whose prediction residual is coded with the DFD config-
uration. No additional FEC are generated.

• SD-WZ: The input ROIs are coded into a single descrip-
tion, whose prediction residual is coded with the WZ
configuration, and additional FEC packets are added in
the final packet stream.

• MD-WZ: The input ROIs are split into two descriptions,
whose prediction residual is coded with the WZ configu-
ration.

The CSC optimization unit chooses the most appropriate
configuration according to the characteristics of the video
signal and the packet loss percentages (estimated from RTCP
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Figure 3: Average PSNR and MSE values vs. PL for signals
V f , Vb, Df , and Db from the sequence breakdancers.
Lines reports the results for SD-DFD (solid), MD-DFD (dot-
ted), SD-WZ (dashed), MD-WZ (dash-dotted).

packets). Each Group-Of-Picture (GOP) in each sequence
VF , VB, DF , and DB can be characterized with the array

GI = [Sy ∇t ], I ∈ I = {VF ,VB,DF ,DB}, (3)

where Sy is the vertical Sobel operator averaged on the whole
ROI I and ∇t the overall temporal gradient with respect to
the previous picture. In our approach, we considered the

array GI that averages the arrays GI for the ROIs I in the
current GOP. Experimental results have shown that for se-
quences with different GI at different packet losses the per-
formance of each configuration significantly changes. As a
matter of fact, it is necessary to design a classification strat-
egy that identifies the most effective configuration.

3. CL OPTIMIZATION OF THE SOURCE CODER

Experimental results have shown that different configura-
tions have different efficiencies depending on the character-
istics of the video signals, on the coded object, and on the
network state (see Figure 3). Under different transmission
conditions the algorithm effectively adapts the coding strat-
egy for fast moving objects in the foreground, while for the
depth signal in the background the optimization strategy em-
ploys the MD-WZ configuration in most of the configura-
tions. As a consequence, it is necessary to identify the cod-
ing setting that maximizes the quality of the reconstructed se-
quence for the current GOP. A first optimization approach re-

lies on a Bayesian classification of the arraysGI conditioned
on the loss probability and on the signal type. The arrays

GI are partitioned into 4 classes according to which config-
urationC (among the settings SD-DFD, MD-DFD, SD-WZ,
MD-WZ) proves to be the best one in terms of PSNR (for the
video signal) or in terms of MSE (for the depth signal). More
precisely, the classification strategy evaluates the probability

0  0.1  0.2  0.3  

29

30

31

32

33

34

P
L

P
S

N
R

 v
ie

w
 f
ro

n
t 
(d

B
)

(a) V f

0  0.1  0.2  0.3  

29

30

31

32

33

34

P
L

P
S

N
R

 v
ie

w
 b

a
c
k
(d

B
)

(b) Vb

Figure 4: Average PSNR vs. PL for signals V f and Vb
from the sequence horse. Lines reports the results for SD-
DFD (solid), MD-DFD (dotted), SD-WZ (dashed), MD-WZ
(dash-dotted).

that the configurationC is the best for the signal I

P[C/GI ] =
P[GI/C] ·P[C]

P[GI ]
(4)

with C ∈ C = {SD-DFD,MD-DFD,SD-WZ,MD-WZ} and
I ∈ I for different values of PL. The conditioned prob-

ability P[GI/C] is modelled using a normal distribution

N(GI,C,σI,C), where parametersGI,C and σI,C are estimated
from a set of experimental data obtained for some training
sequences. The same training set is also used to estimate
the probabilities P[C]. Before coding the current GOP, the

CSC optimization strategy computes GI for each signal I

and computes the probability P[C/GI ] via the equation (4).
Then, the optimization strategy choose the coding configura-
tionC∗

I such that

C∗
I = argmax

C∈C

P[C/GI]. (5)

∀I ∈ I . Experimental results show that this possibility per-
mits improving significantly the quality of the resulting 3D
experience.

4. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed algo-
rithm, we coded and simulated the transmission of several
DIBR video sequences. The transmission channels have
been simulated using a two-states Gilbert model with burst
length LB = 4 and varying loss probability PL. In case MDC
coding is adopted for the signal I (with I ∈ I ), two packet
streams are generated and transmitted on independent chan-
nels. In the same way, the packets related to background
and the packets related to front objects are transmitted on in-
dependent channel to increase the robustness of the transmis-
sion. Since the depth information is transmitted associated to
the corresponding video data, the number of involved inde-
pendent channels varies from 2 to 4 according to which cod-
ing configurations have been chosen. Sequences were coded
using GOP with structure IPPP and constant QP equalizing
the resulting overall bit rate for the different set-ups in C .
Figure 3 reports the average PSNR (for VF and VB signals)
and the average MSE (for DF and DB signals) obtained with
10 channel realizations for different loss probabilities PL. It
is possible to notice that the effectiveness of the different
configurations strongly depends on the signal characteristics.
Experimental results on other sequences (see Figure 4) also
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Figure 5: Average PSNR and MSE values vs. PL for video
and depth signals of the sequence ballet. Lines reports
the results for SD-DFD (solid), MD-DFD (dotted), SD-WZ
(dashed), MD-WZ (dash-dotted), CSC classification (solid
with stars), optimal (dashed with triangles).

show that the curves related to the different configurationsC
cross at different values of PL according to the vertical and

temporal correlations, which are measured by GI . As a con-
sequence, we trained the CSC optimization strategy using a
set of heterogeneous sequences including breakdancers
from [8], horse and car from [9]. The classifying strategy
was tested on the sequence ballet to verify the accuracy
of the training phase. Figures 5 and 6 compares the 3D vi-
sual quality obtained by the CSC algorithm (measured via the

metrics PSNR, MSE, and SSIMDdl12) with the performance
obtained by each single static configuration for the sequence
ballet. The proposed approach varies the coding mode
for the different signals in order to maximize the final 3D
experience. As an example, with PL = 0.1 the first GOP of
the sequence is transmitted with VF coded with SD-WZ, VB
with MD-WZ, DF with SD-WZ, and DB with SD-DFD. The
reported graphs also displays the performance associated to
an optimal arrangement of the blocks which has been ob-
tained via an off-line exhaustive optimization. It is possible
to notice that the proposed CSC solution is quite close to the
optimal setting both for test sequence (see 5) and one of the
training sequences (see Fig. 6). Optimization proves to be
easier for depth signals since they prove to be less complex to
characterize with respect to video signals. As an evidence, it
is possible to evaluate the distances of the CSC line from the
optimal one in Fig. 5(a) for the video signal and in Fig. 5(b)
for the depth information. A significant quality improvement
is also evinced for the training sequences, as Fig. 6(a) shows.
The PSNR values for the proposed CSC solution are greater
than those of all the other configurations. As for the quality
of the final 3D experience, Figure 6(b) shows that the average
values of SSIMDdl1 metric for the CSC strategy is approxi-
mately equal to the best one.

5. CONCLUSION

The paper has presented a Cognitive Source Coding archi-
tecture that combines a Multiple Description Coding scheme
with a traditional predictive video coder, a Wyner-Ziv video
coder, and an FEC coder that introduces some additional
redundant packets to protect the video packet stream from
losses. An object detection unit classifies the different re-
gions of the input frames according to their temporal and spa-
tial characteristics. All the different configurations are opti-

2The SSIMDdl1 metric is intended to evaluate jointly the quality of both
depth and texture signals (see [10] for more details).
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Figure 6: Average PSNR value of the video signal and
SSIMDdl1 value vs. PL for the sequence car. Lines reports
the results for SD-DFD (solid), MD-DFD (dotted), SD-WZ
(dashed), MD-WZ (dash-dotted), CSC classification (solid
with stars), optimal (dashed with triangles).

mized using a cognitive adaptive strategy given the character-
istics of the signal to be coded and the network state. Exper-
imental results show that the proposed scheme can identify
the most effective solution for different signals and channel
configurations.
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