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ABSTRACT

A number of powerful tools for analyzing linear and non-
linear data sets are based on various spectral measures.
In particular, the bispectrum is commonly used for test-
ing Gaussianity and linearity. Due to their inherent ro-
bustness to model assumptions, non-parametric estimators
of the polyspectra are of particular importance. Unfortu-
nately, the most commonly used non-parametric estimator,
the windowed-periodogram, suffers from large sidelobes and
fails to provide high-resolution estimates. In this paper,
we develop a non-parametric estimator that utilizes the re-
cently introduced iterative adaptive approach (IAA) to pro-
vide high-resolution estimates of the polyspectra for nonlin-
ear data. Using the TAA method, we first obtain estimates
of the spectral amplitudes and the covariance matrix itera-
tively, and then use the spectral amplitudes to form accurate
estimates of the polyspectra. The developed estimator can
be extended to the application of unevenly sampled data,
and can also be used in the statistically efficient estimation
of coherence polyspectra. The effectiveness of the proposed
estimator is demonstrated with both real and simulated data.

1. INTRODUCTION

Spectral analysis is an important data analysis tool that
finds applications in a wide variety of fields, including speech
processing, telecommunications, radar and sonar systems,
biomedical and seismic signal processing, and economics.
Two particulary useful spectral measures are the power spec-
trum and the bispectrum [1], [2]. While the power spectrum
shows the contribution of different frequencies to the for-
mation of a signal, the bispectrum indicates any possible
couplings between these frequencies. The power spectrum
is generally used for analyzing linear and stationary pro-
cesses, while the bispectrum finds usage in the analysis of
nonlinear and/or nonstationary processes (see, e.g., [2], [3]
and [4]). Some of the more important uses of the bispectrum
are in testing measured sequences for Gaussianity and lin-
earity. For these, and several other applications, it is desired
to get consistent high-resolutions estimates of the polyspec-
tra from available data. The most commonly used estimator
for polyspectra, the periodogram and its windowed versions,
suffer from either low resolution or high leakage, or both,
and to achieve sufficient spectral resolution, the duration of
the observation window has to be long. Furthermore, these
methods only allow for uniformly sampled data. However,
in a wide range of applications the measured data could be
unevenly sampled, or might suffer from lost samples (see,
e.g., [5-10]). In this regard, a new weighted least squares
(WLS) based non-parametric approach, the so-called itera-
tive adaptive approach (IAA), has recently been shown to
provide high-resolution estimates of the power spectrum [11]
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and the magnitude squared coherence (MSC) [12] for both
uniformly sampled and non-uniformly sampled data. The
TAA-based estimators first make a frequency-domain refor-
mulation of the given data, and then use it in a WLS fitting
criterion to iteratively obtain estimates of the spectral am-
plitudes and the covariance matrix. In this work, we develop
and discuss IAA-based estimators for polyspectra. Using the
TAA method, we first obtain estimates of the spectral am-
plitudes and the covariance matrix iteratively, and then use
the spectral amplitudes to form high-resolution estimates of
the polyspectra. Without loss of generality, the develop-
ment is carried out for the bispectrum, but the technique
can be easily extended analogously to higher-order spectra.
Furthermore, the work can also be extended along the lines
of [12] to obtain statistically efficient estimates of the coher-
ence polyspectra from unevenly sampled data.

This paper is organized as follows; in the next section,
we provide a brief review of cumulants and polyspectra, and
their estimation. In Section 3, we develop IAA-based esti-
mators for the bispectrum. The performance of the proposed
estimators is evaluated using real and simulated data in Sec-
tion 4.

Notation: (-)7 and (-)* are used to represent the trans-
pose and the complex conjugate transpose, respectively. Vec-
tors are denoted with bold letters, x, while scalars are in
light-face, x.

2. PRELIMINARIES

In this section, we briefly review the concepts of cumulants
and polyspectra followed by a discussion on how these are
commonly estimated. The second and third order cumulants
of a zero mean® random process z are defined as

Coz(k) =
Corao(k,1)

E{z"(n)z(n +k)} (1)
E{z"(n)z(n + k)z(n+1)}, (2)

where E{-} is the expectation operator. The second-order
cumulant, Cy;, is also often referred to as the autocovari-
ance sequence. The power spectrum is defined as the Fourier
transform of the second-order cumulant and represents the
frequency content of the series, i.e.,

> Coalk)e 7t (3)

S:cac(wl) =
k=—o0
= X (w1)X(w1), (4)

where X represents the Fourier transform of x. Similarly,
the bispectrum is defined as the Fourier transform of the

LA given process can always be made zero-mean by subtracting
the mean from it.
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Figure 1: Canadian lynx data.
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Figure 2: Lynx data: windowed-periodogram based estimate
of the bispectrum.

third-order cumulant,

i i szz(k,l)eij“’lkefjwzl (5)

k=—o0l=—o0

= X*(wl +w2)X(UJ1)X(W2). (6)

S;vzz(wha&) =

The bispectrum is a function of two frequencies, and as
mentioned in the introduction, it is commonly used in testing
the linearity and Gaussianity of a given sequence (see, e.g.,
[2], [3] and [4]). We note that unlike the power spectrum,
the bispectrum is complex-valued.

Typically, one has to estimate the cumulants and
polyspectra from a limited set of samples. For instance,
consider a vector x containing N samples of a time-series,
ie.,

x = : . (7)

The estimates of the second and third-order cumulants of x
may then be obtained through averaging as,
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Figure 3: Lynx data: Contour plot of the windowed-
periodogram based estimate of the bispectrum.

Coalk) = %Z = (n)z(n + k) (8)

Coualhsl) = 3 @ ()a(n+Kz(n+1),  (9)
where

v = max(0,k) (10)

Y = max(0,k,l) (11)

k.l > 0. (12)

Then, using Cyz (k) and Crur(k, 1) as obtained from (8) and
(9), estimates of the power spectrum and bispectrum may
be obtained through the windowed-periodogram method as
shown in equations (13)-(14) on the next page, where the
window sequences, v(k) and w(k,1), are included to make
the estimators asymptotically unbiased and consistent (i.e.,

limy oo S = S). Further details on the selection of v(k)
and w(k,l) may be found in [4]. The simplicity of the peri-
odogram approach makes it a very useful estimation tool for
general applications. However, as is well-known, the peri-
odogram method does not generally provide high resolution
estimates [1]. We refer the reader to [11] and [12] where some
of these issues for the power spectrum have been addressed.

3. TAA-BASED ESTIMATION OF
POLYSPECTRA

Given the data vector x, a grid-dependent frequency-domain
representation of x may be obtained along the lines of [13],
by selecting I grid points in the frequency domain with cor-
responding frequencies {w;}!_;, as

I
x(n):Zawiej“m, n=1,...,N, (15)
=1

where a.,; is the (unknown) complex-valued spectral am-
plitude of the ith frequency, including any corrupting noise
elements. It is worth noting that no signal model has been
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Figure 4: Zoom-in of Figure 3.

Figure 5: Lynx data: IAA-based estimate of the bispectrum.

assumed; rather the signal is made from the contribution
corresponding to each of the frequency grid points. There
is also no corrupting noise term as is typical in model-based
methods describing the data as a signal and a noise part.
The contribution of any noise component is instead implic-
itly described via its contribution to .. Further, defining

a(wi)) = [ &% edwilV ]T (16)
= [a() a(wn) ]* (7
a = [aul [e7%y }T7 (18)
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Figure 6: Lynx data: contour plot of the IA A-based estimate
of the bispectrum.

where a(w;) represents the Fourier vector corresponding to
the sampling times of x, at the frequency w;, leads to the
vector representation

x = Ao (19)

The covariance matrix, R, may thus be written as
I
2 *
R = Z v, |*a(wi)a” (wi). (20)
i=1

For each frequency, w;, the interference and noise covari-
ance matrix, Q (w;), defined as the contribution from all grid
points other than w;, may be formed as

I

Z |aui|2a(wp)a* (wp) (21)

p#i, p=1

Qwi) =

An estimate of the spectrum amplitude at frequency w;, say
G, , may now be formed using the weighted least squares
problem

2
bw; = argmin|x— o, a(w;) , (22)
i Q(wi)
where || - [|Q(w;) represents the weighted 2-norm. As shown

in [11], the solution to this problem may be obtained as

R B a*(wi)flflx
Qi = a*(wi)R*Ia(wi) (23)

R = Z |, |*a(wi)a” (wi), (24)
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{wi}'{:l =

{wip)hp=1 | {w2(02)}pn=1 | {w1(p1) + w2(p2)}py po=1 (25)
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Figure 7: Zoom-in of Figure 6.
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Figure 8: Coupled sinusoids data.

where (23) and (24) are solved iteratively by initializing R
to an identity matrix. Assuming that the desired P x P
grid for the bispectrum is formed from {wi(p1)}}, =1 and
{wa(p2)}},—1, we may form the frequency grid for IAA,
{wi}_; according to (25) on the top of the page, where
|J represents union of sets. = The IAA-based estimate of
the power spectral density and the bispectrum can thus be
formed as

Gy, Gy (26)

ng (wl) =
S 0721+w207w1 dwz (27)

S?xz (wl + "‘)2)

where the superscript « has been added to show that these
are TAA-based estimates. We note that IAA-based esti-
mates of higher polyspectra may be obtained analogously,
and extension to the non-uniformly sampled data sets can
be formed reminiscent to the approach in [12].
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Figure 9: Coupled sinusoids: contour plot of the windowed-
periodogram estimate of bispectrum.

4. EXAMPLES

In this section, we demonstrate the effectiveness of the pro-
posed IAA-based estimators through application to real and
simulated data. In each case, the suggested approach is com-
pared to the popular windowed-periodogram method?.

4.1 Canadian Lynx Data

The first time-series studied here is the Canadian lynx data
that consists of the annual number of Canadian lynx trapped
in the Mackenzie River district of Northwest Canada for the
years 1821-1934 (see [14] for further details). The trapped-
lynx count is plotted versus time in Figure 1. Figures 2-4
show the windowed-periodogram estimate of the bispectrum
using the Rao-Gabr window. The bispectrum estimate shows
a rather wide peak at around (0.1,0.1) (and other symmet-
ric locations). This indicates the possibility of quadratic fre-
quency coupling. The TA A-based estimate of the bispectrum
is shown in Figures 5-7. As is clear from these figures, the
TAA-based estimate results in much sharper peaks. The ba-
sic peak is at (0.104, 0.104), which gives a period of 9.6154
years, and its coupled harmonic at 4.8077 years.

4.2 Coupled Sinusoids

To show the importance of obtaining high resolution bispec-
trum estimates, we also consider simulated data representing
closely-spaced coupled sinusoids. We generate 100 samples
of a signal, x,, having three sinusoidal components

3
Tn = Z ar cos(2m frn + ¢r) + wn, (28)

r=1

where «, and f, denote the amplitude and frequency of the
rth sinusoid, respectively; ¢1 and ¢2 are independent uni-
formly distributed random variables between 0 and 27; and

2A particularly useful implementation is
available in the Matlab toolbox ‘HOSA’,
http://www.mathworks.com/matlabcentral/fileexchange/3013.
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Figure 10: Zoom-in of Figure 9.
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Figure 11: Coupled sinusoids: contour plot of the IAA-based
estimate of the bispectrum.

the noise term, wy,, represents zero-mean Gaussian random
noise. In the simulations, we set o, = 1,Vr, fi = 0.13 Hz,
fQ =0.15 I’IZ7 f3 = fl +f2, and ¢3 = (]51 +¢2 The simulated
data is shown in Figure 8. The windowed-periodogram
based estimate of the bispectrum, shown in Figures 9 and
10, fails to resolve the closely-spaced peaks. Figures 11-12
show that the corresponding TAA-based estimator provides
accurate estimate of the bispectrum, showing the peaks to
be at the correct frequency locations.
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