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ABSTRACT

This paper is concerned with optimal path planning for mov-
ing sensor platforms in angle-of-arrival (AOA) target track-
ing. A steering algorithm is developed to update sensor plat-
form waypoints for a single or multiple AOA sensor plat-
forms. The waypoint updates are derived from an iterative
normalized gradient descent optimization algorithm subject
to geometric and turn rate constraints. The sensor platform
paths are optimized by minimizing a cost function compris-
ing the mean-square error of predicted target position esti-
mates produced by the extended Kalman filter and penalty
functions for threat/obstacle avoidance. The effectiveness of
the developed steering algorithm is illustrated with simula-
tion examples.

1. INTRODUCTION AND BACKGROUND

Passive localization of targets from unmanned vehicles
equipped with sensing devices is an important research prob-
lem that finds application in electronic warfare, surveillance
and situational awareness, to name a few. A particularly im-
portant aspect of passive localization is control or steering
of the moving platforms in order to maximize the localiza-
tion/tracking performance among other things.

Path optimization algorithms all require a prediction of
the estimation performance for a given control action. In
large signal-to-noise ratio (SNR) situations the estimation
performance can be approximated by the determinant of the
Fisher information matrix (FIM), which is the inverse of the
Cramer-Rao lower bound (CRLB). The criterion of maxi-
mizing the determinant of FIM has been extensively used
in path optimization for bearings-only target motion analy-
sis [1, 2, 3].

More recently a decentralized information-theoretic ap-
proach for unmanned aerial vehicle (UAV) path optimization
for bearings-only localization was considered in [4], utilizing
the information filter to facilitate distributed processing. It
is shown that maximizing the mutual information gain is
equivalent to maximizing the logarithm of the determinant
of predicted FIM, which is in turn closely related to the D-
optimality criterion in optimal experimental design [5].

In [6] posterior Cramer-Rao lower bound (PCRLB) is
used as the optimization criterion for controlling sensor tra-
jectories in bearings-only target tracking under the tacit as-
sumption that the target state estimator achieves PCRLB
approximately. PCRLB is a lower bound for the estimation
of random parameters [7]. The proposed trajectory opti-
mization algorithm uses a Riccati-like recursion to compute
the inverse of PCRLB by means of Monte Carlo integration.
It then calculates the sequence of FIMs for a range of possible
sensor trajectories over a grid. The optimal sensor trajectory
is determined by minimizing a measure of PCRLB, given by
the maximum MSE along the x and y-axis for target location
estimates.

Under the assumption that the localization estimate
is nearly efficient and unbiased, UAV path optimiza-
tion algorithms were developed for scan-based and hybrid
(AOA/scan-based) target localization in [8, 9]. These path
optimization algorithms approximate FIM by substituting
the maximum likelihood target location estimate for its true
value at each waypoint update.

Another research area that is closely related to UAV path
planning is optimal sensor placement, which often assumes a
stationary localization configuration. Optimal sensor place-
ment configurations for AOA and time-difference-of-arrival
(TDOA) sensors based on estimation uncertainty minimiza-
tion (i.e., maximizing the determinant of FIM) are investi-
gated in [10, 11].

In this paper we utilize the covariance matrix of the
predicted target state estimates generated by the extended
Kalman filter (EKF) to optimize mobile sensor platform tra-
jectories. We transform the optimal steering problem into
minimization of a composite cost function comprising the
mean-squared error (MSE) for target state estimates and a
penalty function for obstacle/threat avoidance. The control
vectors for the moving platforms are calculated using a sim-
ple gradient-descent approach akin to [12, 13, 14]. The turn
rate constraints are imposed by limiting the heading change
for the moving platforms. The main contribution of this
paper is the development of a gradient-based steering algo-
rithm for AOA target tracking incorporating threat/obstacle
avoidance and turn rate constraints.

The paper is organized as follows. Section 2 describes
the target tracking problem. In Section 3 the optimal UAV
path planning algorithm is developed. The implementation
of geometric constraints is discussed in Section 4. Simulation
studies are presented in Section 5. The paper concludes in
Section 6.

2. TARGET TRACKING PROBLEM

We consider two-dimensional target tracking using AOA
measurements collected by N ≥ 1 moving platforms at dis-
crete time instants k = 0, 1, 2, . . .. The platform positions
at time k are denoted by pk(1), . . . , pk(N). The target is
assumed to have a nearly constant motion model [15].

The dynamical equation (the process equation) repre-
senting the motion of the target is

xk+1 = F xk + nk, k = 0, 1, . . . (1)

where xk = [xk, ẋk, yk, ẏk]T is the target state vector at
time k and T denotes matrix transpose. Here [xk, yk]T and
[ẋk, ẏk]T are the target position and velocity at time k, re-
spectively. In (1) the dynamical constraint (the state tran-
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sition matrix) is given by

F =

2

6
4

1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

3

7
5 (2)

where T denotes the constant time interval between discrete-
time instants k.

The process noise nk is a zero-mean white Gaussian pro-
cess with covariance matrix Q, i.e., nk ∼ N (0, Q), and it
accounts for unknown target maneuvers. For piecewise con-
stant white acceleration errors, the process noise covariance
matrix is [15]

Q =

»
qxB 0
0 qyB

–

(3)

where qx and qy are the acceleration error variances along
the x-axis and y-axis, respectively, and

B =

»
T 4/4 T 3/2
T 3/2 T 2

–

. (4)

For AOA target tracking the measurement equation is

θk = h(xk) + wk (5)

where θk is the vector of AOA measurements taken by N
platforms at time k, xk is the target state vector at time k
and wk is white Gaussian noise with wk ∼ N (0, Rk). In
terms of platform positions and the target position at time k
we have

h(xk) =
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6
6
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∠
`
[xk, yk]T − pk(1)

´

∠
`
[xk, yk]T − pk(2)

´

...
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[xk, yk]T − pk(N)
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7
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(6)

where ∠z denotes the bearing angle of vector z.
To account for reduced SNR for large target ranges, the

AOA noise covariance is assumed to have the following range-
parameterized form

Rk = σ2
b

2

6
4

dk(1) 0

. . .
0 dk(N)

3

7
5 (7a)

where σ2
b is the AOA noise variance at unit range from the

target and
dk(i) = ‖[xk, yk]T − pk(i)‖γ . (7b)

Here γ ≥ 0 is a power loss exponent that determines the
dependence of the AOA measurement noise variance on the
target range. For γ = 0 we have Rk = σ2

bI , which means
that the AOA noise is invariant to the target range. For
nonzero γ the AOA noise variance increases with increasing
target range. In the absence of compounding factors such as
non-line-of-sight propagation, the AOA noise variance can
be determined easily from received signal power and sensor
characteristics.

In this paper we employ the EKF to estimate the target
state vector. It is possible to extend the discussion to other
recursive estimators such as the unscented Kalman filter.
The prediction and update equations of the EKF are given
by

State Prediction:

xk|k−1 = F xk−1|k−1 (8a)

P k|k−1 = F P k−1|k−1F
T + Q (8b)

State Update:

xk|k = xk|k−1 + Kkθ̃k (8c)

P k|k = (I − KkHk)P k|k−1 (8d)

θ̃k = θk − h(xk|k−1) (8e)

Kk = P k|k−1H
T
k (HkP k|k−1H

T
k + Rk)−1 (8f)

where xk|k−1 is the state prediction at time k given all mea-
surements up to time k − 1, xk|k is the filtered state esti-

mate at time k, θ̃k is the innovations vector at time k, and
P k|k is the error covariance matrix for the filtered state es-
timate at time k. In the event the matrix inversion in (8f)
does not exist due to rank deficiency it can be replaced by
pseudo-inverse. The N ×4 matrix Hk is the Jacobian of the
nonlinear measurement function h(xk) evaluated at xk|k−1:

Hk =

2
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where

dk|k−1(i) =

»
dx

k|k−1(i)
dy

k|k−1(i)

–

=

»
xk|k−1

yk|k−1

–

− pk(i),

i = 1, . . . , N (10)

and
xk|k−1 = [xk|k−1, ẋk|k−1, yk|k−1, ẏk|k−1]

T . (11)

The EKF recursions are initialized by

x0|−1 = E{x0} and P 0|−1 = Cov{x0}. (12)

3. PATH OPTIMIZATION

The objective of sensor path optimization is to determine
moving platform trajectories so as to maximize the tracking
performance in the presence of path constraints such as turn
rates and any threat/collision avoidance.

The waypoints at time instant k + 1 are given by

pk+1(i) = pk(i) + uk(i), i = 1, . . . , N, k = 0, 1, . . . (13)

where pk(i) is the 2D position vector of the ith UAV in
Cartesian coordinates at waypoint update k and uk(i) is the
control input for the ith platform with norm and turn rate
constraints

‖uk(i)‖ = vk(i)T, |∠uk+1(i) − ∠uk(i)| ≤ ϕ. (14)

Here vk(i) is the cruising speed of the ith platform at time
k and ϕ is the maximum turn rate in radians. The control
vector norm ‖uk(i)‖ is assumed to be constant, which implies
that vk(i) is time-invariant.

Optimal path planning requires the selection of control
inputs in order to minimize a cost function that measures
optimality. In our case the cost function to be minimized is
the MSE of predicted state estimates, which is approximately
given by

J(πk) = P k+1|k(1, 1) + P k+1|k(3, 3), πk =

2

6
4

pk(1)
...

pk(N)

3

7
5

(15)
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where P k+1|k(i, j) denotes the (i, j)th entry of P k+1|k. The
cost function J(πk) is approximate since P k+1|k is not the
true covariance of state prediction as a result of approximate
linearization used by the EKF. The path optimization prob-
lem can be solved by gradient-descent waypoint updates:

pk+1(i) = pk(i) − µk(i)
∂J(πk)

∂pk(i)
,

i = 1, . . . , N, k = 0, 1, . . . (16)

where µk(i) is a time-varying step-size that normalizes con-
trol inputs in order to satisfy the norm constraint in (14):

µk(i) =
vk(i)T

‖∂J(πk)/∂pk(i)‖
. (17)

The waypoint update equation (16) can be equivalently writ-
ten as

πk+1 = πk − M k

∂J(πk)

∂πk

, k = 0, 1, . . .

M k =

2

6
4

µk(1)I2 0

. . .
0 µk(N)I2

3

7
5 .

(18)

Here I2 denotes the 2 × 2 identity matrix.
Even though it is possible to obtain algebraic expressions

for the gradient of J(πk), we opt for numerical computation
using a first-order finite difference approximation. This pro-
vides us with flexibility for cost function modifications, e.g.,
to cater for soft constraints. Let

∂J(πk)

∂πk

= [αk(1), αk(2), · · · , αk(2N)]T . (19)

Then the first-order finite difference approximation for the
gradient vector is

αk(i) ≈
J(πk + δi) − J(πk)

δ
(20)

where δi is a 2N × 1 column vector with zero entries ex-
cept for the ith entry which is equal to a small positive real
number δ:

δi =
ˆ
0, · · · , 0, δ

|{z}

ith entry

, 0, · · · , 0
˜T

. (21)

In (20) division by δ can be absorbed into normalization of
control inputs. Thus the gradient based steering algorithm
in (18) can be replaced with

πk+1 = πk − N k

2

6
4

J(πk + δ1) − J(πk)
...

J(πk + δ2N ) − J(πk)

3

7
5 , k = 0, 1, . . .

(22)
where N k is a 2N × 2N diagonal normalization matrix

N k =

2

6
4

ηk(1)I2 0

. . .
0 ηk(N)I2

3

7
5 (23)

and

ηk(i) =
vk(i)T

‚
‚
‚
‚

»
J(πk + δ2i−1) − J(πk)
J(πk + δ2i) − J(πk)

–‚
‚
‚
‚

. (24)

When calculating the approximate gradients, the only
quantities that are affected by the perturbation of πk are
the measurement noise covariance matrix Rk and the Jaco-
bian matrix Hk. Consequently the calculation of J(πk +δi)
only involves re-calculation of Hk and Kk in the EKF equa-
tion (8d).

4. PATH CONSTRAINTS

4.1 Hard Constraints

It is often imperative that a certain minimum clearance be-
tween the moving platforms and the target be maintained
in order to ensure that (i) the platforms are not detected
by the target and (ii) signal reception from the target is not
interrupted.

A simple way to implement distance restrictions is to
impose a circular hard constraint around the target location.
The hard constraint is activated whenever a waypoint update
results in a platform crossing the circular boundary:

• If ‖pk+1(i) − [xk+1|k, yk+1|k]T ‖ > dmin,

pk+1(i) = pk(i) + uk(i) (25)

• Otherwise, rotate uk(i) by a minimum angle so that
pk+1(i) is on the boundary of the hard constraint, i.e.,

‖pk+1(i) − [xk+1|k, yk+1|k]T ‖ = dmin.

Here dmin is the minimum clearance from the target (i.e.,
the radius of the hard constraint), [xk+1|k, yk+1|k]T is the
prediction of the target location produced by the EKF, and
uk(i) is the control input for the ith platform.

4.2 Soft Constraints

Suppose that there are K threats at known locations c(i),
i = 1, . . . , K, to be avoided by the moving sensor platforms.
Soft constraints can be created around threat locations to
steer the platforms away from them. To do this we need to
modify J(πk) so that it tends to infinity at the c(i). This is
easily achieved by introducing maxima at the c(i):

Jc(πk) = J(πk) +

KX

i=1

NX

j=1

1

1 − exp{− 1
κi
‖pk(j) − c(i)‖2}

.

(26)
Here κi > 0, i = 1, . . . , K, is the risk parameter for the ith
threat; i.e., the larger κi the larger the clearance.

4.3 Turn-Rate Constraints

Turn rate constraints have priority over other constraints and
therefore they are applied last. If, for a given control vector,
the constraint |∠uk+1(i)−∠uk(i)| ≤ ϕ is not met, then the
heading direction of the control vector is adjusted so that
|∠uk+1(i) − ∠uk(i)| = ϕ. Significant conflicts between turn
rate and hard constraints can be resolved simply by setting
dmin to a larger value than what is desired.

5. SIMULATION STUDIES

The first two simulation examples consider stationary target
localization by a team of moving sensor platforms. For a
stationary target the process equation (1) becomes

xk+1 = F xk, k = 0, 1, . . . (27)

where x0 = [x0, 0, y0, 0]
T , i.e., ẋk = 0, ẏk = 0 and nk = 0.

The stationary target coordinates are [5, 1]T km. A team
of three sensor platforms with vk(i) = 30 m/s, i = 1, 2, 3,
and ϕ = 40◦ are used to geolocate the target. The pa-
rameters for the steering algorithm are T = 2 s, δ = 1 m
and dmin = 0.5 km. The initial UAV positions at k = 0
are p0(1) = [1, 2]T km, p0(2) = [0.5, 0]T km and p0(3) =
[1,−2]T km. The localization geometry is known to have a
threat at c1 = [3,−1.5]T km to be avoided by a soft con-
straint with risk parameter κ1 = 0.08. The AOA noise stan-
dard deviation at unit range is σb = 1◦ and the power loss
exponent is γ = 0.2 (the target range is converted to meters
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when calculating the AOA covariance matrix). The EKF
assumes zero acceleration error variances, i.e., qx = qy = 0,
and is initialized to x0|−1 = [3, 0, 0, 0]T and P 0|−1 = 5I .
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Figure 1: (a) Optimal sensor paths for geolocating a station-
ary target subject to a soft constraint, (b) evolution of MSE.
The final sensor locations are marked with ∗, + and × in (a).
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Figure 2: Optimal localization trajectory for a single plat-
form with AOA sensor.

Fig. 1 shows the optimal sensor paths generated by (22)
using Jc(πk), along with the evolution of MSE. The soft
constraint keeps the sensor platforms away from the threat
location c1. The hard constraint around the target restricts
the movement of the sensor platforms by rotating the control
vectors onto the circular boundary.
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Figure 3: Optimal sensor platform paths for target tracking
after (a) 50 waypoint updates, (b) 100 waypoint updates,
and (c) 200 waypoint updates; (d) evolution of MSE. The
final sensor locations are marked with large ∗, + and × in
(c).
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Figure 4: Optimal target tracking trajectory for a single
platform.

Intuitively the optimal trajectory for a single sensor plat-
form would be a spiral flight path around the stationary
target with the distance between the sensor and the target
getting gradually smaller. The next simulation example will
demonstrate this. We have a single sensor platform starting
at p0(1) = [1, 2]T km. Fig. 2 shows the simulated trajec-
tory. A circular trajectory around the target would yield
the optimal AOA localization performance. If, however, the
range is not restricted, the optimal trajectory becomes a spi-
ral path combining circular movement with an incremental
range reduction.

The next two simulations consider target tracking. The
target has a nearly constant velocity motion model with ini-
tial target state x0 = [4, 0.01,−1, 0.004]T and acceleration
error variances qx = 2 × 10−8 and qy = −10−7. The EKF
assumes qx = qy = 10−9. Fig. 3 shows the simulated optimal
sensor platform paths and the evolution of MSE. Several ob-
servations are in order. The sensor platforms forgo baseline
expansion for getting closer to the target since the target is
moving away from the platforms and the target range needs
to reduced to achieve better tracking performance. The turn
rate constraints and constant platform speeds produce some
loop maneuvers on hard constraint boundaries, which is seen
in Fig. 3(c).

Fig. 4 shows a simulated optimal sensor trajectory for a
single AOA platform. In this case the optimal trajectory is
not unique as it is influenced by the target maneuvers. The
observability of the target is improved by steering the sensor
platform so that it outmaneuvers the target. Once the plat-
form overtakes the target the path optimization algorithm
steers it in a circular path around the target to achieve this.

6. CONCLUSION

We have developed a sensor steering algorithm for AOA tar-
get tracking based on the minimization of the target state
estimation errors subject to path constraints. For illustra-
tion purposes the target is assumed to have a nearly constant
velocity motion model. The target state (position and veloc-
ity) is recursively estimated by the EKF. The platform way-
points are computed at discrete time intervals by minimizing
the MSE of predicted target state estimates produced by the
EKF, as well as, any soft constraint cost function, leading
to an iterative waypoint update algorithm that can be im-
plemented in real time. The paper also proposes a rotation-
based method for implementing a geometric hard constraint
around the target and applies turn rate constraints by lim-
iting changes in platform headings. The developed steering
algorithm is shown to perform well both in localization of a
stationary target and tracking of a moving target with un-
known dynamics.
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