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ABSTRACT

We address the problem of identifying continuous-time auto
regressive (CAR) models from sampled data. The expo-
nential nature of CAR autocorrelation functions is taken
into account by means of exponential B-splines modelling,
allowing one to associate the available digital data with
a CAR model. A maximum likelihood (ML) estimator is
then derived for identifying the optimal parameters; it re-
lies on an exact discretization of the sampled version of
the continuous-time model. We provide both time- and
frequency-domain interpretations of the proposed estimator,
while introducing a weighting function that describes the
CAR power spectrum by means of discrete Fourier transform
values. We present experimental results demonstrating that
the proposed exponential-based ML estimator outperforms
currently available polynomial-based methods, while achiev-
ing Cramér-Rao lower bound values even for relatively low
sampling rates.

1. INTRODUCTION

Continuous-time auto regressive (CAR) stochastic processes
are widely used in control theory and in signal/image pro-
cessing and analysis. Typical examples of applications are
system identification and adaptive filtering [1, 2]; speech
analysis and synthesis [3]; image modeling [4, 5, 6] to name
a few. In practical situations, however, the available data
is discrete and one is forced to estimate the underlying
continuous-domain parameters from sampled values.

The problem of CAR parameter estimation from sam-
pled data has been approached from several points of view
using indirect or direct methods [7]. In indirect methods,
the sampled version of the process is treated as a discrete-
time auto regressive moving average (ARMA) process which
can be identified by standard estimation algorithms such as
least squares, maximum likelihood and maximum a posteri-
ori [1]. CAR parameters are then recovered from the ARMA
model by reverse mapping. The advantage of the indirect
approach resides in the use of well-established identification
methods. Its accuracy, however, is compromised since the
discrete-time ARMA model does not take into account pa-
rameters dependencies. In direct methods, derivatives are
replaced by weighted finite differences, providing an approx-
imated discrete-time model. The model is then identified
while keeping the original CAR parametrization [8, 9, 10].
Other direct methods are based on a frequency domain anal-
ysis [11]. Current methods are sensitive to aliasing artifacts,
meaning that they require that the signals be sampled at a
sufficient rate.

In this paper, we present a novel direct approach to CAR
identification that is based on exponential B-spline interpola-
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tion. Our formulation can be interpreted and implemented
in both time- and frequency domains, allowing one to de-
rive a maximum likelihood estimator (MLE). The proposed
framework is suitable for uniformly sampled data and it per-
forms well over a large range of sampling rates.

The foundation of our method is an analytic form for
the ARMA discrete-time model that stems from the sampled
version of the CAR model. This expression is then used for
developing an MLE algorithm. Specifically, we show that
the autocorrelation (AC) function of a CAR model is an
exponential spline and we propose here to use exponential
B-splines to relate the AC sequence of the digital data with
the AC function of the continuous-time process.

Our algorithm relies on an exact discretization of a CAR
model; there is no prior assumptions regarding sampling
rates and effective bandwidth of the process. For this reason,
our method performs well even at relatively low sampling
rates. We show in our experiments that the proposed al-
gorithm outperforms polynomial B-spline models [11] while
achieving the Cramér-Rao lower bound at any sampling rate.
We further show that in the presence of aliasing, the pro-
posed ML cost function has several local minima, but that it
still admits a global minimum that corresponds to the MLE.
A proper initialization of the algorithm is derived in this
work, too.

2. EXPONENTIAL SPLINE MODELS FOR CAR
PROCESSES

A CAR model that is driven by white Gaussian noise is spec-
ified in the time domain by the following expression:

P(D)y(t) = w(t), (1)

where y(t) is the CAR output signal and w(t) is white
Gaussian noise with zero mean and variance o?; P(D) =
DN 4+a1 D" ' +.. . 4anl is the n-th order constant coefficient
differential operator that acts on the output of the system.
In order to identify this stochastic system, we parametrize
its power spectrum by introducing a vector @ that consists
of the poles of the system. Therefore, the CAR process y(t)
of order n is characterized by the power spectrum:

n 2

1
ijfai

i=1

2

P(jw; @) =0 )

where & = (a1, -+ , an) are the poles of the system. Stability
of the system (2) is ensured if ®{a;} < 0. The one-to-
one relation between the poles, a, and the coefficients of
the differential operator P(D) allows one to express (2) as a
function of real variables that can be used in the optimization

1469



process 0 = (a1, ,an):

1

P(jw; 0) = 0 | — ,
U0 = | Gy ¥ G T+ T an

®3)

Typically, CAR identification is performed in the discrete do-
main where the corresponding model is an ARMA process,
derived by some discretization scheme. The main contri-
bution of this paper is the use of exponential B-splines (E-
B-splines) to establish an exact link between the discrete-
and the continuous- domain models. Interpolating the dis-
crete AC sequence with E-B-splines seems to be a proper
choice since the AC function of a stochastic model (CAR
or CARMA) is a linear combination of exponentials, which
admits an exact representation in an E-B-spline basis.

An E-B-spline [12, 13] for a given set of poles & and
sampling rate 7T is defined as follows,

n g _ play—jw)T
far(t) = # {Til —— }(t» (1)

i=1

Given a CAR model ®(jw;d), one can derive the cor-
responding E-B-spline by localizing the Green function of
the differential operator P(D) [12]. These functions are de-
pendent on the poles of the system & and are compactly
supported in [0, nT).

The key result of this work consists in the E-B-spline
based representation of the AC function of a CAR process
which is expressed in the following theorem.

Theorem 1 The autocorrelation function of a CAR process
of order n, pz(t) = F 1 {®(jw; d)}, is given by

0a(t) =Y o’paa) rlklB—aa Tt — (k+n)T)  (5)

keZ
where & are the poles of the process and
B(—a:ay,r 18 the exponential B-spline with poles
—a : A); paa),rlk] is specified via its z-domain

_ (="
Pga),r(z) = M, (-l T)(1—e Tz 1)

Theorem 1 implies that the z-transform of the AC sequence
Da(2;0,T) = cp pa(kT)27" is given by

eoz.;T

= 2
®a(#6,T) =0 .Zn.B(_&:&)’T(Z).H (1 —exTz)(1—exiTz™1)

i=1
(6)
where B(_z.a),7(2) = it Bi—away,r(kT) 27",
The z-transform of the AC sequence can be expressed as
a function of the poles @ or equivalently as a function of the
coefficients 0: ®4(z;d,T) = ®4(2;0,T). The latter formu-
lation introduces real variables only which lend themselves
better to numerical optimization, as will be described in the
following section.

Proposition 1 The z-transform of the discrete autocorrela-
tion ®q(z;0,T) can be expressed as the product of a causal
and an anti-causal filter:

Dy(2&,T) = NHa(2,0,T)Ha (=;0,7T), (7)

where

i are the zeros of B(_g.a),1(2) located inside the unit circle.

The constant \* is the variance of the corresponding discrete
innovation process (white Gaussian noise); and it is given
by,

9)

Hy(z;0,T) represents the discrete-time process correspond-
ing to the CAR system; it corresponds to a discrete
ARMA(n,n — 1) model whose poles and zeros are inter-
dependent (as the zeros of B(_g.q)r(z) are also functions
of @).

Thanks to this exact discretization, we are actually able
to estimate the samples of the Fourier transform of the
continuous-time signal y(¢) by applying an appropriate spec-
tral weighting to the DFT of its discrete samples.

Proposition 2 The interpolated representation of a CAR
autocorrelation function is given by

pa(t) =Y pa(kT)nar(t — kT) (10)
keZ
where the fundamental exponential spline interpolator

na,r(t) is defined in the Fourier domain as

~ BraarWw)
Wa,T(w) = B(,a;a),T(ej“’)

with B(,&:&%T(w) =Z{Baart)} (W).

Note that expression (11) introduces the correct spec-
tral weighting for restoring the power-spectrum of the
CAR model from its discrete samples: ®(jw;d) =
ﬁ&’T(w)%(e]“’; 077 T).

Recently, Gillberg and Ljung [11] proposed a different
frequency domain weighting function for CARMA systems
based on polynomial splines. The spectral weighting of [11]
is defined as

(11)

dwT _q 2n

JjwT

Ao, (W) = TGy (12)

(2n—1)!

where [[,, () is the Euler-Frobenius polynomial. The ap-
proach proposed in [11] was shown to perform well for rela-
tively high sampling rates.

While (12) is derived for the limiting case 7" — 0, the
spectral weighting (11) provides an exact mapping between
continuous- and discrete-time models. Further, changing
the sampling interval results in scaled versions of the poly-
nomial B-spline functions; this scaling property does not
hold, however, for the exponential B-spline functions [12].
Also, the proposed exponential model is not restricted by
the partition-of-unity condition, allowing for more flexibility
in the estimation process.

We note that (12) depends on the number of poles n
alone and it is independent of @; furthermore it corresponds
to a low-pass model. It is therefore limited to the spectral
content that is captured by the DFT of the discrete-time
signal. In contrast, the proposed spectral weighting (11)
can assume both low-pass or band-pass configurations, al-
lowing one to estimate CAR parameters even in cases where
aliasing effects are prominent, as will be shown in Section 4.
In the particular case when the continuous-time signal has
base-band power spectrum that occupies frequencies that are
much lower than the sampling rate, the proposed approach
and the method of [11] provide similar results; this stems
from the approximation properties of piece-wise polynomial
models.
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3. MAXIMUM LIKELTHOOD ESTIMATOR

The maximum-likelihood parameter estimation of a CAR
model can be carried out by minimizing the following log-
likelihood function:

1
Vn (0) =log |3 + 5y - 3 Loy, (13)

Here, y = (y[1],--- ,y[N]) is the output signal sampled data
vector, 3 [m, k] = pa,r [m — k] is the AC matrix and N is the
number of samples. When N is relatively large, calculating
the determinant and inverting ¥ is computational demand-
ing. A possible way of avoiding this step is to assume N > 1.
If we neglect boundary effects, y - ©7! -y corresponds to fil-
tering y by the inverse of AHg(z; 0, T) and then taking the /2
energy of the output. As for the determinant, we calculate
it by applying Szegd’s theorem in the following manner,

27 X
lim log ||V = i/ log A2|Ha(e7*%;0,T)dw (14)
N—o0 2T 0

Utilizing (8) and the Residue theorem, the integral on the
right-hand-side of the equation reduces to log A; it follows
that for N > 1,

N 1
Vv (0) = S log A + < lly % gl (15)

where the z-transform of g is G(2;60,T) = 1/Hq4(z;0,T).
We can further approximate the 2 norm in (15) by a

Riemann sum within the Fourier domain, which leads to a

slightly different definition of the MLE cost function:

|V [k]?
Vn(0) = ; ON2[Hy(eior; 0, T2

1 ,
+3 log 2| Ha(e’%;0,T)|?

(16)
where Y[k] = LN i y[k]e_ﬂ”k% is the DFT of the dis-
cretized CAR process, y. The logarithmic term in (16) can
be computed more precisely by using the integration between
0 and 27, suggested in (14), instead of the Riemann sum.
The resulting expression of the logarithmic part is % log(\?),
as in (15). Equation (16) describes the joint likelihood of
the DFT samples Y'[k], which are complex random variables.
The mean of these random variables is zero and their vari-
ance can be approximated by A\?|Hg(e/“*;0,T)|?; the ap-

proximation error decays at a rate of \/Lﬁ This value of the

variance becomes exact when a periodic random process is
observed over an integer number of periods.

Due to the possible infinite support of g, sampling its
z-transform on the unit circle may involve information loss
and introduce numerical inaccuracies in the Riemann sum
approximation (16). Yet, our experiments suggest that the
approximation is adequate for relatively high values of N,
in which one can can choose either a spatial-domain imple-
mentation of y % g or a DFT approximation scheme. The
maximum-likelihood estimate is then given by:

0 = arg mein Vn (0) (17)

The proposed MLE approach differs from currently available
methods in several aspects. First, it considers exponential
AC models for both the continuous and the discrete domain
processes, establishing a link between the continuous and
the discrete domain models. This, in turn, allows for the
discrete model to stem naturally from the continuous do-
main formulation while no a priori assumptions are made
on the digital data. Second, the log-likelihood function sug-
gested here holds true for any value of sampling interval,

Table 1: Local minima of the likelihood function for a
CAR(2) process with poles in —1 + 5i.

Region Log-likelihood  Estimated Frequency*®
Value Poles [rad /time-unit]
1 -3656 —2.4+214 0
2° -3675 —0.96 £ 5.07 4.9
3 -3557 —0.46 + 7.8 7.8
4 -3067 —0.25 £ 11.14 11.1
5 -2212 —0.16 £ 14.0¢ 14.0

¢ Frequency of maximum response.
b Global minimum of the log-likelihood function.

rather than describing the limiting case of 7" — 0. Finally,
the log-likelihood function utilizes discrete-domain data for
determining continuous-domain statistics while no approxi-
mation of continuous-domain frequency spectrum nor of an
impulse response function is required.

The choice of the starting point for the MLE is essential
since the cost function may have several minima and an ini-
tial guess too far from the correct solution may yield a wrong
convergence point. This can be avoided with an appropriate
choice of the initial parameters of 6.

Since the DFT of a sampled signal comes from sum-
ming shifted versions of its continuous-domain Fourier trans-
form, it only yields information about the shifts that fall in
[— %, %], while the continuous signal may also have a band-
pass power spectrum, involving higher frequencies. Beside
the low-pass band, possible shifts of the continuous-time re-
sponse are in any band By, = [k7%, (k+1)Z]. The cost func-
tion V(@) may therefore have one local minimum in each
band By, but the global minimum is in the band the original
continuous-time signal of the model, y(¢), corresponds to.

An example of this kind of behaviour is reported in Table
1 for a second order CAR system, where the likelihood value
of the solutions found by the MLE in five consecutive bands
is shown. The global minimum among all local minima cor-
responds to the correct solution.

This suggests selecting K frequencies wy, from any band
until an arbitrary K —th band, for example the central ones:
wr = (1 +2k)5=. K starting points can thus be defined as
parameters @ for which the continuous spectrum has max-
imum response centered in wy.

The value of K may be derived either from known phys-
ical constraints of the investigated system translated in fre-
quency domain constraints. It can also be empirically es-
timated for a known class of systems. When there is no
knowledge about the process, this parameter can be deter-
mined iteratively as part of the identification process. One
can learn K by observing the behaviour of the likelihood
function in progressive bands: after the global minimum has
been achieved, the value of the likelihood function at the lo-
cal minimum increases in a consistent manner, allowing one
to determine the number of bands to be investigated.

Once the starting points 0} are selected, one can per-
form minimization of Vi (0) starting from every 0 catching
all the local minima @), in the bands considered. The opti-
mal parameter éopt is the one corresponding to the global
minimum of the cost function. This strategy is robust since
it works also for very low sampling rates, but requires several
minimizations of the cost function. A flowchart describing
the proposed optimization strategy is shown in Fig.1.
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Figure 1: The proposed CAR estimation algorithm.

4. EXPERIMENTS AND RESULTS

In order to assess the performance of the proposed algorithm,
we considered several CAR(2) systems, introducing both
low- and band-pass power spectra. For every system 250
Monte Carlo simulations were performed. The sampled sig-
nals y[k] were generated from the system Hg(z;0,T) driven
by discrete-time white Gaussian noise of 1000 samples. The
variance of the continuous-time white noise was set to unity
and considered known.

For every experiment we compare the proposed MLE
with the traditional ARMA(n,n— 1) estimator and with the
polynomial spline algorithm of [11].

For every system we consider several sampling intervals.
For band-pass signals, we choose sampling frequency ranging
from 1.5 to 4.5 times the peak frequency, while for low-pass
signals we defined a maximum frequency wpmaqz at —10dB
the peak frequency and considered a sampling time rang-
ing between 0.5 and 3 times the maximum sampling time:

wn:’m. These sampling rates cover a range of both
aliased and non aliased spectra.

In Table 2 we compare the performance of exponen-
tial spline and polynomial spline MLE’s for band-pass sig-
nals and low-pass signals. We report the relative MSE,

T
E {(9_9”“6 ) (9_9”“8 ) ] for the estimation of the first and

Otrue Otrue

Tsmaz =

the second coefficient of @ = (al,ag)T The MSE is com-
puted as mean value over 250 simulations for several sam-
pling conditions, while the standard deviation is always be-
low 1073. The exponential-spline-based algorithm outper-
forms the polynomial spline MLE in all cases; as expected,
the largest gain is encountered in coarse sampling conditions.

In Fig.2 we show the results of identification of a CAR(2)
system and compare the performance of ARMA, polyno-
mial spline MLE, and the proposed MLE. The Cramér-Rao
Bound (CRB) [14] is also included in the figure to show the
effectiveness of the proposed algorithm. The CRB repre-

Table 2: MSE (dB) for band-pass and low-pass signals

| | Coefficients MSE

aq az

Model Temaz | Exp | Poly[l1] || Exp | Poly[l1]
0.67 | -24.55 | -23.97 || -33.00 | -3L.64

073 | -24.07 | -24.31 || -32.75 | -32.76

0.81 | -24.01 | -23.64 || -33.49 | -32.65

0.00 | -25.70 | -23.51 || -32.51 | -32.28

(-1 + 5i] T.02 | -25.80 | -22.82 || -34.42 | 314l
T17 | 25.27 | 21.71 || 33.25 | -28.95

T.39 | -23.98 | -23.03 || -27.87 | -22.40

T.60 | -22.85 | -19.50 || -22.47 | -11.62

2.16 | 26.72 | -1.26 3175 | 5.12

0.56 [ -21.08 | -20.87 || -35.30 | -35.25

0.62 | -21.68 | -21.10 || -35.68 | -35.84

0.68 | -22.74 | -21.57 || -36.44 | -35.68

0.76 | -22.40 | -20.83 || -36.23 | -34.84

[-1410i] [ 0.86 | -22.56 | -190.25 || -36.67 | -34.49
0.09 | -23.78 | -16.66 || -36.69 | -32.72

117 | 24.09 | -15.84 || 35.23 | 27.62

T43 | -23.40 | -10.70 || -32.65 | -10.88

183 | 2515 | 4.40 3654 | -3.63

050 [ -30.42 | -28.02 || -23.68 | -23.39

0.78 | 8115 | -23.90 | 25.71 | -25.51

T.06 | -29.61 | 21.31 || -26.67 | -27.44

133 | -29.24 | -18.58 || -25.03 | -25.42

s 1] T.61 | -28.00 | -16.83 || -25.41 | -22.62
' 189 [ -25.06 | -15.556 || -24.39 | -10.74
217 | -24.95 | -14.49 || -23.63 | -17.37

244 | -22.05 | -13.94 ][ -20.50 | -15.33

272 | 2117 | -13.60 || -19.45 | -13.95

3.00 | -10.95 | -13.42 |[ -18.55 | -12.77

sents a lower bound for unbiased estimators; from the figure,
it is evident that exponential spline based algorithm follows
closely this limit.

The reason for which the proposed algorithm succeeds
also in the presence of aliasing is linked to its ability to lo-
cate the local minima in different frequency bands from the
DFT of discrete samples. There, the method largely bene-
fits from the use of exact discretization. Interpolating data
in an exponential spline basis is the proper approach as the
spectral weights in (11) are parameter’s dependent and can
assume band-pass configurations. The weights proposed in
[11], on the other hand, are fixed and thus restricted to low-
pass configurations. In Fig. 3 a CAR(2) signal output is
analysed in a low sampling rate situation in the presence of
strong aliasing. The correct model is located in the second
band of the DFT, whereas the MLE based on polynomial
splines provides a low-pass solution. By contrast, the spec-
tral weights 75,7 (w) for the exponential MLE adapt to the
data during the search process and gathers around the ideal
solution in the second band.

5. CONCLUSIONS

We presented a novel maximum likelihood algorithm for
identifying continuous-time AR systems from sampled data.
The proposed maximum-likelihood estimator is based on ex-
ponential B-spline interpolation of the autocorrelation se-
quence of the digital data. Unlike currently available iden-
tification methods, the proposed model can identify CAR
parameters of both low-pass and band-pass power spectra
processes, regardless of the sampling rate. The proposed
formulation can yield time or frequency estimators. We
presented an analysis of exponential-spline-based MLE for
identification of low-pass and band-pass stochastic systems
for variable sampling rates. We did also compare our al-
gorithm with the traditional ARMA estimator and with a
polynomial-based maximum-likelihood estimator, and found
it consistently to perform better, especially at low sampling
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Figure 2: Averaged relative MSE for ARMA, polynomial
spline MLE and the proposed exponential spline MLE. The
error measure refers to identification of coefficients a1 (Fig.
2(a)) and a2 (Fig. 2(b)) of a CAR(2) system 1/(s* + ais +
az) with poles & = [—1 £ 10¢]. The corresponding CRB is
included in the graphs for comparison purposes.

rates. When aliasing effects are prominent, the proposed
MLE follows the Cramér-Rao lower bound at all rates, too.
Because the cost function of the proposed MLE may have
several local minima due to aliasing, we proposed a strategy
to select a set of starting points in order to successfully es-
timate the correct band of the original CAR process. It is
believed that the proposed approach provides a good alter-
native to the currently available methods.
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