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ABSTRACT mension. Besides the fact that this type of network has been

In the context of passive sources localization using an arfeSS Studied in the literature, we adopt an approach where th
tenna array, estimation performance in terms of elevatioh a WO considered geometries have a degree of freedom, which
azimuth is related to the kind of estimator used, and alsé® formed by the opening anglebetween the two branches

to the geometry of the considered antenna array. Althougtpcated on the plane of each array. This explains why the
there are several available results in the literature atiout Studied antenna array is called V-shaped antenna in Oppost-
ear and circular arrays, other possible geometries hawe beHOn to the more classical L-shaped antenna aiitay 4 = 3)

less studied. In this paper, we study the impact of the arralpl: AS a result, the obtained CRB depends on this open-
geometry for two kinds of antenna arrays: the so called ViNg angle through the steering vector and allows us to study
shaped antenna array (2D) and its 3D extension. The Cramg}€ Optimization of the sensors positions. Several arealti
Rao lower Bound (CRB) will be used in this context as a use@nd simulation resullts are given to prove that the 3D antenna
ful tool to find the optimal configuration. The performance of ©Vercomes the ambiguity problem of the 2D antenna. More-
the proposed antenna arrays is verified by comparing its CRBVE" We show that there are some circumstances in which the
to the one of the standard uniform circular antenna from boti$2 @ntenna has better estimation performance than the 2D

analytical and simulation results. antenna even for a weaker aperture. o
The notational convention adopted in this paper is listed
1. INTRODUCTION as follows: italic indicates a scalar quantity, bold mirulsc

indicates a vector, bold majuscule indicates a matrix.
Direction of arrival (DOA) estimation of sources by an array ~ The paper is organized as follows. In Sec. 2, the problem
of sensors has been widely studied in the array signal prand the observation model are introduced. The analytic ex-
cessing literature. The geometry of the array is one way tpressions of CRB for the V-shaped antenna arrays, and for its
improve the parameters estimation performance and to avo@D extension are derived in Sec. 3. Finally, an analysis and
the ambiguities. A huge amount of results is available forsome simulations concerning the analytic CRB are presented
linear and circular arrays (uniform or not) [1, 2]. More gen-in Sec. 4.
erally, planar (or 2D) arrays have also been studied. But the
case of 3D arrays has surprisingly been less studied. How- 2. MODEL SETUP
ever, there are several applications where the sensorsaire s . L -
tered in the 3D space. Consequently, the antenna has an %Y—e here consider the localization of a source emitting a de-
bitrary shapee.g. telescopes networks on the Earth's sur-l€rministic and narrow band signsit) using an antenna ar-
face, electrodes networks on the skull of a patient, network®y consisting of identical and omni-directional sensdise
of buoys on the sea’s surface, etc. positions in space of the source and tﬁbsensors_ of the
Particularly, in [3] (chapter 4), the analysis of the antenn @nténna array are given by their spherical coordinates,
arrays through their diagrams of radiation pattern was preth® couple(8, ¢) for the source (assumed to be in the far
sented. In a recent work [4], the ambiguity of the antenndield area) and the tripleto;, ¢;,£;) for the i sensor (see
arrays was studied by using differential geometry as a usé=ig. 1(a)). In this study, we consider two geometries of an-
ful tool. There are also some works concerning the study ofenna arrays. The first one concerns a planar V-shaped an-
CRB in case of planar antenna arrays with non-standard géenna array where its two branches, separated by an opening
ometry. We can cite here, for example, [5] and [6] , where@ngle noted, consist of two linear not nece§sarily uniform .
contrary to our study, the sources are assumed random, her@itenna arrays. Note that the same analysis can be found in
leading to different expressions of the CRB and where th¢d] for a Gaussian (unconditional) source. The second one is
study is limited to the 2D antenna arrays. In this paper, w&n extension of this planar array where a branch (also densis
are interested to the impact of the array geometry in terms dhg of a linear array not necessarily uniform) orthogonal to
estimation performance. Consequently, we use the CRB [#ie plane is added (see Fig. 1(b)). From the aforementioned
as a benchmark to optimize the sensors position. assumptions, an analysis of the inter-sensors delay leads t
The antenna array structure proposed here is a first stépe following observation model at the output of the antenna
for studying the 3D antenna. This allows us to compare oudrray [10]:
results with the works done in [5] and [8], on the so-called V- -
shaped antenna by measuring the contribution of the third di y(t) =M()...ym{t)]" =a(6,9)s(t) +n(t), (1)

_ Thisproject is funded by both the Digiteo Research Park hedegion wheret =1,...,T, in whichT denotes the r_lumbel' of shap-
lle-de-France. shots,A denotes the wavelength andf, ) is the steering
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is omitted). We can notice that only the meany¢f) is pa-
rameterized. In this case, after the concatenation of all th
observation vectors & 1,...,T), the CRB, noted_, can be

source

0 deduced from [11] and [12]:
8 pi ei:hsor C= |: Coo  Cop ]
—— ! y 06 Cop L
&= ; ; 92" (6.9) 0a(6.9) 9a(0.9) da(0.9)\ |~
N § .2 | Re 90 00 Re( —5g 00
AN i T 2sMs 92" (6,9) 9 (9 ) 9a"(6.9) 9a(6.9) ’
NN Re( 220010200 ) Re( 22100 e00)
SN ©
X wheres =[s(1)... s(M)]T and, wher&gg andCy, denote the
(a) The coordinates system of the source and the array CRB concerning the elevation and the azimuth, respectively
Sensors andCgqy = Cyg represent the coupling between the parame-
ters6 and.
z y Thanks to the structure of the steering vector given by the

observation model (1) and after some computational efforts
detailed in the appendix, we obtain an analytic expression o
the CRB for the 3D antenna array:

C 1—cosAcos2p
CSNRSlSInzAC0829+2325In29(1 cosAcos2p)’
C3D 4 15, cod B(1-+cosAcos 2p) + S sir
X P ™ Conrsir? 0 Esir? AcoR 6+25,S sir? 6(1—cosAcosp)’
A
C3D 1 S cosAsin2p
Csnrtand S sin? Acod? 0+25, S, sir? 6(1—cosAcos 2p)’
(4)
where, the foIIowing notations are adoptefis||® = s"'s,
8 Np+N:
Csnr= GZH;ZH S =31 p?, andS, = 3| 1§1+21p| for N >
(b) Geometry of the 3D antenna (In case of the 2D 1. . . .
antenna, only the sensors located on the xOy plane are Since the 2D array is only a particular case of the 3D
presented) array (\o = 0), the CRB are obtained by lettirg = 0 in the
above equations, leading to:
Figure 1: The geometry of the problem CD = 2 1-cosAcos2p
~ CsNRS; sirPAco26’
CZD 2 14cosAcosp (5)
. . CsNRS; SiPASI? 6
vector given by 2D 1 CcosAsin2p
) ~ CsNRS;sirPAcosdsing
ez”l\rﬂ (sin@sin&  cos(@—¢4)+cosé , cos)

a(6,) = : @ Moreover, in the particular case wheke= 7, i.e., when
A s : ' the 2D and 3D arrays represent the canonical bagks aid
e~ A L (sinBsingy cos(@— ¢y )+cost y cosd) of R3, respectively, we obtain the following more compact

expressions:
The number of sensors located on the plane is denoted

by Ni, and the number of sensors located on the orthogo- CPHL = 1

nal branch in the case of a 3D antenna array is denoted by DL CSNR51°°§9+2325' ’

No. The total number of sensokd = N; + N, will be con- Caxp CsN,:Slssz’ (6)
stant for the comparison of these two arrays. The noise vec- Cop =0,

tor n(t) € CM is assumed to be Gaussian, circular, indepen-
dent and |dent|cally distributed with zero-mean and covarigpq

ance matrixg?l. sz 2
2D CSNR%COSZG ’
3. CRAMER-RAO BOUND Coo = G ive’ 7

. . . . 2DJ_
The analysis of the ultimate performance, in terms of vari- Co

ance, that an unbiased estimator might achieve is generally F th ¢ tant K b
conducted by using the CRB. In the case of the observation ' ' rom these expressions, two important remarks can be
model (1), it is clear thay(t) is distributed according to

a multivariate Gaussian distribution with mea(@,)s(t), . When the source is located in the play, i.e., 8 =7,
and variances?I. The parameters of interest in this study C o tends to infinity, wh|IeC remains finite. Conse-
are the azimuth and the elevatiore., ¢ and 8 (since these quently, the 3D array overcomes the ambiguity problem

parameters are decoupled from the noise variance, thés latt  of the 2D array.
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Figure 3:K(M) with respect to the number of sensbts

shaped array with a classical isotropic planar array suah th
the uniform circular array (UCA). These arrays have the
same number of sensors. The UCA having its sensors sepa-
rated equidistantly with a half-wavelength spacing, ittiua

is given by [13]:r = ﬁ. By letting a = % it is clear

that the value ofr associated to the planar array is equal to
1, while the one associated to the 3D array is strictly lower
than 1. The Fig. 2(a) and (b) represent, respectively, the CR
concerning the azimuth and elevation versus azingyth.r.t

a, for the opening angla = 60°, and the elevatiod = 45°.

In order to compare the V-shaped antenna with the UCA, the
bounds are normalized by the CRB of the UCA. One can
observe that the estimation performance concerning eleva-
tion with a V-shaped array is always better than with a UCA,
while the one concerning azimuth depends on the number of
sensors located on the orthogonal brarigh, on the coef-
ficient a. For a value ofa close to 1, the estimation con-
cerning elevation with a V-shaped array is better than with

Figure 2: Comparison of performance between V-shaped a1 UCA.

tenna and UCA

e In the case wheré = 7, ¢ and 6 become decoupled,
which confirms the intuition. Moreove€ 0" andCZo*

no longer depend omp (isotropic property with respect
to ¢). Furthermore, ifS; = 25, i.e., the three branches
of the 3D array are made of a uniform linear array with

In particular, we are interested to detail the performance
comparison in the case where the V-shaped array and its 3D
extension are isotropié\(= Z). In this case, we just consider
a comparison concerning tﬁe CRB of azimuth of these arrays.
Let us consider

— 3
K(M) = a(a2M2-1)sir? I’ 8

2D L 3D L

the same number of sensors, the estimation concerninghereK (M) = Eﬁ—‘fm if a =1andK(M)= Eﬁ—“éA if o<1 ltis
6 no longer depends on the source’s position (isotropic ” . o9 3
property with respect to botB and¢) in the case of the clearthak(M) = % if a =1 andM >> 1 orK(M) = -5

3D array.

4. ANALYSIS AND SIMULATIONS

if a <1andaM >> 1. We can say that the V-shaped array
leads to better performance in terms of azimuth estimation
than the UCA if and only if the raticK (M) is lower than
1. Fig. 3 shows the behavior &(M) with respect to the

In this section, the behavior of the CRB calculated in the prenumber of sensons! and to the coefficient.
vious section with respect to the degree of freedbimana- Tab. 1 shows the value of 1K(M) w.rt. o for a large
lyzed. We assume that, all branchies, two branches forthe number of sensors. This value represents the gain, concern-
2D antenna, and three branches for the 3D antenna, are maidg the azimuth estimation, of the V-shaped isotropic améen
from uniform linear arrays (ULA) with a half-wavelength array compared to the UCA antenna. We here want to find
inter-sensors spacing. All simulations are realized wilga  the value ofa, with which 1— K(M) > 0 i.e,, the V-shaped
nal to noise ratio of 1@BandT = 50 snapshots. antenna array has the better azimuth estimation accurany th
It is interesting to compare the performance of the V-the UCA antenna. It is clear that, for @l > 0.69, the 3D V-
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Table 1: 'The azimuth estimation performance gain of 3D 6

V-shaped isotropic antenna according to UCA
4+ v B B B |
a ) 09 [ 08 [ 07 | 06 Y
1-K(M) | 0.6959| 0.5829]| 0.4060| 0.1133]| -0.4081

shaped isotropic array is always better than the UCA. More-
over, if a = 1 then the azimuth estimation accuracy of the
2D V-shaped isotropic planar array is nearly 70% better than
the UCA antenna.

In the following, we compare the estimation performance
between the 2D and 3D array. In this simulation, the 2D o R SN Wi vlnek il
array is made fronM = 7 sensors (one at origin and three o 20 0 Doy ¥ 0 B0
on each of the two branches). The 3D array is also made
with M = 7 sensors (one at the origin, and two on each of the (a) Behavior ofC33, C53, C3) et C7) normalized by the CRB of
three branches). It should be noted that taking some sensorsUCA with respect taA whereg = 20° and6 = 70°
from the planar array of the 2D antenna array to make the 3D
antenna array will decrease the aperture and hence, raduce i
performance. Therefore, using non ULA such as minimum o Y S S A
redundancy [14], D-optimal [15], etc. instead of using ULA | --2D
can maintain the aperture and also, the performance.

Fig. 4(a) shows the behavior 663, Cgp, Co) andCg)

with respect to the opening angdlevarying from 0 toJ. For

this simulation, the values ap and 6 are respectively 20 O 3 4 5 6 70 80 00
and 70. In this scenario, the source is low according to the A[DEG]
plane of the array. We observe that for the estimation of the —_
elevationd, the 3D array always attains better performance .
than the 2D array. In this case, this is always true if thealu al . --2D
of elevation satisfie@ > 62.2°, because, we can easily prove )
that L S— ; |
Céo (oo N
oD <1« 6> arctan rR%x{I'}. 9) S N S B ol T
66 s 100 20 30 40 50 60 70 80 90
A [DEG]
si? A((M2—1)—a(a2M2-1) ) .
where = (LcosAcosZp)zg(lfa)((17a)M+1)(2()170)M+1)’ a = (b) Behavior ofC33, C53, C3) et C2h normalized by the CRB of

% _ %, M=70¢ [00’900], Ac (00,180’), 0c [00,360’]. UCA with respect t&A whereg = 50° and6 = 30°

On the contrary, there exists a value &df(around 23 in

this case), below which, the 3D array has better performanqgi
than the 2D array for the azimuth estimation. This critical
value can be obtained by solving numerically the equation”
Coo = Cop with respect ta\.

Fig. 4(b) shows the same curves, but for the valugof tension array is always better than the V-shaped array ér th
and 6 respectively equal to 530and 30. In this scenario, same number of sensors with respect to estimation concern-
the source is high according to the plane of the array. In thighg azimuth or elevation. In contrast to this result, we show
case, we should, contrary to intuition, choose the 2D arraghat there are values @ such that the V-shaped array has
over a certain limited of opening angle obtained by solvingoetter performance in terms of azimuth, while its 3D exten-

; 3D _ ~2D ~3D _ ~2D sion array obtains better performance in terms of elevation
numerically ma><CW =C2,C3h = Cee)- y P

gure 4: Normalized CRB with respect to the opening angle

6. APPENDIX: PROOF OF (4)

5. CONCLUSION o th .
The derivatives of thé&" element of the steering vector are
In this paper the analytic expressions of CRB concerning aziven by:
imuth and elevation of a single source under conditional ob-

servation model for both V-shaped array and its 3D exten-9a(6.¢) _ @ (cosBsing; cos(@— ¢;) — cosE; sinf)

sion is derived. Thanks to these results, an analysis of the 96 2iM0j i ;o

two geometries is provided. We found that the 2Dyisotropic xe( 7 onfsincos(e ¢'>+COS€'COSB>7
V-shaped array is always better than UCA in terms of estima- w — _@ sin@siné; sin(g— ¢;)

tion performance concerning azimuth. We also conclude that % (Zjnpi SiNOSINE. cos(@—, COS{_COSQ)
according to the source position in the space, below a certai wel 4 Sinfsing;cos(=;)+cost; )

value of the opening angle of the array, the V-shaped 3D ex- (10)

664



Let us assume thatl; is an odd number. Since the two

branches of the V-shaped antenna are symmetric, then we

have:
N Np-1 Np -1
! . —7 . —7 )
s pretiti= 5 pre ity 5 pefit
i=1 i=1 i=1 (11)

Ny—1 Np—1

= E—p,z (e 1h+elf) = Zcosa_f_pi2 = S1COsA.

i=1 i=1
It is clear that the parametéf = 7 for the sensors located
on the planexOywhile &; = 0 for the sensors located on the
orthogonal axis. Finally, applying (10) on (3) by using (11)
the numerators of the CRB are given by:

[C Y1
CSNR

ZP| (cosBsiné;cos(p— ¢;) — CosE; sinB)?

_Zplco§6c0§(¢ b))+ Z p|5|n26

'*1

_ cod0 <e21<p 5 pPe-2i9, L 20N 3 022t

+22p)+sm26 5y p?
i=N;+1

Allco§ 6 (SyCOSA(€#19 +e721%) 4 28)) +sif S
= 3S1c0¢ 6 (cosAcos P+ 1) + Ssin? 6,

(12)
[CT:S - zp, (sinBsing; sin(¢— ¢;))
S0 EPi 2sir? (@ — ¢;)
sm29 (92”’ > pie 20 +e 210y 2  pPeit 2l\£pi2)
=
:——smze(SlcosA(ezJ“’Jre 219) — 231)
= —1S;si* 6 (cosAcosp— 1),
(13)
and
[%S;}R =_ z (pZsin@siné;sin(p— ¢;)
(cosGsmE cos(@— ¢;) — cosé; sind))

—singcoso z pEsin(p— ¢-)005(<p— $:)

szg (eZer y pPe 2t —e- 21<p Z p2e21¢ )

SlsmzecosA(eZW e 29)

= ——Slsm26cosAsm21p
(14)
The denominator of CRB is given by:

det[

Y _ et Yule 1]222 [CY1olC o

(E‘Slcosze(cosAcosijL1)+stm29)
x (—3S;sir? 6 (cosAcos 2p— 1))
—(3 SlsmecosecosAsmz@
stm26c052900§Ac0522q0
+3S2sir cog 6 — 1SSy sin' 6(cosAcos p— 1)
%S_LsmzecoszecoszAstZ(p

— SIP0 (Lo BSINPA + 25,5 Si? 6(1 — cOSACOS 2p)) .
(15)
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