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ABSTRACT

A cubic phase function for two-dimensional polynomial-
phase signals of the third order (CPF 2-D) is proposed. The
CPF 2-D based estimator is able to obtain all unknown para-
meters by using reduced number of phase differences, com-
pared to the classical Francos-Friedlander (FF) approach.
Statistical analysis shows that the proposed CPF 2-D based
estimator is asymptotically unbiased and gives low mean
squared error (MSE). Simulation results demonstrate that
the proposed approach outperforms the FF approach.

1. INTRODUCTION

Two-dimensional (2-D) polynomial-phase signals (PPS) can
be found in the radar signal processing and other impor-
tant applications [1]. The most popular technique for para-
meter estimation of the 2-D PPS is based on a phase dif-
ference operator proposed by Friedlander and Francos [2],
[3], which is referred to as the FF approach. The FF ap-
proach requires a fourth-order nonlinear transformation to
estimate the third-order phase parameters of a 2-D cubic
phase PPS (CP-PPS) [3]. Once the highest-order parame-
ters are obtained, a dechirping procedure can be used for
the lower-order parameters estimation. However, this esti-
mation procedure suffers from the error propagation effect,
i.e., spreading of the former estimation errors to the latter
estimates.

In this paper, a generalization of the cubic phase function
(CPF) [4], [5] is proposed for the 2-D signals. The general-
ized CPF is called the CPF 2-D, and it provides a simplified
estimation of the CP-PPS with only a second-order nonlin-
earity. Numerical results show that the CPF 2-D technique
outperforms the FF approach, with respect to the estimation
threshold which is lower by about 7dB.

The manuscript is organized as follows. The signal model
and the FF approach are described in Section II. The pro-
posed technique is presented in Section III. Asymptotic ac-
curacy study is summarized in Section IV. Simulation results
are provided in Section V. Conclusions and discussions are
given in Section VI, while Appendix provides a brief overview
of the asymptotic accuracy study of the CPF 2-D based es-
timator.

This research is supported in part by the Ministry of Science
and Education of Montenegro. The work of Pu Wang is supported
by the National Natural Science Foundation of China under Grant
60802062.

2. SIGNAL MODEL AND FF APPROACH

2.1 Signal model

Consider the following signal model:

y(n,m) = x(n,m) + ν(n,m),

n ∈ [−N/2,N/2), m ∈ [−M/2,M/2), (1)

where x(n,m) is the 2-D CP-PPS,

x(n,m) = A exp (jφ(n,m))

= A exp

Ã
j

PX
p=0

QX
q=0

c(p, q)npmq

!
, (2)

and ν(n,m) is a white complex Gaussian noise with zero-
mean and variance σ2. In (2), A is the constant amplitude,
φ(n,m) is a polynomial phase with total order up to 3, and
c(p, q) is the (p+ q)-layer parameter (P +Q ≤ 3).

The signal model described in (1) has numerous applica-
tions in radar, sonar, seismic signals, [6], etc. For example,
reflected radar signal from moving targets can be represented
by a sum of 2-D CP-PPSs [7]. The parameter estimation of
this signal therefore is of a great interest for radar signal
processing. Our approach is to estimate the second-order
partial derivatives of the signal phase,⎡⎢⎣

∂2φ(n,m)

∂n2
∂2φ(n,m)
∂n∂m

∂2φ(n,m)

∂m2

⎤⎥⎦ = " 2c(2, 0) + 2c(2, 1)m+ 6c(3, 0)n
c(1, 1) + 2c(2, 1)n+ 2c(1, 2)m
2c(0, 2) + 2c(1, 2)n+ 6c(0, 3)m

#
, (3)

and then, based on the above estimates, to estimate signal
parameters {c(p, q)|p ∈ [0, P ] and q ∈ [0, Q], P +Q ≤ 3}, as
well as A, in a more accurate manner than the FF approach
[2], [3], especially at low SNRs.

2.2 FF approach

To estimate the highest-layer parameters of the 2-D CP-PPS
the FF approach uses three phase differences (PD), i.e.:

PD0,2[y(n,m)] = y(n,m)y∗2(n,m+ τm)y(n,m+ 2τm),

PD1,1[y(n,m)] = y(n,m)y∗(n+ τn,m)×

y∗(n,m+ τm)y(n+ τn,m+ τm),

PD2,0[y(n,m)] = y(n,m)y∗2(n+ τn,m)y(n+ 2τn,m), (4)
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where ∗ denotes the complex conjugation, and τn and τm
are two lag coefficients in the n and m axes. For a noise-
free signal x(n,m), the phases of differences (4) are given by
(terms not related to n or m are omitted):

angle{PD0,2[y(n,m)]} = 2τ2mc(1, 2)n+ 6τ2mc(0, 3)m

angle{PD1,1[y(n,m)]} = 2τnτmc(2, 1)n+ 2τnτmc(1, 2)m

angle{PD2,0[y(n,m)]} = 6τ2nc(3, 0)n+ 2τ2nc(2, 1)m.

As a result, it is seen that the PDs in (4) transform the 2-D
CP-PPS into 2-D complex sinusoids with coefficients propor-
tional to the third-order phase parameters. Therefore, by
ignoring terms not related to n or m, c(3, 0), c(2, 1), c(1, 2)
and c(0, 3) can be estimated by locating the positions of the
peaks of the corresponding 2-D Fourier spectra. For exam-
ple, point (ω̂n, ω̂m) at which the 2-D Fourier transform of
PD0,2[y(n,m)] reaches its maximal value,

(ω̂n, ω̂m) = arg max
(ωn,ωm)

|FT2D[PD0,2[y(n,m)]]|,

is used for determination of c(1, 2) and c(0, 3), i.e.

(ĉ(2, 1), ĉ(0, 3)) =

µ
ω̂n
2τ2m

,
ω̂m
6τ2m

¶
.

Phase parameters of the lower layer can be estimated by
dechirping the original signal with the obtained highest-layer
estimates, similarly to the 1-D case.

The fourth-order non-linearity of the PD operator limits
the accuracy of the highest-order estimates, especially in the
presence of noise or multicomponent signals, when the PD
operator produces a great number of cross-terms. This fact
can be easily noticed from (4) where the expansion of the
each equation results in a sum of 12 elements. Only the
one element from that sum is useful, while the other ones
represent cross-terms. Furthermore, the estimate errors,

δc(p, q) = ĉ(p, q)− c(p, q), p+ q = 3,

due to the dechirping procedure, propagate from higher to
lower order coefficients, i.e.

yd(n,m) = y(n,m) exp

Ã
−j

X
p+q=3

ĉ(p, q)npmq

!
= νd(n,m)

+A exp

⎛⎝j
X

p+q≤2
c(p, q)npmq − j

X
p+q=3

δc(p, q)npmq

⎞⎠ .

So, δc(p, q) has a great influence on the accuracy of lower-
layer estimates. By reducing both the order of non-linearity
and the number of dechirping, more accurate estimates can
be obtained.

3. PROPOSED APPROACH

For the purpose of higher estimation accuracy we extend the
CPF [4], [5] for parameter estimation of the 2-D PPS. In this
paper, a new phase differencing operator, referred to as the
chirp differencing, is introduced as a generalization of the
CPF for the case of the 2-D CP-PPS. In distinction to phase
differences in (4), the proposed chirp difference, defined as

ry(n,m; τn, τm) = y(n+τn,m+τm)y(n−τn,m−τm), (5)

has only a second-order non-linearity, which in the presence
of noise reduces the number of cross-terms to 3. This prop-
erty has a great benefit in improving the estimation accuracy,

i.e., decreasing SNR threshold. Following evaluation of the
chirp difference, the magnitude of the CPF 2-D is given as

fy(n,m;Ψ) = |gy(n,m;Ψ)|2 =¯̄̄̄
¯

n1X
τn=−n1

m1X
τm=−m1

ry(n,m; τn, τm)×

exp(−jΩnτ
2
n − jΩmτ

2
m − j2Ωnmτnτm)

¯̄2
, (6)

where Ψ = [Ωn,Ωnm,Ωm], n1 = min(N/2− n− 1,N/2 + n)
and m1 = min(M/2−m− 1,M/2 +m).

Assuming that y(n,m) is a noise free and expanding
φ(n + τn,m + τm) and φ(n − τn,m − τm) in the Taylor
series around (n,m) up to the 3rd order,

φ(n±τn,m±τm) = φ(n,m)± [φn(n,m)τn+φm(n,m)τm]+

1

2
[φnn(n,m)τ

2
n + 2φnm(n,m)τnτm + φmm(n,m)τ

2
m]

±1
6
[φnnn(n,m)τ

3
n + 3φnnm(n,m)τ

2
nτm

+3φnmm(n,m)τnτ
2
m + φmmm(n,m)τ

3
m],

where

φi1i2...iN (n,m) =
∂Nφ(n,m)

∂i1∂i2 · · · ∂iN
,

it follows
ry(n,m; τn, τm) =

A2 exp(jφnn(n,m)τ
2
n+jφmm(n,m)τ

2
m+j2φnm(n,m)τnτm).

(7)
From (7) it is clear that the first-order partial
derivatives of the CPF 2-D is equal to zero at
[φnn(n,m), φnm(n,m), φmm(n,m)], so, in absence of
noise, the CPF 2-D reaches maxima at

Ωn(n,m) = 2c(2, 0) + 2c(2, 1)m+ 6c(3, 0)n,

Ωm(n,m) = 2c(0, 2) + 2c(1, 2)n+ 6c(0, 3)m,

Ωmn(n,m) = 2c(2, 1)n+ 2c(1, 2)m+ c(1, 1), (8)

which are the second-order partial derivatives of the 2-D
PPS. Equations in (8) suggest that the proposed CPF 2-D
can be used to estimate the second-order partial derivatives
of the signal phase (see (3)), even in presence of a high noise.

Based on the estimates of {Ωn(n,mi), Ωnm(n,m),
Ωm(n,m)}, the relevant phase parameters in (3) can be es-
timated as follows:

1) Choose three instants points (ni,mi), i = 1, 2, 3;
2) Estimate corresponding {Ω̂n(ni,mi), Ω̂nm(ni,mi),

Ω̂m(ni,mi)} i = 1, 2, 3, by searching for the maxima of (6);
3) Estimate seven phase parameters including four third-

layer ones {c(3, 0), c(2, 1), c(1, 2), c(0, 3)} and three second-
layer ones {c(2, 0), c(1, 1), c(0, 2)} using:"

ĉ(2, 0)
ĉ(3, 0)
ĉ0(2, 1)

#
=

"
2 6n1 2m1

2 6n2 2m2

2 6n3 2m3

#−1 ⎡⎣ Ω̂n(n1,m1)

Ω̂n(n2,m2)

Ω̂n(n3,m3)

⎤⎦ ,
"

ĉ(0, 2)
ĉ(0, 3)
ĉ0(1, 2)

#
=

"
2 6m1 2n1
2 6m2 2n2
2 6m3 2n3

#−1 ⎡⎣ Ω̂m(n1,m1)

Ω̂m(n2,m2)

Ω̂m(n3,m3)

⎤⎦ ,
"

ĉ(1, 1)
ĉ00(2, 1)
ĉ00(1, 2)

#
=

"
1 2n1 2m1

1 2n2 2m2

1 2n3 2m3

#−1 ⎡⎣ Ω̂nm(n1,m1)

Ω̂nm(n2,m2)

Ω̂nm(n3,m3)

⎤⎦ .
(9)
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It can be seen that (9) gives two estimates of c(1, 2) and
c(2, 1), i.e., ({ĉ0(2, 1), ĉ00(2, 1)} and {ĉ0(1, 2), ĉ00(1, 2)}). The
final estimates of c(1, 2) and c(2, 1) can be therefore obtained
by either choosing one of the two estimates or by averaging
them.

After finding the above estimates, the lower-layer
phase parameters and the amplitude can be estimated in a
straightforward manner as in [8]. As such, for estimating
c(0, 0), c(0, 1), c(1, 0) and A, the dechirping is required.
Therefore, these estimates undergo the error-propagation
effects from the third-layer and second-layer parameter
estimation. Nevertheless, the second-layer parameter
estimates using the above approach do not suffer from
the error-propagation effects, as opposed to the FF based
approach.

4. MSE PERFORMANCE

The statistical performance study of the proposed CPF 2-
D is rather tedious, but in general it follows the idea from
the similar analysis for the 1-D CP-PPS from [5]. Here,
we only summarize the final results while the main steps of
derivations are given in Appendix. The results show that the
proposed estimators for the second- and third-order phase
parameters are asymptotically unbiased. The mean-squared
error (MSE) and corresponding CRLB for the second- and
third-layer parameter estimates are given in Table 1.

Phase Parameters MSE CRLB

c(2, 0)
90(1+ 1

2SN R )
SNRN5M

90
SNRN5M

c(0, 2)
90(1+ 1

2SNR )
SNRM5N

90
SNRM5N

c(1, 1)
72(1+ 1

2SNR )
SNRM3N3

72
SNRM3N3

c(3, 0)
2036.03+ 1844.46

SN R
SNRN7M

1400
SNRN7M

c(0, 3)
2036.03+ 1844.46

SN R
SNRNM7

1400
SNRNM7

c(2, 1)
1440+ 2160

SN R
SNRN5M3

1080
SNRN5M3

c(1, 2)
1440+ 2160

SN R
SNRN3M5

1080
SNRN3M5

Table 1: Variance and CRLB for the second-layer and third-
layer coefficients.

From Table 1 it can be concluded that the estimator of
the second-layer coefficient is asymptotically efficient, i.e.,
the variance of these parameters estimate for high SNR ap-
proaches the CRLB (term SNR−2 can be neglected with re-
spect to SNR−1). In addition, it can be seen that in case of
high SNR, the proposed estimator produces variance 1.63dB
higher than the CRLB for parameters c(3, 0) and c(0, 3) and
for only 1.25dB higher than the CRLB for the mixed para-
meters c(2, 1) and c(1, 2).

5. NUMERICAL EXAMPLE

In this section, numerical examples are provided to verify
the proposed approach. A CP-PPS signal with parameters
A = 1, c(0, 0) = 1, c(1, 0) = 4.5 · 10−1, c(0, 1) = 8.2 · 10−2,
c(2, 0) = −1.5 · 10−3, c(1, 1) = 6 · 10−3, c(0, 2) = −2.2 · 10−3,
c(3, 0) = 1.7 · 10−5, c(2, 1) = 4 · 10−5, c(1, 2) = 3.73 · 10−5,
c(0, 3) = −1.35 · 10−5 is generated with N = 100 and M =
100.

The FF approach is used as a benchmark [3]. The rel-
evant coefficients for the FF approach are chosen as τn =
τm = 33 (the choice of values of τn and τm influences the
estimation accuracy, so these parameters are chosen follow-
ing the instructions from [3]), and corresponding search is
performed over a 2-D space with 512× 512 elements for all

three functions (4). Additional interpolations are performed
around initial estimates by a factor of 100. The CPF 2-D (6)
is evaluated at instants (50, 50), (50, 40) and (40, 50). Nu-
merical results are given in Figure 1, where the MSEs for
four characteristic higher-order parameters of the 2-D CP-
PPS are depicted. Results are obtained with 200 runs of
the Monte-Carlo simulation. Thin solid lines represent the
MSEs achieved by the FF approach, the thick dashed lines
depict the MSEs of the CPF 2-D, while the thin dashed lines
are for the corresponding CRLB.

It can be observed that the proposed approach outper-
forms the FF approach in terms of lower SNR threshold by
about 7dB. This is significant advantage of the proposed ap-
proach. However, it is paid by increased calculation com-
plexity.

6. CONCLUSION AND DISCUSSION

This paper has presented an algorithm for estimating the
parameters of a noisy 2-D CP-PPS. The algorithm is based
on the bilinear chirp difference operator which reduces the
number of cross-terms in comparison to the FF approach.
As a result of reducing the number of cross-terms, the pro-
posed technique has considerably lower SNR threshold for
estimation. The presented statistical analysis has shown that
all the parameter estimates are asymptotically statistically
(near) efficient at high SNR value.

If components of multicomponent 2-D CP-PPS do not
overlap in the 2-D FT domain, the proposed CPF 2-D can be
used for the parameter estimation of each component. After
determination of components’ regions in the 2-D FT, each
component can be extracted by setting the 2-D FT values
outside of the considered region to zero and performing the
inverse 2D FT. The obtained signals are monocomponent 2-
D CP-PPS and their parameters can be estimated by the
proposed algorithm.

For a single point [Ωn,Ωnm,Ωm], evaluation of the CPF
2-D requiresO(NM) operations and since it must be done for
a large number of points, because the 3-D search is used, the
proposed approach has a higher computational complexity in
comparison to the FF technique, which overall complexity is
of the order of magnitude O(NM log2NM). Therefore, our
future research will consider the problem of reducing the
computation complexity as well as generalization to higher-
order PPS.

7. APPENDIX

Appendix provides statistical analysis of the proposed ap-
proach. Here, only the main steps of analysis are given,
while the detailed derivations can be found in [9]. Note that
in [9] we analyzed calculation complexity of the algorithm
and compared it with the FF approach. In addition, effi-
cient evaluation procedure based on the genetic algorithm
has been proposed.

The 2D CPF of a signal (1) can be separated to two
components,
• signal component

gx(n,m;Ψ) =X
τn

X
τm

rx(n,m; τn, τm)e
−jψnτ2n−jψmτ2m−j2ψnmτnτm

• and a component introduced by interferences

δg(n,m;Ψ) =X
τn

X
τm

zxν(n,m, τn, τm)e
−jψnτ2n−jψmτ2m−j2ψnmτnτm ,
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Figure 1: MSEs for c(3, 0), c(2, 1), c(2, 0) and c(1, 1) of the 2-D CP-PPS - MSEs achieved by the FF approach (solid lines);
MSEs of the 2-D CPF (thick dashed lines) and the corresponding CRLBs (thin dashed lines).

where

zxν(n,m, τn, τm) = x(n+τn,m+τm)ν(n−τn,m−τm)+

ν(n+ τn,m+ τm)x(n− τn,m− τm)+

ν(n+ τn,m+ τm)ν(n− τn,m− τm).

The maximum of |gy(n,m;Ψ)|2, due to presence
of the noise, is dislocated from the real position,

Ψ = Ω(n,m)= [Ωn(n,m),Ωnm(n,m),Ωm(n,m)]=
h
∂2φ(n,m)

∂n2
,

∂2φ(n,m)
∂n∂m , ∂

2φ(n,m)

∂m2

i
for δΩ(n,m) = [δΩn(n,m), δΩnm(n,m),

δΩm(n,m)]. Therefore the first-order partial derivatives of
fy(n,m;Ψ) are equal to 0 at Ψ = Ω+ δΩ:∙

∂fx(n,m;Ψ)

∂ψi
+

∂δf(n,m;Ψ)

∂ψi

¸
|Ψ=Ω+δΩ = 0, i = 1, 2, 3,

(10)
where ψi, i = 1, 2, 3 are corresponding elements of the vector
Ψ, ψ1 = ψn, ψ2 = ψnm, ψ3 = ψm (for the sake of brevity,
we removed the dependency of the second-order derivatives
of the signal phase on position (n,m)).

By considering the fact that, at relatively large SNR,
δf(n,m;Ψ) can be approximated by

δf(n,m;Ψ) ≈ 2Re {gx(n,m;Ψ)δg∗(n,m;Ψ)} ,

the Taylor series expansion of (10), up to the second term,
around Ω gives the system of equations

δF1 +F2δΨ = 0, (11)

where

[δF1]i = 2Re

½
∂gx(n,m;Ψ)

∂ψi
δg∗(n,m;Ψ)+

gx(n,m;Ψ)
∂δg∗(n,m;Ψ)

∂ψi

¾
,

δΨ =[ δψ1 δψ2 δψ3 ]
T

and

[F2]il =
∂2fx(n,m;Ψ)

∂ψi∂ψl
|Ψ=Ω

= 2Re

½
∂2gx(n,m;Ψ)

∂ψi∂ψl
g∗x(n,m;Ψ)+

∂gx(n,m;Ψ)

∂ψi

∂g∗x(n,m;Ψ)

∂ψl

¾
, i = 1, 2, 3, l = 1, 2, 3.

The bias of the 2D CPF based estimator can be obtained
from (11) by taking the expectation with respect to δΨ,

E{δΨ} = −F−12 E{δF1}, (12)

while the variances for the estimate errors are the diagonal
of the covariance matrix of δΨ,

E{(δΨ)(δΨ)T } = [F2]−1CδF1 [F2]
−1, (13)

where CδF1 = E{(δF1)(δF1)T }.
The detailed derivations of expressions for F2,CδF1 and

δF1 are performed in [9]. Here, we will only present the
obtained results:

F2 = −
128

9
A4K2L2

⎡⎣ 1
5K

4 0 0
0 K2L2 0
0 0 1

5
L4

⎤⎦ ,
CδF1 = −8KL(2A2σ2 + σ4)F2,
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[δF1]i = −8A2KL Im {Γ(i,K,L)} ,
where

Γ(i,K, L) = ej2φ(n,m)
KX

τn=−K

LX
τm=−L

λi(τn, τm)×

z∗xν(n,m; τn, τm)e
jψnτ

2
n+jψmτ2m+j2ψnmτnτm

and

λi(τn, τm) =

⎧⎨⎩ τ2n − K2

3
i = 1

2τnτm i = 2

τ2m − L2

3
i = 3.

.

Substituting the above results into (12) and (13) gives

E{δΨ} = −F−12 E{δF1} = 0 (14)

and

E{(δψ1)
2} = E{(δΩn)

2} =
45
¡
2 + 1

SNR

¢
16SNRK5L

(15)

E{(δψ2)
2} = E{(δΩnm)

2} =
9
¡
2 + 1

SNR

¢
16SNRK3L3

E{(δψ3)
2} = E{(δΩm)

2} =
45
¡
2 + 1

SNR

¢
16SNRKL5

.

From (14) it is clear that the proposed estimator is unbiased
in an asymptotic sense.

Assuming that the evaluation of the phase coefficients is
performed for the central instant of the considered domain,
MSEs of the second-layer phase parameters can be obtained
as

E{(δc(2, 0))2} =
E{(δΩn)

2}|n=0
m=0

4
=
90
¡
1 + 1

2SNR

¢
SNRN5M

E{(δc(0, 2))2} =
E{(δΩm)

2}|n=0
m=0

4
=
90
¡
1 + 1

2SNR

¢
SNRM5N

E{(δc(1, 1))2} = E{(δΩnm)
2}|n=0

m=0
=
72
¡
1 + 1

2SNR

¢
SNRM3N3

.

Since the estimation errors of the second phase deriva-
tives are linearly related to the phase-parameters estimation
errors (see (9)), MSEs of the third-layer phase-parameters
can be easily evaluated. The relation between δΩn(n,m)
and δc(1, 2) (δc(0, 3)) could be established by estimating Ωn

at three points (n = 0, m = 0), (n,m = 0) and (n = 0, m)
(see the first equation in (9)):

E =

"
δĉ(2, 0)
δĉ(3, 0)
δĉ(2, 1)

#
=

"
2 0 0
2 6n 0
2 0 6m

#−1 " δΩn(0, 0)
δΩn(n, 0)
δΩn(0,m)

#
.

MSEs of the three estimates c(2, 0), c(3, 0) and c(2, 1) repre-
sent the diagonal elements of the covariance matrix of vector
E. From it follows

E{(δc(3, 0))2} = E{(δΩn(0, 0))
2}+E{(δΩn(n, 0))

2}
36n2

−

2E{δΩn(0, 0)δΩn(n, 0)}
36n2

,

E((δc(2, 1))2} = E{(δΩn(0, 0))
2}+E{(δΩn(0,m))

2}
4m2

−

2E{δΩn(0, 0)δΩn(0,m)}
4m2

.

Terms E{(δΩn(0, 0))
2}, E{(δΩn(n, 0))

2} and
E{(δΩn(0,m))

2} can easily be evaluated from (15),
while E{δΩn(0, 0)δΩn(n, 0)} and E{δΩn(0, 0)δΩn(0,m)}
are equal to (see [9] for more information):

E{δΩn(0, 0)δΩn(n, 0)} =

=
452E {Γ(1,N/2,M/2)Γ∗(1,N/2− n,M/2)}

512A4
¡
N
2

¢5 ¡N
2
− n

¢5 ¡M
2

¢2 ,

E{δΩn(0, 0)δΩn(0,m)} =

452E {Γ(1,N/2,M/2)Γ∗(1,N/2,M/2−m)}
512A4

¡
N
2

¢10 ¡M
2

¢ ¡
M
2 −m

¢ .

It is obvious that values of n and m have a great influence
on MSEs. Numerical results show that n ≈ 0.11N and m ≈
0.25M give minimum MSEs for a high SNR (e.g. SNR =
20dB). So, substitution of n = 0.11N and m = 0.25M into
the relations above results

E
©
(δc(3, 0))2

ª
=
2036.03 + 1844.46

SNR

SNRN7M
,

E{(δc(2, 1))2} =
1440 + 2160

SNR

SNRN5M3
.

Similarly, the asymptotic accuracy for c(0, 3) and c(1, 2)
can be derived as

E
©
(δc(0, 3))2

ª
=
2036.03 + 1844.46

SNR

SNRNM7
,

E{(δc(1, 2))2} =
1440 + 2160

SNR

SNRN3M5
,

respectively.
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