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ABSTRACT 

The maximum-directivity beamformers, or the so-called 
plane wave decomposition (PWD) beamformers have been 
widely studied and used for spherical microphone arrays, 
but they are known to be sensitive to random array errors 
that exist in practical applications. In this paper, a robust 
maximum-directivity beamforming approach based on the 
spherical harmonics framework and worst-case performance 
optimization techniques is proposed. The approach is devel-
oped for both the space domain and the spherical harmonics 
domain. Given the known maximum level of array errors, it 
can automatically find and yield the achievable maximum-
directivity for spherical microphone array beamformers, and 
does not require manual tuning of robustness parameters, 
which is the major advantage over the white noise gain con-
strained robustness control approaches that have been de-
veloped earlier for spherical microphone arrays. 

1. INTRODUCTION 

Spherical microphone array beamforming technology has 
recently become an important research subject in three-
dimensional (3-D) source reception, wavefield analysis, 
source localization, and noise suppression applications [1-8]. 
More flexible three-dimensional beampattern synthesis can 
be realized than with other standard array geometries, and 
array processing can be developed and analyzed by using 
the elegant spherical harmonics framework.  

Among all kinds of spherical microphone array beam-
forming approaches, the plane wave decomposition (PWD) 
beamforming, which can provide closed-form solutions for 
array weights and maximum-directivity beampatterns [3], 
[4], [8], has possibly become the most widely used tech-
nique. However, it is also well known that such a beam-
former has low white noise gain at low frequencies [1], [3], 
[4],  and may lead to degraded and non-consistent beam-
forming performance in the presence of random array errors 
(sensor sensitivity and phase variations, sensor self noise, 
positioning errors, etc.). Therefore, in practical applications 
and mass productions, it is important to have a robust beam-
forming algorithm that can yield the achievable optimum 
performance, according to the knowledge of array error lev-
els, which could be well controlled and specified by micro-
phone manufactures. 

Up to now, several robust beamforming algorithms have 
been proposed for spherical microphone arrays in both the 
spherical harmonics domain [5], [7], [15] and the space do-

main [8]. They commonly impose a white noise gain con-
straint to their optimal beamforming formulations, which 
can effectively improve the robustness against random array 
errors [3]. However, the major shortcoming of the white 
noise gain constrained approach is that it is not clear how to 
accurately choose the robustness control parameters, based 
on the a priori knowledge of the error levels.  

In this paper, a new robust spherical microphone array 
beamforming approach that can yield achievable maximum-
directivity based on the known level of array errors is devel-
oped. It is based on the worst-case performance optimization 
(WCPO) methods in [10], [11, and the references therein], 
and can work for both the space domain and the spherical 
harmonics domain processing. In the proposed approach, all 
actual manifold vectors and spherically isotropic noise co-
variance matrixes are assumed to belong to two different 
uncertainty sets. Then the optimal performance is obtained 
by maximizing the minimum directivity within the covari-
ance matrix uncertainty set, while forcing the minimum re-
sponse in the look direction within the manifold vector un-
certainty set to be not smaller than unity. The robust maxi-
mum directivity beamforming problem can be rewritten in a 
form of tractable convex optimization and solved by second-
order cone programming (SOCP).  

2. SPHERICAL ARRAY PROCESSING 

The reader is referred to [3] for a comprehensive analysis of 
spherical microphone array beamforming technique. The 
standard spherical coordinate system [6] is used. Consider a 
unit magnitude plane wave from direction ),( 000  , 

with wave number k, impinging on a spherical microphone 
array with M microphones and radius a, using the frequency-
domain model, the space domain sound pressure at a micro-
phone position ),( sss  , Ms ,,1 , and the accord-

ing expression in the spherical harmonics domain can be 
written as [3] 
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where m
nY  is the spherical harmonic of order n and degree m, 

superscript * denotes complex conjugation, and )(kabn  de-

pends on the sphere configuration, e.g. rigid sphere, open 
sphere, etc., as given by [1], [3]. Typically, (N+1)2≤M. 
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The M×1 space domain manifold vector for the direction 
Ω0, and the (N+1)2×1 spherical harmonics domain manifold 
vector can be written as  
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where (.)T denotes the transpose. 
Define the M×1 space domain array weight vector and 

the (N+1)2×1 spherical harmonics domain array weight vec-
tor by 
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Array processing can be performed in either the space 
domain or the spherical harmonics domain, and the array 
output is given as  
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where (.)H denotes the Hermitian transpose. For simplifica-
tion, we assume a uniform sampling, where the output am-
plitude for the spherical harmonics domain array processing 
is a factor of M/4 higher than the space domain [9]. 

3. MAXIMUM-DIRECTIVITY SPHERICAL 
ARRAY BEAMFORMING 

Directivity is a common measure of beamforming perform-
ance. In the space domain, the directivity factor )(kD of a 

spherical array beamformer can be interpreted as the array 
gain against spherically isotropic noise. 
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where l denotes the look direction, and Q is the covariance 

matrix of a spherically isotropic noise field with unit power 
spectral density. 

From the above definition, it is seen that the maximum-
directivity beamforming problem can be written as 
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and the solution to (4) is given by 
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In the space domain, the spherically isotropic noise co-

variance matrix Q , with power spectral density )(2  , can 

be calculated as [8] 
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where the ]',[ ss  th entry of )(Q  is 
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In the spherical harmonics domain, the spherically iso-
tropic noise covariance matrix is given by [7] 
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where )}]vec({[ 0
N
n

n
nmnb b . 

It is seen that since the noise covariance matrix (7) has 
been successfully diagonalized by the spherical Fourier trans-
form, it can be used in the spherical harmonics domain ver-
sion of (5), leading to a more elegant closed-form solution 
for array weight vectors in the spherical harmonics domain 
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which is identical to the weight vector of a plane wave de-
composition (PWD) beamformer [3]. Thus, the PWD beam-
former can be interpreted as a maximum-directivity beam-
former for spherical arrays. However, it is also known that, 

at low frequencies, the inversion of  *b  in (8) will lead to a 
very low robustness against random array errors [4], and the 
nominal maximum-directivity can hardly be achieved in real-
ity, when the frequency is low and random array errors exist. 
Therefore, it is desired to design a beamformer that can 
automatically provide the achievable maximum directivity 
for spherical arrays based on the known error range, and be 
robust against all of the random array errors within this error 
range. 

4. ACHIEVABLE MAXIMUM-DIRECTIVITY IN 
THE PRESENCE OF ARRAY ERRORS 

4.1 Space domain processing 

We assume that array errors are additive and uncorrelated 
with manifold vectors (in [3], it has been shown that micro-
phone self noise, sensitivity and phase variations, position-
ing errors, etc. can be modelled as additive errors). When 
random errors are present, the actual manifold vector in the 
space domain p~  with array errors can be expressed as 

epp ~ , 

where e  is an unknown complex vector that describes the 
random array error. Assume that the array error is independ-
ent from sensor to sensor, and that the vector e  is norm-

bounded by the maximum error level 0 , e . Then 

the actual manifold vector p~  belongs to the following uncer-

tainty set A , which is an ellipsoid that can cover all possible 
actual manifold vectors 

}  ,~|~{  eepppA , 
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Similarly, the actual spherically isotropic noise covari-
ance matrix is written as 
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In [3], it has been shown that the power of sensor self 
noise can be an effective measure for random array errors 
(sensitivity and phase variations, positioning errors, etc.), 
therefore, for simplification, we approximate the covariance 
matrix set of e  as a set of white noise covariance matrix, 
which may not be obvious. For more details see reference 
[12]. The uncertainty set of the noise covariance matrix is 
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Using the worst-case performance optimization method, 
the achievable maximum-directivity beamformer in the pres-
ence of random array errors can be written as the following 
constrained minimax optimization problem: 
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With the definition of p~ and Q
~

, and by applying the tri-

angle and Cauchy-Schwartz inequalities, we have 
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and similarly, 
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Substituting (10) and (11) into (9) gives 
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Using the fact that the cost function in (12) is unchanged 
when w  undergoes an arbitrary phase rotation, the non-
convex problem (12) can now be written as a tractable con-

vex optimization by letting the imaginary part of )( l
H pw  

to be zero 
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where Im[.] denotes the imaginary part. 
The optimization problem of (13) is a convex problem, 

which can be easily solved by SOCP solvers [10]. The over-
all optimization complexity is around )( 3MO . 

 
4.2 Spherical harmonics domain processing 

We can write the spherical Fourier transform [3] in the form 

of a matrix with dimension 2)1(  NM  
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The actual spherically isotropic noise covariance matrix 
in the spherical harmonics domain is 
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The discrete spherical harmonics orthonormal property 
(13) has been employed in the above derivation.  
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Regarding the actual spherical harmonics domain mani-
fold vector in the look direction, we have 
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Note that the Parseval’s relation for the spherical Fourier 
transform to array weights (15), has been applied in the 
above derivation. 
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Using (12) and (14) leads to the worst-case performance 
optimization (16) for the maximum-directivity beamformer 
in the spherical harmonics domain 
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which can also be easily solved by SOCP solvers. The over-
all optimization complexity is around ))1(( 6NO , which 

could be lower than that of the space domain, since spatial 
over sampling is typically employed for spherical arrays. 
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Figure 1 – Directivity pattern comparison between MWNG, MDI, 
and RMDI (  =0.01), without any error added 

 

5. SIMULIATION EXAMPLES 

In the following numerical examples, we consider a spheri-
cal array with 32 microphones embedded in a rigid spherical 
baffle of radius 4.2 cm and the same sampling scheme as in 
[1], which can decompose the sound field for up to 4th order 
spherical harmonics. For the interest of brevity, only the 
results of spherical harmonics domain processing are pro-
vided, since the space domain processing can give the simi-
lar performance. The SeDuMi MATLAB Toolbox is used to 
solve the SOCP problem (16). 

Figs. 1-4 show the performance comparison among three 
kinds of beamformers, the maximum white noise gain beam-
former (MWNG), or delay-and-sum beamformer, in [4], the 
nominal maximum-directivity beamformer (MDI) obtained 
by (7), and the proposed robust maximum-directivity ap-
proach (RMDI) that is obtained by solving the SOCP prob-
lem (16). ka =0.5 is used in the examples. The maximum 
error level   is set to be 0.01 in Figs. 1 and 2, and 0.1 in 
Figs. 3 and 4. The beampatterns obtained by the three ap-
proaches when there is no array error are given in Figs. 1 
and 3. It seen that, as expected, the MDI approach can pro-
vide the highest directivity indices (DI), while the MWNG 
gives the lowest DIs. The proposed RMDI approach pro-
vides the actually achievable solutions with DI values be-
tween MWNG and MDI.  Then the cases with additive array 
errors are considered. We assume that each microphone is 
perturbed with two zero-mean circularly symmetric complex 
Gaussian random variables with maximum amplitude 0.01 
and 0.1, respectively. The resulting beampatterns are shown 
in Figs. 2 and 4, which are the averages of Monte Carlo 
simulations with 100 repetitions. It is seen that the MWNG 
still has the lowest directivity but it is very robust against 
array errors. MDI degrades significantly with large stochas-
tic variations, which means that it is very sensitive to array 
errors. The performance degradation in the RMDI beampat-
tern is much less than for MDI, which shows both accept-
able directivity and robustness.  
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Figure 2 – Directivity pattern comparison between MWNG, MDI, 
and RMDI (  =0.01), which are perturbed with complex Gaussian 

random noise with maximum amplitude 0.01 
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Figure 3 – Directivity pattern comparison between MWNG, MDI, 

and RMDI (  =0.1), without any error added 

0 30 60 90 120 150 180
-40

-35

-30

-25

-20

-15

-10

-5

0

5

 ()

D
ire

ct
iv

ity
 p

at
te

rn
 (

dB
)

 

 

MWNG

MDI

RMDI

 
Figure 4 – Directivity pattern comparison between MWNG, MDI, 
and RMDI (  =0.1), which are perturbed with complex Gaussian 

random noise with maximum amplitude 0.1 
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Figure 5 – The achievable maximum directivity index as function 
of the know error level  , at different frequencies, using the pro-

posed RMDI approach 
 

Fig. 5 shows the achievable DI of the proposed RMDI, 
as function of different error levels, at frequencies corre-
sponding to ka 0.5, 1, 2 and 4. It is seen that at higher 
frequencies, the beamformer can provide a good balance 
between the maximum DI and robustness against the ran-
dom array errors, while at lower frequencies, it is difficult to 
obtain a very high DI with acceptable robustness. This is 
consistent with the results in Figs. 1-4.When the error level 
is very low and negligible (e.g. <=0.0001), we can also find 
that the DI of RMDI is identical to that of MDI (denoted by 
the “Δ” mark). These results demonstrate that our approach 
can achieve a suitable compromise among those conflicting 
beampattern synthesis objectives. 

Therefore it is shown that the proposed RMDI provides a 
good tradeoff between the achievable directivity and the 
robustness against array errors for spherical microphone 
array beamformers. Moreover, it does not need any compli-
cated manual tuning for robust parameters (as in [5], [7], [8] 
[15]), and can automatically yield the achievable optimum 
performance based on the known range of array errors. 

It is also worth noting that, by using the white noise gain 
constrained methods [5], [7], [8], [15], we can also get the 
similar robustness control performance as the proposed 
method (the results are not shown here in the interest of brev-
ity). However, for those white noise gain constrained meth-
ods, manual tuning of robustness parameters is needed, 
which could be more time-consuming and complicated than 
the proposed method. 

6. CONCLUSIONS 

A new robust spherical microphone array beamformer based 
on the worst-case performance optimization methods is pro-
posed. Compared with the conventional white noise gain 
constrained robustness control approaches, it can automati-
cally find the optimal array weights, and yield the achievable 
maximum-directivity based on the known level of array er-
rors. More convex beamforming constraints can be further 
added to the proposed optimization formulations.  
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