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ABSTRACT 

This paper presents a field-programmable gate array 
(FPGA) implementation of a recently proposed variable step-
size affine projection algorithm (VSS-APA), in the context of 
acoustic echo cancellation. The proposed hardware imple-
mentation scheme takes advantage of the algorithm’s specific 
features. Area and speed results are provided for the Xilinx 
Virtex 5 XC5VFX70T chip from the Xilinx ML507 evaluation 
board, when considering the particular case of the projection 
order p = 2. The overall performance of this acoustic echo 
canceller (AEC) indicates that it could be a reliable solution 
for real-world acoustic echo cancellation scenarios. 

1. INTRODUCTION 

In acoustic echo cancellation scenarios, an adaptive filter 
identifies the acoustic echo path between the terminal’s loud-
speaker and microphone, i.e., the room impulse response [1]. 
The affine projection algorithm (APA) [2] and different ver-
sions of it are reliable candidates for acoustic echo cancella-
tion. As compared to the normalized least-mean-square 
(NLMS) algorithm, the APA achieves faster convergence rate 
and tracking, with only a moderate increase of computational 
complexity. In a similar way to the NLMS, the performance 
of the APA is controlled by the value of its step-size. This 
parameter compromises between the convergence rate and 
misadjustment. In order to optimize this trade-off, several 
variable step-size APAs (VSS-APAs) were developed (e.g., 
see [3] and the references therein). 

The VSS-APA proposed in [3] was designed in the con-
text of acoustic echo cancellation. The main advantages of 
this algorithm are its non-parametric nature (i.e., it does not 
require any a priori information about the acoustic environ-
ment), together with robustness against near-end signal varia-
tion (e.g., double-talk). Thanks to these features, this algo-
rithm could be a reliable candidate for real-world applica-
tions. However, the capabilities of an algorithm could be 
seriously affected when using practical implementation plat-
forms, e.g., a field-programmable gate array (FPGA). In this 
context, several finite-precision effects could significantly 
bias the acoustic echo canceller (AEC) behavior. 

There are two antagonistic aspects that need to be con-
sidered when dealing with a hardware implementation of an 

AEC on FPGA devices using very high speed integrated cir-
cuit hardware description language (VHDL). The first is the 
relation between the values of the sampling frequency and 
the system clock frequency, which allows a large number of 
operations between two successive samples. The second is 
the sensitivity of the adaptive algorithm to quantization er-
rors, which makes the number of bits used for representation 
have a great impact on the AEC performance. Therefore, the 
implementation may benefit by the module reuse-in-time 
advantage that tends to reduce the occupied area; but it also 
may require a large number of bits for representation (in or-
der to get closer to infinite precision simulation results), 
which further increases the number of used resources.  

In the literature, there are many examples of hardware 
implementation of AEC, based on different kinds of adaptive 
algorithms. The authors themselves proposed some of them, 
most recently in [4]. In this paper, we present an AEC im-
plemented on a Xilinx Virtex 5 FPGA (i.e., XC5VFX70T 
chip) [5], [6], based on the VSS-APA proposed in [3]. This 
algorithm is briefly presented in Section 2. The proposed 
hardware implementation scheme of the AEC is detailed in 
Section 3 for the particular case of the projection order p = 2. 
Simulation results are given in Section 4. Finally, Section 5 
concludes this work.  

2. VSS-APA FOR ACOUSTIC ECHO 
CANCELLATION 

In the following, all signals are real-valued and the time 
index is denoted by n. The main goal of an AEC is to identify 
an unknown system (i.e., acoustic echo path) using an adap-
tive filter. In this context, the far-end signal, x(n), coming 
from the loudspeaker goes through the room impulse re-
sponse, providing the echo signal. This signal is added with 
the near-end signal, resulting the microphone signal, y(n). 
The adaptive filter of length L, defined by the vector ĥ(n) = 
[ĥ0(n), ĥ1(n), …, ĥL–1(n)]T (where superscript T denotes trans-
position), aims to produce at its output an estimate of the 
echo, ŷ(n), while the error signal, e(n) = y(n) – ŷ(n), should 
contain an estimate of the near-end signal. 

The VSS-APA proposed in [3] is defined by the follow-
ing relations: 

  ( ) ( ) ( ) ( )ˆ 1Tn n n n= − −e y X h , (1) 
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  ( ) ( ) ( ) ( ) ( )1ˆ ˆ 1 ( )n n n n n n−= − +h h X N µ e , (2) 

where y(n) = [y(n), y(n – 1), …, y(n – p + 1)]T  is the refer-
ence signal vector of length p (with p denoting the projection 
order), N(n) = X(n)TX(n) + δIp, δ is a regularization parame-
ter, and Ip is the pxp identity matrix. The matrix X(n) = [x(n), 
x(n – 1), …, x(n – p + 1)] is the input signal matrix, where 
x(n) = [x(n), x(n – 1), …, x(n – L + 1)]T, and µ(n) is the step-
size matrix defined as 

  ( ) ( ) ( ) ( ){ }0 1 1diag , , , pn n n nµ µ µ
−

=µ K . (3) 

These elements are evaluated for l = 0, 1,…, p – 1 as follows: 
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A small positive number ξ avoids division by zero and el+1(n) 
denotes the (l+1)-th element of the vector e(n); in a general 

manner, a parameter of the form ( )2ˆ nασ  denotes the power 

estimate of the sequence α(n), and can be computed as 

  ( ) ( ) ( ) ( )2 2 2ˆ ˆ 1 1n n nα ασ λσ λ α= − + − , (5) 

where λ is a weighting factor [7]. Since only the parameters 
available from the adaptive filter are required in (4) and there 
is no need for a priori information about the acoustic envi-
ronment, this VSS-APA is easy to control in practice. The 
simulation results presented in [3] indicate that a value of the 
projection order p = 2 offers a good compromise between the 
convergence rate, misadjustment, and complexity. Therefore, 
the following FPGA implementation considers only this case. 

3. PROPOSED HARDWARE IMPLEMENTATION 
SCHEME 

The algorithm described in Section 2 contains some 
challenging operations to implement, i.e., the fractional divi-
sion, square-root, and matrix inversion. Also, modules like 
fractional multipliers with different input widths and two 
input summing units have to be implemented. Besides these 
processing modules, some pre-processing modules are re-
quired due to the very small numerical values obtained for 
some of the algorithm’s parameters (e.g., power estimates of 
the error signal, the value of the matrix’s determinant). These 
modules will be described in the following sub-sections. 
Their design is adapted to the application’s particularities, in 
order to provide modularity to the proposed implementation 
scheme. Finally, a block scheme of the AEC will be pre-
sented in the last sub-section. All the area and speed results 
will refer to Xilinx Virtex 5 XC5VFX70T chip [5] from the 
Xilinx ML507 evaluation board [6]. However, the area result 
is provided in terms of 6-input look-up tables (LUTs), flip-
flops (FFs) and block RAMs (BRAMs), so it should charac-
terize any FPGA with the same architecture. The percentage 
of the used area shows that a much smaller FPGA could be 
used for this implementation. 

 

Figure 1 – Pre-divider procedure and divider block scheme. 

 

3.1 Fractional multiplier 

The fractional multiplier module has a large reuse factor 
in the AEC scheme. When implementing the VSS-APA with 
p = 2, two multipliers are needed for computing the product 
XT(n)ĥ(n–1); other multipliers are required for computing 
the matrix product N–1(n)µ(n)e(n). The system clock fre-
quency is approximately 200 MHz and the sampling fre-
quency is 8 kHz; consequently, there are approximately 
25000 clock periods available between two successive sam-
ples. This observation allows us to increase the reuse factor 
for each module. Also, it indicates that no additional stress 
should be placed on the critical path (from the point of view 
of the maximum delay) if this frequency is reached. 

There is a time relation between the above mentioned 
operations. First, the product XT(n)ĥ(n–1) needs to be evalu-
ated in order to compute the error vector e(n); then, having 
this error vector, the power estimates of its components are 
evaluated in order to be used for computing the step-sizes, 
i.e., the elements of µ(n). At the same time, the operations 
required for obtaining the matrix N–1(n) can be performed. 
The proposed implementation scheme contains two binary 
tree multipliers for the first set of operations. Their inputs 
are time-multiplexed for all the required operations and the 
results are obtained in a pipe-line manner. However, the 
price to pay for this feature is an increase of the occupied 
area. For the second set of operations a single sequential 
multiplier is used. Its inputs are also time-multiplexed, but 
the results are obtained once at Nb clock period, where Nb is 
the number of bits of the operand with the larger width. The 
main advantage is the reduced occupied area. 
 
3.2 Fractional divider 

This module is used in the square-root approximation 
algorithm, in updating the step-size values, and in the inverse 
matrix computation. 
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Figure 2 – Square-root approximation algorithm. 

For the fractional division operation, the dividend has to 
be less than or equal to the divisor. In order to accomplish 
this requirement, the divider module is preceded by a pre-
divider unit that compares the two inputs. The testing unit 
right shifts the dividend until it becomes less then or equal to 
the divisor. The number of shifted positions is stored and 
compensated by left shifting the terms of the inverse matrix 
that multiplies the quotient of the divider. The pre-divider 
unit also scales with the same amount (when possible) both 
the dividend and the divisor in order to increase their values 
for more precise results at the output of the dividers (Fig. 1). 
This remark is true because the width of variables is higher 
than that used in the divider module. 

These processes are applied a fixed number of times, in 
order to obtain the same latency. For two N-bit width inputs, 
the quotient is obtained after N clock periods from the di-
vider unit. A delay line of length N is used to count this time 
period. The logic diagram of the unsigned divider is given in 
Fig. 1. The signs of the two operands are used after the divid-
ing operation, in order to produce the correct result. As one 
can observe, the divider module uses only shifts, tests, and 
adders, so it is very suitable for hardware implementation. 

 
3.3 Square-root module 

The square-root is the most challenging operation 
needed in the step-size computation. The approximation al-
gorithm is described in Fig. 2; it is based on the property of 
the sequence cn = (cn–1 +a/cn–1)/2 which converges to a1/2. 
The simulations show that a number Niter = 12 iterations 
produces a very good approximation of the square-root func-
tion. When the result is ready before Niter, the algorithm 
ends and the result is buffered in order to produce the same 
processing delay. We can efficiently use the number Niter by 
choosing a proper value of the threshold 2–r (see Fig. 2).  

 
3.4 Inverse matrix computation 

For the inverse matrix computation, we propose an op-
timized scheme due to the specific operand structure. First, 
the product M(n) = XT(n)X(n) needs to be computed. For      
p = 2, the matrix M(n) becomes 

( ) ( ) ( )
( ) ( ) ( )

2

1 1

1
2

1

1

( )

1

n n

k n L k n L

n n

k n L k n L

x k x k x k

n

x k x k x k

= − + = − +

−

= − + = −

 −  =  −  

∑ ∑
∑ ∑

M  

and its elements can be computed recursively as follows: 

 
Figure 3 – Matrix inversion diagram. 
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( ) ( ),    and   ( ) ( 1).

n n x n x n L

n n x n x n x n L x n L

n n n n

= − + − −

= − + − − − − −

= = −

M M

M M

M M M M

 

The proposed scheme implements these recursive rela-
tions by using a single block memory and a single sequential 
multiplier, as in Fig. 3 (considering a filter length L = 512). 
The memory acts like a circular buffer, i.e., writing at address 
k and reading from address k + 1. The address is incremented 
modulo L. Then, the new matrix N(n) = M(n) + δIp and its 
determinant need to be computed, providing the outputs of 
this block. The dividers are not included inside this module. 
Although the recursive manner of computation could be sen-
sitive to quantization errors when using a finite precision 
representation, the trade-off between the used implementa-
tion resources and the performances degradation is an ac-
ceptable one, as it will be described in Sections 3.8 and 4.  

 
3.5 Step-size computation 

The computation of the elements of µ(n) is based on (4). 
This module contains a divider (with its corresponding pre-
divider) and a square-root module. These modules are used 
time-multiplexed for the elements of µ(n). These operations 
are made after the computation of the error signal vector. 
 
3.6 Filter coefficient update 

The filter coefficients are updated after computing some 
intermediate terms. For making the first step in computing 
the inverse of the matrix N(n), the product  

1,1 1,2 2,2 2,1 0

2,1 2,2 1,2 1,1 1

( ) ( ) ( ) ( ) ( ) 0

( ) ( ) ( ) ( ) 0 ( )

n n n n n

n n n n n

µ
µ

−     =     −     
T T N N

T T N N
 

needs to be evaluated using two binary tree multipliers for 
two successive input pairs, i.e., N2,2(n)µ0(n) and                     
–N1,2(n)µ0(n), respectively –N2,1(n)µ1(n) and N1,1(n)µ1(n). 
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Figure 4 – AEC block scheme. 

It should be noticed that the elements of the matrix N(n) are 
shifted before these multipliers with the amounts indicated 
by the pre-dividers used in the step-sizes computing module. 

After this stage, the next intermediate terms are com-
puted. The outputs of the previous multiplications are used as 
one set of inputs for the same two binary tree multipliers. The 
other set of inputs is represented by the results of the dividers 
e0(n)/det[N(n)] and e1(n)/det[N(n)], where det[•] denotes the 
matrix determinant and e(n) = [e0(n), e1(n)]T. The computa-
tion of N–1(n) is completed by these two divisions; the first 
set of inputs is shifted with the amount indicated by the pre-
dividers used for these two dividers. The matrix product is 

( )
1,1 1,21 0

2,1 2,22 1

( ) ( )( ) ( )1
( ) ( )( ) ( )det

n nn n

n nn nn

 ′      =      ′          
T TT e

T TT eN
. 

When the second stage is finished, the updating procedure is 
started. The memory blocks containing the far-end signal 
samples and the coefficients are read, and after another mul-
tiplication on the two binary tree multipliers, the final sum 
for update is made for each filter coefficient ĥk(n), with  k = 
0, 1, …, L – 1, i.e., 

 

( ) ( )1 2
ˆ ˆ( ) ( 1) ( ) ( 1) .k kh n h n x n k n x n k n′ ′= − + − + − −T T  

 

3.7 AEC block scheme 

The AEC block scheme is generated on a modular basis. 
All the equations of the VSS-APA from Section 2 are imple-
mented using the elementary modules described in the previ-
ous sub-sections. In addition, in order to provide synchro-
nous operations, memory blocks are used to store the data, as 
it was previously mentioned. Figure 4 depicts the block 
scheme of the AEC, while Fig. 5 presents a timing diagram 
of the module functionality.  For simplicity, the use of the 
two binary tree multipliers is reduced only to compute the 
estimated echo. However, their multiple functions are as de-
scribed above. 
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Figure 5 – Timing diagram of the AEC. 

The power estimates (see Fig. 4) are computed using 
sliding windows, as in (5). The value of the parameter λ is 
represented in 2’s complement format. Consequently, the 
products that imply λ and 1 – λ are realized using shifts and 
summing units. A sequential multiplier is used for the square 
of the input signal. This sliding window is time-multiplexed 
for all the power estimates needed in (4). 
 
3.8 Implementation results 

The implementation targets a XC5VFX70T chip from 
Xilinx Virtex5 family [5] found on the evaluation board 
ML507 [6] from Xilinx. The synthesis results are obtained 
using Xilinx XST tool from Xilinx ISE 9.2i. The occupied 
area is reported in terms of slice components (each slice con-
tains four flip flops and four 6-input LUTs). The proposed 
AEC implementation uses 4620 FFs (from a total of 44800), 
5551 LUTs (from a total of 44800), and 3 BRAMs. The 
maximum frequency reported after placing and routing the 
design is 271.3 MHz. Starting from this speed result, as a 
future work, we can modify the timing diagram depicted in 
Fig. 5, in order to increase the reuse factor of the scheme 
components, especially for the binary tree multipliers. For 
maximum area optimization, we can imagine an AEC struc-
ture including only one multiplier and one fractional divider. 

4. SIMULATION RESULTS 

The functional and timing simulations are made using 
the ModelSIM 6.2g tool. We use a test bench that generates 
the echo by passing the far-end signal through a measured 
512 tap acoustic impulse response (the sampling frequency is 
8 kHz). The same length is used for the adaptive filter, i.e.,   
L = 512. The far-end signal is a speech signal. The output of 
the echo path is corrupted by a white Gaussian noise with   
20 dB signal-to-noise ratio (SNR). The performance measure 
is the normalized misalignment (in dB), defined as 
20log10(||h – ĥ(n)||2/||h||2), where h is the true impulse re-
sponse of the echo path and ||•||2 denotes the l2 norm. 
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Figure 6 – Quantization effect on the misalignment of the VSS-
APA. Single-talk case. 

In the first experiment, we test the AEC performance in 
a single-talk scenario. The effect of the quantization error on 
AEC performance is given in Fig. 6. Based on this simula-
tion, we decided to use a 16 bit representation for the AEC 
inputs, and all the other variables (including the coefficients) 
being computed using 31 bits. These variables are used at full 
width in summing units and only on the first 16 most signifi-
cant bits on multipliers. Figure 6 can be used as a reference 
when comparing the implementation performance with those 
described in [3], in infinite precision. In general, less than 2 
dB degradation can be noticed. 

In the second experiment, a double-talk scenario is con-
sidered. It is known that this is one of the most challenging 
situations in echo cancellation. In general, a double-talk de-
tector (DTD) is required in this case, in order to control the 
algorithm’s behaviour and to prevent its divergence. One of 
the main features of our VSS-APA is its robustness against 
double-talk [3]. In order to outline this aspect, we compare 
the VSS-APA with the classical APA (using a fixed step-size    µ = 0.2), without using any DTD. The results are given in 
Fig. 7. First, the VSS-APA suffers less than 2 dB degradation 
when using finite precision implementation. Second, it is 
obvious that the VSS-APA is much more robust then APA 
during double-talk. As it was shown in [3], a simple Geigel 
DTD [8] improves this robustness for the VSS-APA, while 
the classical APA requires more sophisticated DTD, e.g., [9]. 

5. CONCLUSIONS 

FPGA implementation of an AEC based on a VSS-APA 
was presented in this paper. The main features of the VSS-
APA are its non-parametric nature and the moderate compu-
tational requirements. Nevertheless, several challenging op-
erations are required in the step-size parameter formula, e.g., 
division, square-root, and matrix inversion. Dedicated blocks 
for these operations were implemented on the FPGA within 
the AEC scheme. 

The provided AEC implementation represents a low-cost 
solution, which could be very attractive for real-world acous-
tic echo cancellation scenarios. 
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Figure 7 – Misalignment of the APA (infinite precision) and VSS-
APA (finite and infinite precision). Double-talk case, without DTD. 
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