
FPGA IMPLEMENTATION OF A VARIABLE STEP-SIZE AFFINE PROJECTION
ALGORITHM FOR ACOUSTIC ECHO CANCELLATION

Cristian Anghel1, Constantin Paleologu1, Jacob Benesty2, and Silviu Ciochină1
1 Department of Telecommunications, University Politehnica of Bucharest

1-3, Iuliu Maniu Blvd., 061071, Bucharest, Romania
email: {canghel, pale, silviu}@comm.pub.ro

2 INRS-EMT, Universite du Quebec
QC H5A 1K6, Montreal, Canada

email: benesty@emt.inrs.ca

ABSTRACT

This paper presents a field-programmable gate array
(FPGA) implementation of a recently proposed variable step-
size affine projection algorithm (VSS-APA), in the context of
acoustic echo cancellation. The proposed hardware imple-
mentation scheme takes advantage of the algorithm’s specific
features. Area and speed results are provided for the Xilinx
Virtex 5 XC5VFX70T chip from the Xilinx ML507 evaluation
board, when considering the particular case of the projection
order p = 2. The overall performance of this acoustic echo
canceller (AEC) indicates that it could be a reliable solution
for real-world acoustic echo cancellation scenarios.

1. INTRODUCTION

In acoustic echo cancellation scenarios, an adaptive filter
identifies the acoustic echo path between the terminal’s loud-
speaker and microphone, i.e., the room impulse response [1].
The affine projection algorithm (APA) [2] and different ver-
sions of it are reliable candidates for acoustic echo cancella-
tion. As compared to the normalized least-mean-square
(NLMS) algorithm, the APA achieves faster convergence rate
and tracking, with only a moderate increase of computational
complexity. In a similar way to the NLMS, the performance
of the APA is controlled by the value of its step-size. This
parameter compromises between the convergence rate and
misadjustment. In order to optimize this trade-off, several
variable step-size APAs (VSS-APAs) were developed (e.g.,
see [3] and the references therein).

The VSS-APA proposed in [3] was designed in the con-
text of acoustic echo cancellation. The main advantages of
this algorithm are its non-parametric nature (i.e., it does not
require any a priori information about the acoustic environ-
ment), together with robustness against near-end signal varia-
tion (e.g., double-talk). Thanks to these features, this algo-
rithm could be a reliable candidate for real-world applica-
tions. However, the capabilities of an algorithm could be
seriously affected when using practical implementation plat-
forms, e.g., a field-programmable gate array (FPGA). In this
context, several finite-precision effects could significantly
bias the acoustic echo canceller (AEC) behavior.

There are two antagonistic aspects that need to be con-
sidered when dealing with a hardware implementation of an

AEC on FPGA devices using very high speed integrated cir-
cuit hardware description language (VHDL). The first is the
relation between the values of the sampling frequency and
the system clock frequency, which allows a large number of
operations between two successive samples. The second is
the sensitivity of the adaptive algorithm to quantization er-
rors, which makes the number of bits used for representation
have a great impact on the AEC performance. Therefore, the
implementation may benefit by the module reuse-in-time
advantage that tends to reduce the occupied area; but it also
may require a large number of bits for representation (in or-
der to get closer to infinite precision simulation results),
which further increases the number of used resources.

In the literature, there are many examples of hardware
implementation of AEC, based on different kinds of adaptive
algorithms. The authors themselves proposed some of them,
most recently in [4]. In this paper, we present an AEC im-
plemented on a Xilinx Virtex 5 FPGA (i.e., XC5VFX70T
chip) [5], [6], based on the VSS-APA proposed in [3]. This
algorithm is briefly presented in Section 2. The proposed
hardware implementation scheme of the AEC is detailed in
Section 3 for the particular case of the projection order p = 2.
Simulation results are given in Section 4. Finally, Section 5
concludes this work.

2. VSS-APA FOR ACOUSTIC ECHO
CANCELLATION

In the following, all signals are real-valued and the time
index is denoted by n. The main goal of an AEC is to identify
an unknown system (i.e., acoustic echo path) using an adap-
tive filter. In this context, the far-end signal, x(n), coming
from the loudspeaker goes through the room impulse re-
sponse, providing the echo signal. This signal is added with
the near-end signal, resulting the microphone signal, y(n).
The adaptive filter of length L, defined by the vector ĥ(n) =
[ĥ0(n), ĥ1(n), …, ĥL–1(n)]T (where superscript T denotes trans-
position), aims to produce at its output an estimate of the
echo, ŷ(n), while the error signal, e(n) = y(n) – ŷ(n), should
contain an estimate of the near-end signal.

The VSS-APA proposed in [3] is defined by the follow-
ing relations:

 () () () ()ˆ 1Tn n n n= − −e y X h , (1)

18th European Signal Processing Conference (EUSIPCO-2010) Aalborg, Denmark, August 23-27, 2010

© EURASIP, 2010 ISSN 2076-1465 532

 () () () () ()1ˆ ˆ 1 ()n n n n n n−= − +h h X N µ e , (2)

where y(n) = [y(n), y(n – 1), …, y(n – p + 1)]T is the refer-
ence signal vector of length p (with p denoting the projection
order), N(n) = X(n)TX(n) + δIp, δ is a regularization parame-
ter, and Ip is the pxp identity matrix. The matrix X(n) = [x(n),
x(n – 1), …, x(n – p + 1)] is the input signal matrix, where
x(n) = [x(n), x(n – 1), …, x(n – L + 1)]T, and µ(n) is the step-
size matrix defined as

 () () () (){ }0 1 1diag , , , pn n n nµ µ µ
−

=µ K . (3)

These elements are evaluated for l = 0, 1,…, p – 1 as follows:

 () () ()
()

1

2 2
ˆˆ ˆ

1
ˆ

l

y y
l

n l n l
n

n

σ σ
µ ξ σ

+

− − −
= −

+ e
. (4)

A small positive number ξ avoids division by zero and el+1(n)
denotes the (l+1)-th element of the vector e(n); in a general

manner, a parameter of the form ()2ˆ nασ denotes the power

estimate of the sequence α(n), and can be computed as

 () () () ()2 2 2ˆ ˆ 1 1n n nα ασ λσ λ α= − + − , (5)

where λ is a weighting factor [7]. Since only the parameters
available from the adaptive filter are required in (4) and there
is no need for a priori information about the acoustic envi-
ronment, this VSS-APA is easy to control in practice. The
simulation results presented in [3] indicate that a value of the
projection order p = 2 offers a good compromise between the
convergence rate, misadjustment, and complexity. Therefore,
the following FPGA implementation considers only this case.

3. PROPOSED HARDWARE IMPLEMENTATION
SCHEME

The algorithm described in Section 2 contains some
challenging operations to implement, i.e., the fractional divi-
sion, square-root, and matrix inversion. Also, modules like
fractional multipliers with different input widths and two
input summing units have to be implemented. Besides these
processing modules, some pre-processing modules are re-
quired due to the very small numerical values obtained for
some of the algorithm’s parameters (e.g., power estimates of
the error signal, the value of the matrix’s determinant). These
modules will be described in the following sub-sections.
Their design is adapted to the application’s particularities, in
order to provide modularity to the proposed implementation
scheme. Finally, a block scheme of the AEC will be pre-
sented in the last sub-section. All the area and speed results
will refer to Xilinx Virtex 5 XC5VFX70T chip [5] from the
Xilinx ML507 evaluation board [6]. However, the area result
is provided in terms of 6-input look-up tables (LUTs), flip-
flops (FFs) and block RAMs (BRAMs), so it should charac-
terize any FPGA with the same architecture. The percentage
of the used area shows that a much smaller FPGA could be
used for this implementation.

Figure 1 – Pre-divider procedure and divider block scheme.

3.1 Fractional multiplier

The fractional multiplier module has a large reuse factor
in the AEC scheme. When implementing the VSS-APA with
p = 2, two multipliers are needed for computing the product
XT(n)ĥ(n–1); other multipliers are required for computing
the matrix product N–1(n)µ(n)e(n). The system clock fre-
quency is approximately 200 MHz and the sampling fre-
quency is 8 kHz; consequently, there are approximately
25000 clock periods available between two successive sam-
ples. This observation allows us to increase the reuse factor
for each module. Also, it indicates that no additional stress
should be placed on the critical path (from the point of view
of the maximum delay) if this frequency is reached.

There is a time relation between the above mentioned
operations. First, the product XT(n)ĥ(n–1) needs to be evalu-
ated in order to compute the error vector e(n); then, having
this error vector, the power estimates of its components are
evaluated in order to be used for computing the step-sizes,
i.e., the elements of µ(n). At the same time, the operations
required for obtaining the matrix N–1(n) can be performed.
The proposed implementation scheme contains two binary
tree multipliers for the first set of operations. Their inputs
are time-multiplexed for all the required operations and the
results are obtained in a pipe-line manner. However, the
price to pay for this feature is an increase of the occupied
area. For the second set of operations a single sequential
multiplier is used. Its inputs are also time-multiplexed, but
the results are obtained once at Nb clock period, where Nb is
the number of bits of the operand with the larger width. The
main advantage is the reduced occupied area.

3.2 Fractional divider

This module is used in the square-root approximation
algorithm, in updating the step-size values, and in the inverse
matrix computation.

533

Figure 2 – Square-root approximation algorithm.

For the fractional division operation, the dividend has to
be less than or equal to the divisor. In order to accomplish
this requirement, the divider module is preceded by a pre-
divider unit that compares the two inputs. The testing unit
right shifts the dividend until it becomes less then or equal to
the divisor. The number of shifted positions is stored and
compensated by left shifting the terms of the inverse matrix
that multiplies the quotient of the divider. The pre-divider
unit also scales with the same amount (when possible) both
the dividend and the divisor in order to increase their values
for more precise results at the output of the dividers (Fig. 1).
This remark is true because the width of variables is higher
than that used in the divider module.

These processes are applied a fixed number of times, in
order to obtain the same latency. For two N-bit width inputs,
the quotient is obtained after N clock periods from the di-
vider unit. A delay line of length N is used to count this time
period. The logic diagram of the unsigned divider is given in
Fig. 1. The signs of the two operands are used after the divid-
ing operation, in order to produce the correct result. As one
can observe, the divider module uses only shifts, tests, and
adders, so it is very suitable for hardware implementation.

3.3 Square-root module

The square-root is the most challenging operation
needed in the step-size computation. The approximation al-
gorithm is described in Fig. 2; it is based on the property of
the sequence cn = (cn–1 +a/cn–1)/2 which converges to a1/2.
The simulations show that a number Niter = 12 iterations
produces a very good approximation of the square-root func-
tion. When the result is ready before Niter, the algorithm
ends and the result is buffered in order to produce the same
processing delay. We can efficiently use the number Niter by
choosing a proper value of the threshold 2–r (see Fig. 2).

3.4 Inverse matrix computation

For the inverse matrix computation, we propose an op-
timized scheme due to the specific operand structure. First,
the product M(n) = XT(n)X(n) needs to be computed. For
p = 2, the matrix M(n) becomes

() () ()
() () ()

2

1 1

1
2

1

1

()

1

n n

k n L k n L

n n

k n L k n L

x k x k x k

n

x k x k x k

= − + = − +

−

= − + = −

 −  =  −  

∑ ∑
∑ ∑

M

and its elements can be computed recursively as follows:

Figure 3 – Matrix inversion diagram.

2 2
1,1 1,1

1,2 1,2

2,1 1,2 2,2 1,1

() (1) () (),

() (1) () (1) () (1),

() (), and () (1).

n n x n x n L

n n x n x n x n L x n L

n n n n

= − + − −

= − + − − − − −

= = −

M M

M M

M M M M

The proposed scheme implements these recursive rela-
tions by using a single block memory and a single sequential
multiplier, as in Fig. 3 (considering a filter length L = 512).
The memory acts like a circular buffer, i.e., writing at address
k and reading from address k + 1. The address is incremented
modulo L. Then, the new matrix N(n) = M(n) + δIp and its
determinant need to be computed, providing the outputs of
this block. The dividers are not included inside this module.
Although the recursive manner of computation could be sen-
sitive to quantization errors when using a finite precision
representation, the trade-off between the used implementa-
tion resources and the performances degradation is an ac-
ceptable one, as it will be described in Sections 3.8 and 4.

3.5 Step-size computation

The computation of the elements of µ(n) is based on (4).
This module contains a divider (with its corresponding pre-
divider) and a square-root module. These modules are used
time-multiplexed for the elements of µ(n). These operations
are made after the computation of the error signal vector.

3.6 Filter coefficient update

The filter coefficients are updated after computing some
intermediate terms. For making the first step in computing
the inverse of the matrix N(n), the product

1,1 1,2 2,2 2,1 0

2,1 2,2 1,2 1,1 1

() () () () () 0

() () () () 0 ()

n n n n n

n n n n n

µ
µ

−     =     −     
T T N N

T T N N

needs to be evaluated using two binary tree multipliers for
two successive input pairs, i.e., N2,2(n)µ0(n) and
–N1,2(n)µ0(n), respectively –N2,1(n)µ1(n) and N1,1(n)µ1(n).

534

Mem X
iclk

dina

addra
addrb

wea
ix

iCE

iCLK
iRST

iy

Mem
iclk

dina
addraaddrb

doutb

Z-1
+

+
-+

-+

Power
Estimator

iy iyestie0 ie1

iDV Compute
MIU

iDV

oMIU0 oMIU1 oDV

Update

Inv Matrix X
iX
iCE

e1
e0

sh
X

+
acc1

Z-1

X +

Z-1

acc2

x(n-1) x(n-2)
x(n-1)x(n)

... ...
x(n-L)x(n-L+1)

... ...

Z-1

ĥ

ĥ

doutb

Figure 4 – AEC block scheme.

It should be noticed that the elements of the matrix N(n) are
shifted before these multipliers with the amounts indicated
by the pre-dividers used in the step-sizes computing module.

After this stage, the next intermediate terms are com-
puted. The outputs of the previous multiplications are used as
one set of inputs for the same two binary tree multipliers. The
other set of inputs is represented by the results of the dividers
e0(n)/det[N(n)] and e1(n)/det[N(n)], where det[•] denotes the
matrix determinant and e(n) = [e0(n), e1(n)]T. The computa-
tion of N–1(n) is completed by these two divisions; the first
set of inputs is shifted with the amount indicated by the pre-
dividers used for these two dividers. The matrix product is

()
1,1 1,21 0

2,1 2,22 1

() ()() ()1
() ()() ()det

n nn n

n nn nn

 ′      =      ′          
T TT e

T TT eN
.

When the second stage is finished, the updating procedure is
started. The memory blocks containing the far-end signal
samples and the coefficients are read, and after another mul-
tiplication on the two binary tree multipliers, the final sum
for update is made for each filter coefficient ĥk(n), with k =
0, 1, …, L – 1, i.e.,

() ()1 2
ˆ ˆ() (1) () (1) .k kh n h n x n k n x n k n′ ′= − + − + − −T T

3.7 AEC block scheme

The AEC block scheme is generated on a modular basis.
All the equations of the VSS-APA from Section 2 are imple-
mented using the elementary modules described in the previ-
ous sub-sections. In addition, in order to provide synchro-
nous operations, memory blocks are used to store the data, as
it was previously mentioned. Figure 4 depicts the block
scheme of the AEC, while Fig. 5 presents a timing diagram
of the module functionality. For simplicity, the use of the
two binary tree multipliers is reduced only to compute the
estimated echo. However, their multiple functions are as de-
scribed above.

Mem X

Mem

Inv matrix XTX

Compute
acc1,2

Compute e0,1

Power
estimator

Compute
MIU 0,1

Update

Tclk

~25000 Tclk

iCE

0
iCE

122
Tclk

941 Tclk

512 Tclk

Read 512 Tclk

...

44 Tclk

Read 512 Tclk
Read 512 Tclk
Write 512 Tclk

512 Tclk

2 Multipliers Compute
estimated echo

Compute terms for
update

ĥ

ĥ

Write 1 Tclk
Read 512 Tclk

Figure 5 – Timing diagram of the AEC.

The power estimates (see Fig. 4) are computed using
sliding windows, as in (5). The value of the parameter λ is
represented in 2’s complement format. Consequently, the
products that imply λ and 1 – λ are realized using shifts and
summing units. A sequential multiplier is used for the square
of the input signal. This sliding window is time-multiplexed
for all the power estimates needed in (4).

3.8 Implementation results

The implementation targets a XC5VFX70T chip from
Xilinx Virtex5 family [5] found on the evaluation board
ML507 [6] from Xilinx. The synthesis results are obtained
using Xilinx XST tool from Xilinx ISE 9.2i. The occupied
area is reported in terms of slice components (each slice con-
tains four flip flops and four 6-input LUTs). The proposed
AEC implementation uses 4620 FFs (from a total of 44800),
5551 LUTs (from a total of 44800), and 3 BRAMs. The
maximum frequency reported after placing and routing the
design is 271.3 MHz. Starting from this speed result, as a
future work, we can modify the timing diagram depicted in
Fig. 5, in order to increase the reuse factor of the scheme
components, especially for the binary tree multipliers. For
maximum area optimization, we can imagine an AEC struc-
ture including only one multiplier and one fractional divider.

4. SIMULATION RESULTS

The functional and timing simulations are made using
the ModelSIM 6.2g tool. We use a test bench that generates
the echo by passing the far-end signal through a measured
512 tap acoustic impulse response (the sampling frequency is
8 kHz). The same length is used for the adaptive filter, i.e.,
L = 512. The far-end signal is a speech signal. The output of
the echo path is corrupted by a white Gaussian noise with
20 dB signal-to-noise ratio (SNR). The performance measure
is the normalized misalignment (in dB), defined as
20log10(||h – ĥ(n)||2/||h||2), where h is the true impulse re-
sponse of the echo path and ||•||2 denotes the l2 norm.

535

0 2 4 6 8 10 12
-30

-25

-20

-15

-10

-5

0

Time (seconds)

M
is

al
ig

nm
en

t
(d

B
)

VSS-APA infinite precision

VSS-APA finite precision

Figure 6 – Quantization effect on the misalignment of the VSS-
APA. Single-talk case.

In the first experiment, we test the AEC performance in
a single-talk scenario. The effect of the quantization error on
AEC performance is given in Fig. 6. Based on this simula-
tion, we decided to use a 16 bit representation for the AEC
inputs, and all the other variables (including the coefficients)
being computed using 31 bits. These variables are used at full
width in summing units and only on the first 16 most signifi-
cant bits on multipliers. Figure 6 can be used as a reference
when comparing the implementation performance with those
described in [3], in infinite precision. In general, less than 2
dB degradation can be noticed.

In the second experiment, a double-talk scenario is con-
sidered. It is known that this is one of the most challenging
situations in echo cancellation. In general, a double-talk de-
tector (DTD) is required in this case, in order to control the
algorithm’s behaviour and to prevent its divergence. One of
the main features of our VSS-APA is its robustness against
double-talk [3]. In order to outline this aspect, we compare
the VSS-APA with the classical APA (using a fixed step-size µ = 0.2), without using any DTD. The results are given in
Fig. 7. First, the VSS-APA suffers less than 2 dB degradation
when using finite precision implementation. Second, it is
obvious that the VSS-APA is much more robust then APA
during double-talk. As it was shown in [3], a simple Geigel
DTD [8] improves this robustness for the VSS-APA, while
the classical APA requires more sophisticated DTD, e.g., [9].

5. CONCLUSIONS

FPGA implementation of an AEC based on a VSS-APA
was presented in this paper. The main features of the VSS-
APA are its non-parametric nature and the moderate compu-
tational requirements. Nevertheless, several challenging op-
erations are required in the step-size parameter formula, e.g.,
division, square-root, and matrix inversion. Dedicated blocks
for these operations were implemented on the FPGA within
the AEC scheme.

The provided AEC implementation represents a low-cost
solution, which could be very attractive for real-world acous-
tic echo cancellation scenarios.

0 2 4 6 8 10 12
-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

Time (seconds)

M
is

al
ig

nm
en

t
(d

B
)

APA infinite precision

VSS-APA finite precision
VSS-APA infinite precision

Figure 7 – Misalignment of the APA (infinite precision) and VSS-
APA (finite and infinite precision). Double-talk case, without DTD.

ACKNOWLEDGEMENTS

This work was supported by the UEFISCSU Romania
under Grants PN-II-“Idei” no. 65/01.10.2007 and no.
331/01.10.2007.

The authors are thankful to Dr. Dennis R. Morgan from
Bell Laboratories, Alcatel Lucent, for his valuable and con-
structive comments and suggestions.

REFERENCES

[1] J. Benesty, T. Gaensler, D. R. Morgan, M. M. Sondhi, and
S. L. Gay, Advances in Network and Acoustic Echo Cancel-
lation, Berlin, Germany: Springer-Verlag, 2001.
[2] K. Ozeki and T. Umeda, “An adaptive filtering algorithm
using an orthogonal projection to an affine subspace and its
properties,” Electron. Commun. Jpn., vol. 67-A, no. 5, pp.
19–27, May 1984.
[3] C. Paleologu, J. Benesty, and S. Ciochină, “A variable
step-size affine projection algorithm designed for acoustic
echo cancellation,” IEEE Trans. Audio, Speech, Language
Process., vol. 16, pp. 597–600, Nov. 2008.
[4] C. Anghel, C. Paleologu, J. Benesty, and S. Ciochină,
“FPGA implementation of an acoustic echo canceller using a
VSS-NLMS algorithm,” in Proc. IEEE ISSCS 2009, pp. 369–
372.
[5] “Xilinx Virtex 5 family user guide,” www.xilinx.com.
[6] “Xilinx ML507 evaluation platform user guide,”
www.xilinx.com.
[7] J. Benesty, H. Rey, L. Rey Vega, and S. Tressens, “A
nonparametric VSS NLMS algorithm,” IEEE Signal Process.
Lett., vol. 13, pp. 581–584, Oct. 2006.
[8] D. L. Duttweiler, “A twelve-channel digital echo can-
celer,” IEEE Trans. Communications, vol. 26, no. 5, pp. 647–
653, May 1978.
[9] J. Benesty, D.R. Morgan, and J. H. Cho, “A new class of
doubletalk detectors based on cross-correlation,” IEEE
Trans. Speech and Audio Processing, vol. 8, no. 2, pp. 168–
172, Mar. 2000.

536

