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ABSTRACT
The problem of the localization of multiple narrow band sources
in the presence of arbitrary noise of unknown spatial spectral den-
sity is addressed. The array geometry can be arbitrary but must be
known. The spatial noise spectrum is described using a sufficiently
rich class of models that somehow covers the set of rational spec-
tra. The Global Matched Filter is used to identify the characteristics
of the sources that are present and to get a approximate model of
the unknown colored noise. It is a technique that can be seen as
a model-fitting or sparse representation approach in which the ob-
servations are decomposed on the association of different bases of
candidate models. The computational complexity is reasonable and
the performance are quite good and compare favorably with other
methods.

1. INTRODUCTION

Estimating the directions of arrivals (DOA) of narrowband sources
impinging on an array of sensors has applications in many differ-
ent fields. Numerous investigations have been performed to inves-
tigate the performance of the more or less sophisticated methods
developed to detect and locate the sources. Most of them assume
and quite often require that the additive noise be spatially white
(i.e. uncorrelated between sensors) or the noise covariance matrix
be known up to a multiplicative constant. In most practical situ-
ations this is not the case and important degradations do appear,
in terms of bias, poor resolution, spurious peaks, non detection of
weak sources.

Many solutions have already been proposed. One possibility is
to bypass or avoid the difficulty by using either higher order statis-
tics [1] or instrumental variable like methods [2]. In the first case,
one assumes that the noise is Gaussian while the source signals are
non-Gaussian, in the second case the assumption is made that the
spatial correlation length of the sources is much larger than that of
the noise. Even if these assumptions are valid, they lead to a loss
in information. For a given number of available samples, the es-
timation of higher order moments is less accurate than the second
order moments and the same remark holds within the covariance
sequence, the initial terms are better identified as well.

The second and by far the most investigated possibility is to
introduce a parametric model for the noise covariance and to iden-
tify the parameters of that model together with the parameters of
interest from the observations. Basically two types of models are
considered. A number of contributions [3], impose a parametric
model on the noise in the spatial domain (i.e. along the array), usu-
ally autoregressive (AR) models are used. A more abstract model
consists in using a pre-specified set of array-geometry-dependent
matrices to model the noise covariance matrix [4]. In both mod-
els, the goal is to approximate the true noise covariance matrix by
a parametrized model whose order (the number of components, the
number of weights to be adapted) has to be fixed a priori. Indeed,
since -in general- maximum likelihood (ML) approaches are then
used to identify all the unknown parameters: the sources DOA’s, the
sources powers and the noise parameters, the precise orders have to
be fixed a priori.

Direct optimization of the resulting multimodal nonlinear like-
lihood function is a difficult task and the main contribution of the
proposed methods lies in the reduction of dimensionality and/or the
tentative separation of the parameters of interest from the others. A
full separation seems unfeasible and a high-dimensional optimiza-
tion problem must be solved.

Global optimization algorithms such as simulated annealing
(SA) [5] , genetic algorithms (GA) [6] or particle swarm optimiza-
tion (PSO) algorithm [7] have been considered to solve this com-
plex, multimodal, highly non-linear optimization problem.

Now, of course optimizing the ML functional is a valuable
approach only if the underlying pre-specified parametric model is
adequate. Strictly speaking it should be the exact model. Since
over-parametrization induces ill-conditioning and local minima and
under-parametrization induces a lack of adequate model, a prior dif-
ficulty with all these approaches lies in the choice of the model or-
der, of the number of free parameters.

The contribution is organized as follows. Section II describes
the model of the signals while in section III two different noise mod-
els are introduced. The Global Matched filter is briefly described in
section IV and applied to the present context in section V. Simula-
tions and concluding remarks follow in section VI and VII.

2. PROBLEM FORMULATION

We consider the problem of estimating the direction of arrivals
(DOA) of P narrowband sources impinging on a array ofN sensors.
To simplify the exposition we limit ourselves to the one dimensional
localization problem (the azimuth angleθ ), i.e., we assume that the
sources and sensors are coplanar and that the sources are in the far
field. We denoteZk the k-th snapshots, an N-dimensional vector of
the array outputs (after Fourier transformation and selection of the
appropriate frequency bin). This vector can be modeled as

Zk = Ask +nk

with A theN×P matrix with columns the steering vectorsa(θp) for
p = 1 to P, sk the P-dimensional signal vector with components
sk(p) andnk the N-dimensional additive spatial noise vector. The
signalssk(p) and noises are wide-sense stationary complex valued
random processes with zero mean.

We assume the source signals to be uncorrelated and uncorre-
lated from the spatial noise and denoteQ the covariance matrix of
the spatial noise that is an arbitrary positive definite unknown her-
mitian matrix. It follows that

R = E(ZkZ∗
k ) = ASA∗ +Q, with S = E(sks∗k). (1)

with S =diag(αp) the diagonal matrix of the source powers.
The steering vectora(θ) is of the form

a(θ) = [ e−2 jπd1 e−2 jπd2 ... e−2 jπdN ]T (2)

with dk, the distance, expressed in wavelengths, between sensork
and the reference sensor projected on the directionθ of the potential
source. This means that some calibration has been performed so that
each sensor has nominal gain 1 and nominal phase 0.
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3. MODELING THE NOISE FIELD

The noise in the receiving system is composed of internal and ex-
ternal noise. The internal noise mainly consists in thermal noise in
the receivers but other contributors may exist. If the thermal noise
is dominant, a scaled identity matrix is a adequate model for the
covariance matrix of internal noise.

The external noise is the result of the combination of all the un-
modeled and unwanted signals that are intercepted by the sensors.
It is difficult to assume that this ambient noise is uncorrelated from
sensor to sensor. One can however assume that, over the consid-
ered time-spans, this noise is stationary with respect to time and
one can then consider modeling it as the contribution of infinitesi-
mal independent sources in the far-field of the array with azimuth
dependend powerp(θ) that varies smoothly withθ . Sharp changes
in p(θ) would be associated with strong localized noise sources that
cannot be distinguished from the point sources of interest that are to
be localized. It is then natural to representp(θ) by its Fourier series
expansion and to expect that, due to its smoothness, only few terms
will be needed to obtain a quite adequate representation.

The ambient noise covariance matrixQ is then given by

Q = γI +
∫ π

−π
p(θ)a(θ)a(θ)∗dθ ,

where the first part represents the internal noise contribution.
Its q-th order expansion is then

Q ≃ γI +
q

∑
m=−q

cmRm (3)

with
Rm =

∫ π

−π
eimθ a(θ)a(θ)∗dθ

and

cm =
1

2π

∫ π

−π
p(θ)e−imθ dθ .

For a linear array the range is limited to]− π/2, π/2[ and a
similar model with the corresponding modifications applies.

Another way to model the noise and its covariance matrix
is to use complex autoregressive/autoregressive moving average
(AR/ARMA) models along the array. And, since complex AR(1)
models can be seen as the building block of the more general
ARMA models, a sum of complex AR(1) processes is a sufficiently
rich model that allows to represent with any desired accuracy, any
covariance sequence and associated spatial spectral density func-
tion. In the present context, the use of these modelsalong the array
amounts to assume that the noise present at one sensor can some-
how be predicted from the noise present at the neighboring sen-
sors. The corresponding noise covariance matrix is then the sum of
hermitian full rank hermitian Toeplitz matrices, the Toeplitz matri-
ces whose first column is the partial covariance sequence associated
with a complex AR(1) process. A complex AR(1) model satisfies
zn = β zn−1+en whereβ = ρeiϕ with ρ ∈ [0, 1[ andϕ ∈ [0, 2π[ and
en is zero complex circular Gaussian noise with varianceσ2. This
means that the real and imaginary parts ofen are independent white
Gaussian noises with varianceσ2/2 each. The associated covari-
ance sequence satisfies thenrk = E(znz̄n−k) = β kr0 for k ≥ 0 with
r0 = σ2/(1− ρ2) and the associated covariance function, needed
for arbitrary geometry arrays, isr(τ) = r(0)β τ with τ expressed in
half-wavelengths. The noise covariance matrix will thus be mod-
eled as, compare with (3)

Q ≃ γI +∑
m

γmT (βm), (4)

where T (β ) is the full rank, positive definite hermitian Toeplitz
matrix associated with AR(1) process with parameterβ andr0 =
r(0) = 1 on the diagonal, to fix ideas.

Indeed since one is not interested in the model of the noise per
se, since the noise is considered as a nuisance, all one needs is a
model that is sufficiently rich. This is the case of both models intro-
duced above.

4. THE GLOBAL MATCHED FILTER

Let us briefly sketch the DOA estimation procedure that will be used
in the sequel.

4.1 Introduction

It is a high resolution DOA estimation scheme for which no prelim-
inary decision has to be made as to its complexity. In the present
context, this means that it is not necessary to fix a priori neither the
number of point sources that are present nor the number of contrib-
utors in the model of the noise covariance matrix (3,4). The scheme
is called the Global Matched Filter (GMF) in [10, 11] and it can be
seen as a sparse representations technique, a model-fitting approach
or an inverse-problem solver. It works whenever one wants to de-
compose a vector of observations into the sum of a small number of
vectors belonging to a known parametrized family of vectors. This
is the case in the present source localization context when, for in-
stance, one considers as vector of observations a set of beamformer
outputs.

The beamformer output at azimuthφ is defined to be

y(φ) = a(φ)∗Ra(φ) (5)

with a(φ) in (2), and with the notations introduced above (1) and
using (3) to modelQ the noise covariance matrix, one gets

y(φ) =
P

∑
p=1

αp|a(φ)∗a(θp)|2 + γN +
q

∑
m=−q

cma(φ)∗Rma(φ). (6)

It can indeed be seen as being the sum of the contributions of the
P sources and of the different spatial noise components. SinceR
is not available estimated beam outputs, say ˆy(φ) are obtained by
replacingR by its estimate

R̂ =
1
T

T

∑
1

ZkZ∗
k , (7)

the so-called snapshot covariance matrix. The GMF uses as input an
L-dimensional vector with components ˆyk = ŷ(φk). We will denote
Ŷ this vector filled with theseL beams. The value retained forL is
equal to the number of real degrees of freedom inR so that there
is no information loss in replacinĝR, the usual input to most DOA
estimation schemes, bŷY . The bearingsφk ∈ Φ depend upon the
array geometry. For a uniform linear array (ULA),L = 2N −1 and
theφk ’s are equispaced in spatial frequencies.

The decomposition (6) ofy(φ) extends to the vectorY

Y =
P

∑
p=1

αp f (θp) + γ N1+
q

∑
−q

cmgm,

where f (θ) denotes theL-dimensional vector of the contribution of
a source with bearingθ and unit power to the beams inY , 1, a vector
of ones, that allows to model the contribution of the spatially white
noise toY andgm the vector with the contribution to the beams of
theRm matrices in (3).

The aim of the GMF is to recover this sparse exact representa-
tion of Y from the observation of its noisy estimateŶ .

One therefore introduces a set ofM L-dimensional vectorsfm =
f (ψm) with ψm ∈ Ψ, a set ofM ≫ L > P bearings representing the
positions of all the potential sources. One builds theL×MF matrix
F with MF=M+2+2q columns: thefm’s, N1 the contribution of the
spatially white noise and thegm’s. A sparse representation ofŶ is
then of the formFX , with X a vector of weights having just a few
non-zero components. Since the true bearingsθp do generically not
belong to the discretization grid pointsΨ, two columns ofF will,
in general, be needed to approximatively model the contribution
of each true source. A typical sparseX representinĝY will thus
have about 2P non-zero components to represent the sources plus a
number of components to model the noise contribution.

Quite specifically a preliminary version of the GMF amounts to
solve the optimization problem
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min
X

1
2
‖FnX − Ŷ‖2

2 +h‖X‖1, (8)

with ‖X‖1 = ∑ |xk|, ‖X‖2
2 = x2

k , Fn the F matrix with its columns
normalized to one in Euclidean norm andh a positive real to be
fixed by the user. This is a convex program, for which fast dedicated
algorithms are available, and one deduces from its unique optimum
the different estimates of interest: the azimuthsθp, powerssp and
also the source numberP since this number as well as the order of
the noise model has not to be fixed a priori.

4.2 The standard version

We now take into account the statistical properties of the obser-
vations inŶ to develop the standard version of GMF. Under the
current assumptionŝR is an estimate of the covariance matrix of
Zk ∈ CN(0,R) and it follows thatT R̂ is a sample of a complex
Wishart distributionCW (T,N,R) [12]. The statistical properties of
the components ˆyk of Ŷ are then easy to obtain. WithΣ, denoting
the covariance matrix of̂Y one has

Σk,l =
1
T
|a(φk)

∗Ra(φℓ)|2.

It is then natural to premultiply bothF andŶ in (8) byΣ− 1
2 to whiten

the observations in̂Y . SinceR and thusΣ are not known, in practice
one replacesR by its estimateR̂, to get an estimatêΣ of Σ. The
components in the resulting observation vector, say,Ŷw = Σ̂− 1

2 Ŷ are
then, asymptotically inT , uncorrelated and of unit variance.

This version of GMF, which is quite close to a maximum likeli-
hood approach applied to the observations inŶ , amounts to replace
(8) by

min
X

1
2
‖FwnX − Ŷw‖2

2 + h ‖X‖1, (9)

with Ŷw = Σ̂− 1
2 Ŷ , Fw = Σ̂− 1

2 F andFwn represents the matrixFw with
columns normalized to one inℓ2 norm. Just as (8), this is a con-
vex program and all the estimates are deduced from its generically
unique optimum.

4.3 Implementation issues

Let us sketch briefly how to implement in practice (9) or (8), further
details can be found in [11] or more recently in [13].

The number of parameters to be tuned is quite small. The
choice of an adequate numberL of components in̂Yw has already
been discussed above. The choice ofM the number of columns inF
devoted to the potential point sources and the associated discretiza-
tion step in bearing should be fixed according to the resolution pos-
sibilities of the array. As an example, for a uniform linear array
(ULA) with N sensors a half wavelength apart and signal to noise
ratios around 0 dB, the resolution limit (Rayleigh limit) in spatial
frequency is about∆ f = 1/N and a high resolution method able to
separate sources at∆ f = 1/2N, so that one takesM = 10N. This
choice allows for about 2 zero weights between two sources that
are close in bearings but nevertheless potentially separable and thus
guarantees that two disjoint clusters on nonzero weights inX will
be obtained in case the two sources are detected.

For a well chosenh, the optimalX will have ideally about
2P nonzero components among its firstM components. A pair of
neighboring nonzero components for each of the sources that are
present. Other nonzero components will be present in the latter
components of the optimalX to model the noise contribution. The
estimate of the number of waveforms present is then given by the
number of (significant) clusters of nonzero components, the power
of a source is estimated by the sum of the weights in its associated
cluster and the azimuth estimate is obtained by linear interpolation
of the associated indices ofψm ∈ Ψ.

The choice ofh is crucial, it varies linearly with the standard
deviation of the (estimation) noise affecting the components inŶ .
For a standard deviation equal to one, as is the case inŶw, one should

takeh ≃
√

2ln2L. Roughly speaking, the largerh, the sparser the
optimalX and vice versa.

If the value ofh is too large, the procedure may not detect weak
sources and ifh is too small, there may appear many false alarms,
i.e., the procedure might detect sources that do not exist.

Eventually, one should mention that the presence ofh in (8) (9)
induces bias into the estimates. This bias while concerning mainly
and directly the amplitude estimates, also affects slightly the bear-
ing estimates.

Let us summarize the algorithm. For a given array, we build the
F matrix whose columns model the contributions of both the point
sources and noise contributors to the observations vectorY build
usingL beam outputs. The beams are computed according to (5)
with R replaced by the estimatêR (7) of the covariance matrix of the
snapshots. To implement the standard version (9), one further has
to whitenŶ and normalize the columns of the whitenedF-matrix.
One then solves (9) withh in between

√
2ln2L and

√
2ln2MF , and

deduces the estimates from its optimum.

5. DEVELOPMENT

Let us come back to the problem we are concerned with, namely the
presence of arbitrary and unknown spatial noise.

To fix ideas, unless otherwise stated, a linear arrays with eq-
uispaced sensors, one half wavelength apart, withN = 10 sensors
andT = 100 snapshots will be considered. The steering vector (2)
associated with a source becomes then

a(θ) = [ 1 e−iπ sinθ e−2iπ sinθ ... e−(N−1) jπ sinθ ]T , (10)

whereθ ∈]−π/2, π/2[ is the bearing of the source with respect to
broadside.

If the non-whiteness of the noise is not taken into account the
degradation in performance can be important. While the basic
beamformer, with its poor resolution performances, is quite robust,
more sophisticated methods are more sensitive. For spatial noise
with relatively smooth spectral densities, one will observe bias and
higher variance, but as soon as the spectral density of the noise be-
comes slightly spiky, spurious sources will appear and the detection
of weak sources will become difficult together with the determina-
tion of therank of the covariance matrix of the snapshots on which
most high resolution methods, such as MUSIC [8, 9], rely.

The technique of noise modeling using the Fourier series ex-
pansion (3) described at the beginning of section 3 allows to model
essentially very smooth noise spectra or, at the least, requires a large
number of components to represent an even only slightly resonant
spectrum. It is thus more adapted to model quite smooth noise spec-
tra that will generally essentially induce bias and additional variance
in the DOA estimates.

Since the more challenging situation where colored noise may
be confused with sources is to be considered here, only the complex
AR modeling approach (4) will be considered in the sequel. The
implementation within the proposed scheme is then slightly more
complex since instead of having just 2q + 1 (see (3)) additional
columns inF , a larger number of additional columns is required.
Indeed to cover potentially all the complex AR(1) processes, one
has to discretizeβ = ρeiϕ over its domain namelyρ ∈ [0, 1[ and
ϕ ∈ [0, 2π[. For ρ = 1 the AR process becomes singular and in-
distinguishable from a point source (10), one therefore limits the
domain of variation ofρ to [0, .9 ] in the sequel. To represent all
the potential noise spectra,nrho = 9 andnϕ = 12 different values of
ρ andϕ , i.e. ρ = 0.1 k for k = 1 to 9 andϕ = (π/6) k for k = 0
to 11. This leads to the construction ofnρ × nϕ = 108 columns
representing the potentials noise contributions to be added in theF
matrix. This number is quite small and the increase in computation
time it induces is negligible. It will be shown in the simulations
below (see section 6.4) that this approach allows to handle smooth
spectra, belonging to the other models, as well.
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6. SIMULATIONS RESULTS

Simulation results are presented to assess the potentialities of the
proposed method. A Uniform Linear Array withN = 10 sensors
is considered andT = 100 snapshots are used. The matrixF has
19 rows (since an hermitian Toeplitz matrix of order 10 has 19 real
degrees of freedom) and 209 columns, 100 equispaced columns to
model the potentials point source contributions, one to model the
white noise contributions and 108 to model the complex AR(1) po-
tentials noise contributions as described in section 5. The hyper-
parameterh is taken equal to

√
2ln2L ≃ 2.70 as recommended

above.

6.1 Example 1.

Let us first comment on the smalldistance that exists between a
complex AR(1) process withρ = .9 and a point source. In the beam-
former output, they lead to extremely similar shapes, see Figure 1a
and 2 below. Though full rank, the covariance matrix associated
with such a process has essentially one large eigenvalue and makes
all source number determination techniques based on the eigenval-
ues inoperable. In the present GlobalMatched Filter context, the
correlation between the normalized column inA associated with
such a process and the most resembling normalized column inA
associated with a source is 0.986, i.e. the angle between these two
columns is less than 10 degrees. It appears that nevertheless the
algorithm is in general not mislead. If one simulates an complex
AR(1) process withβ = ρ = .9 and variancer0 = 1.39 which mim-
ics quite precisely a point source at 0 degree and unit power, the
GMF systematically identifies the AR process and only in 25% of
the realizations detects an additional source around 0 degree with
quite small average power 0.13, about one tenth of the ”true” value.
This is of course without giving any prior information about the true
scenario to the algorithm.

6.2 Example 2.

In a second couple of simulations, one considers a single resonant
complex AR(1) process withρ = 0.9 andr0 = 1 and 2 close sources
with bearings−5 and 0 degrees and powers1 = s2 = 1. The di-
agonal of the exact snapshot covariance matrix is thus equal to 3.
The resonance of the noise is first (a) placed around -30 degrees
(ϕ = π/2) and then (b) placed around 0 degreesϕ = 0). In both
cases 1000 independent realizations are performed and the esti-
mates of the bearings and amplitudes of the two sources are pre-
sented in Table 1.

The output of the beamformer (for the exact covariance matrix)
corresponding to both scenarios are presented in Figure 1.
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Figure 1: The beamformer output: there is one resonant complex AR(1)
processes modeling the noise and two point sources at -5 and 0 degrees.
Left: the resonant noise contribution is around -30 degrees, right: it is
around 0 degrees. The 19 stars are the beams used as input to the local-
ization and detection algorithm.

The results obtained are quite similar in both cases (a) and (b)
with however a slight bias on the bearings in case (a). The perfor-
mances are close to the Cramer-Rao bounds but of course at no mo-
ment one has to indicate to the algorithm that there are two sources
and one AR(1) process to be estimated. The GMF decides by itself
the model that best fits the observations inŶ . For both cases, there

Table 1: Two equipowered sources with bearings −5 and 0 degrees in
quite resonant AR(1) noise, T=100 snapshots: (a) noise resonance at -30o,
(b) noise resonance at 0o.

(a) noise resonance at -30o (b) noise resonance at 0o

bearings amplitudes bearings amplitudes

true -5 0 1 1 -5 0 1 1

mean -5.14 -.11 .88 .95 -4.95 .04 .94 .94
st dev .23 .22 .14 0.13 .29 0.35 .19 .24

Estimates of the mean and standard deviation of the bearings and ampli-
tudes averaged over 1000 independent realizations.

are, in the average, about 5.1 nonzero components in the optimal
X of dimension 209. Among the the first 100 components inX as-
sociated with the potential point sources, 3.6 of them correspond to
the two (true) sources and once they are removed, there remains one
nonzero weight in about 25 % of the realizations in case (a) and less
than 1 % in case (b). This nonzero weight corresponds to a false
alarm (the detection of a spurious source) has average value.09
in both cases, quite weak spurious peaks that are easily discarded,
since about 10 times smaller than the true sources.

Let us just mention that the closeness in bearings of the two
sources makes this a difficult scenario and that even in the usual
spatial white noise case with unit variance, the standard MUSIC
algorithm fails to separate the two sources in more than 1 fourth of
the realizations.

6.3 Example 3.

In the third scenario the noise is modeled using 3 AR(1) processes
with variance equal to 1 each and parameters(ρ, ϕ) respectively
equal to(0.7, 2π/3), (0.8, π/3) and(0.9, 0) and there is one source
at 20 degrees withs1 = 1 in (1), the diagonal of the exact global
covariance matrix is thus equal to 4. This fully characterizes the
simulation and, depending upon the definition, the signal to noise
ratio is slightly below 0 dB.

The output of the beamformer to this scenario is presented in
Figure 2, there are essentially 4 resonances associated respectively
(from left to right) with the 4 contributing components in the order
they are listed above.
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Figure 2: The beamformer output: there are 3 more and more resonant
complex AR(1) processes with contributions at -40, -20 and 0 degrees and a
point source at 20 degrees. The 19 stars are the beams used as input to the
localization and detection algorithm.

Over 1000 independent realizations, the proposed algorithm al-
ways locates the unique source and, in 48% of the realizations, it lo-
cates a second point with much lower amplitude (one sixth) around
0 degrees in about half of these cases and around -20 and -40 de-
grees in about one quarter of these cases each. If the value ofh is
doubled the number of false detection drops to less than one per-
cent. The parameterh can be shown to act as the threshold in a
generalized likelihood ratio test and it allows to tune the probability
of false alarm. The standard value recommended above corresponds
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to a 10% probability of false alarm in the presence of white spatial
noise with unity variance.

6.4 Example 4.

Let us consider now a noise spectrum that does not belong to the
complex AR class. The covariance function is generated using a
Bessel function of the first kind and order zero, i.e. the first col-
umn of the hermitian Toeplitz matrixQ in (1) is taken equal to
J0(kπ) with k = 0 to N −1. This corresponds indeed to the other
type of models (3) considered above since the covariance matrix is
also equal to(1/π)R0, see (3). As in Example 2, the sources that
are present are located at−5 and 0 degrees and have unit power
s1 = s2 = 1. The estimates of the bearings and amplitudes of the
two sources, obtained over 1000 independent realizations, are pre-
sented in Table 2. and the output of the beamformer (for the exact
covariance matrix) is presented in Figure 3.

Table 2: Two equipowered sources with bearings −5 and 0 degrees in
Bessel noise , T=100 snapshots.

bearings amplitudes
true -5 0 1 1
mean -5.12 -0.44 0.65 0.64
st dev 0.31 0.36 0.15 0.21

Estimates of the mean and standard deviation of the bearings and
amplitudes averaged over 1000 independent realizations.
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Figure 3: The beamformer output: A spatially colored noise with Bessel
covariance function and two equipowered point sources at -5 and 0 degrees.
The 19 stars are the beams used as input to the localization and detection
algorithm.

The average number of non zero weights in the optimalX (9)
is 8.7, and 5.2 of them are used to model this noise that does not
belong to the class considered, the remaining 3.5 concern the two
point sources. In 15 % of the realizations there is one non-zero
weight left, ones the two sources are located, but its amplitude is
0.03 in the average and it can thus be discarded and considered as a
false alarm. One could add that, for this scenario, the basic Music
algorithm separates the two sources in less than 10% of the real-
izations, although the noise spectrum seems to be close to a white
noise spectrum.

7. CONCLUSIONS

This paper presents an approach that allows to localize sources in
the presence of additive noise of unknown spectrum. It is indeed one
way to apply the Global Matched Filter [11, 13] to the unknown col-
ored noise situation. It has been presented for the case of a uniform
linear array but can be adapted to any array geometry.

The task that is considered is of great practical interest and has
been considered for at least two decades. Competing algorithm do
in general rely on a complete and precise parametric description of
both the signals and noise covariances and aim to solve the associ-
ated Maximum Likelihood criterion. This is of course a difficult op-

timization problem and most papers are concerned with smart ways
to make this problem solvable in practice. Suboptimal strategies
whose aim is to decouple the estimation of the signal parameters
from the noise parameters are often considered and sensitivity to
the initialization is in general an important problem. This explains
that new types of optimization routines, such as simulated anneal-
ing, genetic algorithms or particle swarm optimizations are being
considered.

All these approaches nevertheless heavily rely on the validity
of the model that is used, and not only upon the model itself but
also quite drastically upon the precise tuning of the model, i.e. the
number of assumed sources and the order (complexity) of the noise
model has to be precisely fixed a priori. This is of course a penaliz-
ing situation because somehow the detection problem and the order
determination has to be done beforehand and these (probably more
complex) issues are seldom addressed.

The method proposed in this paper is only marginally con-
cerned by these preliminary tuning issues. Their is no need to know
a priori neither the number of sought sources, nor the noise type and
noise model order. Some sort of detection scheme has to be added
to the proposed procedure though, to discard occasional weak spu-
rious peaks that are to be considered as false alarms. Indeed the
only parameter whose tuning has a drastic effect ish in (9) that is
indeed strictly comparable to the tuning of the threshold in a de-
tection test [14]. According to the performances observed in the
simulation section, the value recommended for this parameter at the
very end of section 4 seems to be quite adequate.
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