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ABSTRACT Direct optimization of the resulting multimodal nonlinear like-
The problem of the localization of multiple narrow band sourceslihood function is a difficult task and the main contribution of the
in the presence of arbitrary noise of unknown spatial spectral derproposed methods lies in the reduction of dimensionality and/or the
sity is addressed. The array geometry can be arbitrary but must Bentative separation of the parameters of interest from the others. A
known. The spatial noise spectrum is described using a sufficientlfilll separation seems unfeasible and a high-dimensional optimiza-
rich class of models that somehow covers the set of rational spedion problem must be solved.
tra. The Global Matched Filter is used to identify the characteristics ~ Global optimization algorithms such as simulated annealing
of the sources that are present and to get a approximate model (3A) [5] , genetic algorithms (GA) [6] or particle swarm optimiza-
the unknown colored noise. It is a technique that can be seen &on (PSO) algorithm [7] have been considered to solve this com-
a model-fitting or sparse representation approach in which the olplex, multimodal, highly non-linear optimization problem.
servations are decomposed on the association of different bases of Now, of course optimizing the ML functional is a valuable
candidate models. The computational complexity is reasonable arapproach only if the underlying pre-specified parametric model is
the performance are quite good and compare favorably with otheadequate. Strictly speaking it should be the exact model. Since
methods. over-parametrization induces ill-conditioning and local minima and
under-parametrization induces a lack of adequate model, a prior dif-
1. INTRODUCTION ficulty with all these approaches lies in the choice of the model or-

. . . . . der, of the number of free parameters.
Estimating the directions of arrivals (DOA) of narrowband sources The contribution is organized as follows. Section Il describes

impinging on an array of sensors has applications in many differ . - . . .

enI?fiegIds(:]j Numerousyinvestigations havg%een performed %/o inve he model of the signals while in section Il two different noise mod-

tigate thé performance of the more or less sophisticated metho %sare introduced. The Global Matched filter is briefly described in
ction IV and applied to the present context in section V. Simula-

developed to detect and locate the sources. Most of them assu ; . .

and quite often require that the additive noise be spatially white hs and concluding remarks follow in section Vi and VII.

(i.e. uncorrelated between sensors) or the noise covariance matrix

be known up to a multiplicative constant. In most practical situ- 2. PROBLEM FORMULATION

ations this is not the case and important degradations do appegge consider the problem of estimating the direction of arrivals

in terms of bias, poor resolution, spurious peaks, non detection c{bOA) of P narrowband sources impinging on a arraj\o§ensors.

weak sources. . . ... To simplify the exposition we limit ourselves to the one dimensional
Many solutions have already been proposed. One possibility ify.5iization problem (the azimuth ang®, i.e., we assume that the

to bypass or avoid the difficulty by using either higher order statisy, ;. ce5'and sensors are coplanar and that the sources are in the far

tics [1] or instrumental variable like methods [2]. In the first case o\ “\we denote, the k-th snapshots, an N-dimensional vector of

one assumes that the noise is Gaussian while the source signals gig -y outputs (after Fourier transformation and selection of the

es th € SO &
non-_Gaussmn,_m the second case the assumption is made that g{ﬁpropriate frequency bin). This vector can be modeled as
spatial correlation length of the sources is much larger than that o

the noise. Even if these assumptions are valid, they lead to a loss Z = A+

in information. For a given number of available samples, the es-

timation of higher order moments is less accurate than the seconfith AtheNx P matrix with columns the steering vecta§d,) for

order moments and the same remark holds within the covariance = 1 to P, s the P-dimensional signal vector with components

sequence, the initial terms are better identified as well. s«(p) andny the N-dimensional additive spatial noise vector. The
The second and by far the most investigated possibility is tcsignalssc(p) and noises are wide-sense stationary complex valued

introduce a parametric model for the noise covariance and to idefandom processes with zero mean.

tify the parameters of that model together with the parameters of We assume the source signals to be uncorrelated and uncorre-

interest from the observations. Basically two types of models aré¢ated from the spatial noise and den@ehe covariance matrix of

considered. A number of contributions [3], impose a parametridhe spatial noise that is an arbitrary positive definite unknown her-

model on the noise in the spatial domain (i.e. along the array), usunitian matrix. It follows that

ally autoregressive (AR) models are used. A more abstract model .

consists in using a pre-specified set of array-geometry-dependent R=E(ZZ) = ASA" +Q, with S= E(sc8)- @)

matrices to model the noise covariance matrix [4]. In both modwith S=diag(ap) the diagonal matrix of the source powers.

els, the goal is to approximate the true noise covariance matrix by The steering vecta(6) is of the form

a parametrized model whose order (the number of components, the o o o

number of weights to be adapted) has to be fixed a priori. Indeed, a(f) =[e 2™ g2 g 2imh )T ()

since -in general- maximum likelihood (ML) approaches are therwith dy, the distance, expressed in wavelengths, between sknsor

used to identify all the unknown parameters: the sources DOA's, thand the reference sensor projected on the dire@iofthe potential

sources powers and the noise parameters, the precise orders havedarce. This means that some calibration has been performed so that

be fixed a priori. each sensor has nominal gain 1 and nominal phase 0.

© EURASIP, 2010 ISSN 2076-1465 1369



3. MODELING THE NOISE FIELD 4. THE GLOBAL MATCHED FILTER

The noise in the receiving system is composed of internal and ex-et us briefly sketch the DOA estimation procedure that will be used
ternal noise. The internal noise mainly consists in thermal noise iim the sequel.

the receivers but other contributors may exist. If the thermal noise

is dominant, a scaled identity matrix is a adequate model for thé.1 Introduction

covariance matrix of internal noise. Itis a high resolution DOA estimation scheme for which no prelim-

The external noise is the result of the combination of all the un-Inary decision has to be made as to its complexity. In the present

modeled and unwanted signals that are intercepted by the sensoggntet, this means that it is not necessary to fix a priori neither the

It is difficult to assume that this ambient noise is uncorrelated fro%mber of point sources that are present nor the number of contrib-

sensor to sensor. One can however assume that, over the consiffyrs in the model of the noise covariance matrix (3,4). The scheme
ered time-spans, this noise is stationary with respect to time and cajieq the Global Matched Filter (GMF) in [10, 11] and it can be
one can then consider modeling it as the contribution of infiniteSisgen a5 a sparse representations technique, a model-fitting approach
mal independent sources in the far-field of the array with azimuthy, oy jnverse-problem solver. It works whenever one wants to de-
dependend powep(6) that varies smoothly wit. Sharp changes  -ompose a vector of observations into the sum of a small number of
in p(8) would be associated with strong localized noise sources thgfeciors belonging to a known parametrized family of vectors. This
cannot be distinguished from the point sources of interest that are {@ the case in the present source localization context when, for in-

be localized. Itis then natural to represe) by its Fourier series  giance one considers as vector of observations a set of beamforme
expansion and to expect that, due to its smoothness, only few tem&ltputs.

will be neede_d to ob_tain a qu_ite adequat(_a represe_ntation. The beamformer output at azimughis defined to be
The ambient noise covariance maté)s then given by
s _ *
Q=yl +/ p(0)a(8)a(6)*de, y(@) = a(p)"Ra(e) ®)
—T
where the first part represents the internal noise contributionwith a(¢) in (2), and with the notations introduced above (1) and
Its g-th order expansion is then using (3) to model the noise covariance matrix, one gets
q
Qxyi+ Y CcmRm ®3) P . a .
n;—q Y(@) =Y apla(@)*a(p)*+ N+ 5 cma(@)'Rna(@). (6)
with moime p=1 m==q
Rm:/ d™a(0)a(0)"do
-n It can indeed be seen as being the sum of the contributions of the
and P sources and of the different spatial noise components. $nce
_ 1 —img is not available estimated beam outputs, géy) are obtained by
Cm= — p(6)e do. h ; ;
2/ replacingR by its estimate
For a linear array the range is limited te- 7/2, /2] and a . 17T
similar model with the corresponding modifications applies. R==% 7z, @

Another way to model the noise and its covariance matrix TZ . )
is to use complex autoregressive/autoregressive moving avera$fee So-called snapshot covariance matrix. The GMF uses as input an
(AR/ARMA) models along the array. And, since complex AR(1) L-dimensional vector with componentg= y(¢k). We will denote
models can be seen as the building block of the more generd this vector filled with thesé beams. The value retained foiis
ARMA models, a sum of complex AR(1) processes is a sufficientlyequal to the number of real degrees of freedonRiso that there
rich model that allows to represent with any desired accuracy, anis no information loss in replacing, the usual input to most DOA
covariance sequence and associated spatial spectral density fuggtimation schemes, b&. The bearingsy € ® depend upon the
tion. In the present context, the use of these moalelsg thearray  array geometry. For a uniform linear array (ULA)= 2N — 1 and
amounts to assume that the noise present at one sensor can somme-@ s are equispaced in spatial frequencies.
how be predicted from the noise present at the neighboring sen- The decomposition (6) of( ) extends to the vectof
sors. The corresponding noise covariance matrix is then the sum of p q
hermitian full rank hermitian Toeplitz matrices, the Toeplitz matri- Y = z ap f(Bp) + yN1+ z CmOm,
ces whose first column is the partial covariance sequence associated p=1 5
with a complex AR(1) process. A complex AR(1) model satISerswheref(e) denotes thé&-dimensional vector of the contribution of

Zn= P21+ wheref = pe? with p < [0, 1[and¢ € [0, 2mand 5 55 rce with bearing and unit power to the beamsYi 1, a vector

en is zero complex circular Gaussian noise with variaoée This  of ones, that allows to model the contribution of the spatially white
means that the real and imaginary partgpére independent white  nojse toY andgm the vector with the contribution to the beams of
Gaussian noises with varianc@/Z each. The associated covari- the Ry, matrices in (3).

ance sequence satisfies thgn= E(znz,_x) = Br, for k > 0 with The aim of the GMF is to recover this sparse exact representa-
r, = 02/(1— p?) and the associated covariance function, neededion of Y from the observation of its noisy estimate
for arbitrary geometry arrays, i7) = r(0)B7 with T expressed in One therefore introduces a seffL-dimensional vectory =
half-wavelengths. The noise covariance matrix will thus be mod-f(Lﬂ_m) with ¢m € W, a set _Oﬂ\/l >L>P bearlngs representing the
eled as, compare with (3) positions of all the potential sources. One buildslthéVig matrix
F wi@h M,::I_\/I+2+_2q columns: thefy's, N1 the contributi_on of t_he
~yl+ T ’ 4 spatially white noise and thgm's. A sparse representation ¥fis
Q= ;wn (Bm) “) then of the formFX, with X a vector of weights having just a few

non-zero components. Since the true beargdo generically not

where T(B) is the full rank, positive definite hermitian Toeplitz belong to the discretization grid point, two columns ofF will,
matrix associated with AR(1) process with param¢eandrg = in general, be needed to approximatively model the contribution
r(0) = 1 on the diagonal, to fix ideas. of each true source. A typical spargerepresenting’ will thus

Indeed since one is not interested in the model of the noise pdrave about P non-zero components to represent the sources plus a
se, since the noise is considered as a nuisance, all one needs iauanber of components to model the noise contribution.
model that is sufficiently rich. This is the case of both models intro-  Quite specifically a preliminary version of the GMF amounts to
duced above. solve the optimization problem

1370



takeh ~ +/2In2L. Roughly speaking, the largér the sparser the
min}HFnX—\?H%thHXHL ®) optimal X and vice versa.

X 2 If the value ofh s too large, the procedure may not detect weak
with [|[X||1 = ¥ X/, ||X[|3 = %, Fn the F matrix with its columns ~ SOUrces and ih is too small, there may appear many false alarms,
normalized to one in Euclidean norm ahch positive real to be i-€., the procedure might detect sources that do not exist.
fixed by the user. This is a convex program, for which fast dedicated  Eventually, one should mention that the presendeiof(8) (9)
algorithms are available, and one deduces from its unique optimurfnduces bias into the estimates. This bias while concerning mainly
the different estimates of interest: the azimuias powerssp and gnd dir_ectly the amplitude estimates, also affects slightly the bear-
also the source numbeérsince this number as well as the order of Ing estimates.

the noise model has not to be fixed a priori. Let us summarize the algorithm. For a given array, we build the
_ F matrix whose columns model the contributions of both the point
4.2 Thestandard version sources and noise contributors to the observations vectmrild

We now take into account the statistical properties of the obse#SingL beam outputs. The beams are computed according to (5)

vations inV to develop the standard version of GMF. Under theWith Rreplaced by the estimake(7) of the covariance matrix of the
current assumptiong is an estimate of the covariance matrix of SN@Pshots. To implement the standard version (9), one further has
Z € CN(O,R) and it follows thatTR is a sample of a complex to whitenY and normalize the columns of the whitenfeematrix.
Wishart distributiorCW(T,N, R) [12]. The statistical properties of doen;utcheesntﬁgl\éesfirf;gggg:ig”g&%ﬁm 2L andv/2In2Mg, and

the componentg,“of Y are then easy to obtain. Wity denoting '

the covariance matrix of one has

5. DEVELOPMENT

1 * 2
) = lala) Ra(r)|”. .
Let us come back to the problem we are concerned with, namely the

Itis then natural to premultiply both andY in (8) byZ‘% towhiten presence Qf arbitrary and unknqwn spatial noise. .
the observations iif. SinceRand thusZ are not known, in practice ~ To fix ideas, unless otherwise stated, a linear arrays with eq-
one replaceR by its estimateR, to get an estimat& of 3. The uispaced sensors, one hqlf waveler_lgth apart, Witk 10 sensors

. . . S oLy andT = 100 snapshots will be considered. The steering vector (2)
components in the resulting observation vector, gy >~ 2Y are associated with a source becomes then
then, asymptotically iff, uncorrelated and of unit variance.

This version of GMF, which is quite clo§e to a maximum likeli-

hood approach applied to the observation¥,iamounts to replace a(0)
(8) by

_ [ 1 e—insine efzinsine e—(N—l)jnsinG }T7 (10)

1 5 5 wheref €] — 11/2, 11/2[ is the bearing of the source with respect to
min 3 [FanX —Yll5 + h[[X][1, (9)  broadside.

A ala A1 ) If the non-whiteness of the noise is not taken into account the
with Yy = 272Y, Ry =37 2F andFyn represents the matrky, with  gegradation in performance can be important. While the basic
columns normalized to one ify norm. Just as (8), this is a con- Keamformer, with its poor resolution performances, is quite robust,
vex program and all the estimates are deduced from its genericalpyore sophisticated methods are more sensitive. For spatial noise
unique optimum. with relatively smooth spectral densities, one will observe bias and
L higher variance, but as soon as the spectral density of the noise be-
4.3 Implementation issues comes slightly spiky, spurious sources will appear and the detection
Let us sketch briefly how to implement in practice (9) or (8), furtherof weak sources will become difficult together with the determina-

details can be found in [11] or more recently in [13]. tion of therank of the covariance matrix of the snapshots on which
The number of parameters to be tuned is quite small. Thenost high resolution methods, such as MUSIC [8, 9], rely.
choice of an adequate numbeof components ifyy, has already The technique of noise modeling using the Fourier series ex-

been discussed above. The choic&lahe number of columns iR pansion (3) described at the beginning of section 3 allows to model
devoted to the potential point sources and the associated discretizzssentially very smooth noise spectra or, at the least, requires a large
tion step in bearing should be fixed according to the resolution posaumber of components to represent an even only slightly resonant
sibilities of the array. As an example, for a uniform linear arrayspectrum. Itis thus more adapted to model quite smooth noise spec-
(ULA) with N sensors a half wavelength apart and signal to noiséra that will generally essentially induce bias and additional variance
ratios around 0 dB, the resolution limit (Rayleigh limit) in spatial in the DOA estimates.
frequency is abouhf = 1/N and a high resolution method able to Since the more challenging situation where colored noise may
separate sources Af = 1/2N, so that one taked! = 10N. This  be confused with sources is to be considered here, only the complex
choice allows for about 2 zero weights between two sources thafR modeling approach (4) will be considered in the sequel. The
are close in bearings but nevertheless potentially separable and thiugplementation within the proposed scheme is then slightly more
guarantees that two disjoint clusters on nonzero weigh¢ will complex since instead of having justj2 1 (see (3)) additional
be obtained in case the two sources are detected. columns inF, a larger number of additional columns is required.
For a well choserh, the optimalX will have ideally about Indeed to cover potentially all the complex AR(1) processes, one
2P_nonze_r0 components among its fitcomponents. A pair of has to discretizg8 = pei¢ over its domain namelp € [0, 1[ and
neighboring nonzero components for each of the sources that agec [0, 2n1. Forp = 1 the AR process becomes singular and in-
present. Other nonzero components will be present in the lattefjstinguishable from a point source (10), one therefore limits the
components of the optima{ to model the noise contribution. The domain of variation ofp to [0, .9 ] in the sequel. To represent all
estimate of the _n_umber of waveforms present is then given by thgye potential noise spectidq, = 9 andny = 12 different values of
number of (significant) clusters of nonzero components, the Powes and¢, i.e. p= O.1kfork=1to 9 andp = (71/6) kfork=0
of a source is estimated by the sum of the weights in its associateg 11. This leads to the construction 0 x ng = 108 columns
cluster and the azimuth estimate is obtained by linear interpolatiofepresenting the potentials noise contributions to be added i the
of the associated indices gfn € ¥. ) matrix. This number is quite small and the increase in computation
The choice ofh is crucial, it varies linearly with the standard time it induces is negligible. It will be shown in the simulations
deviation of the (estimation) noise affecting the componenié.in  below (see section 6.4) that this approach allows to handle smooth
For a standard deviation equal to one, as is the cagg ione should  spectra, belonging to the other models, as well.
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6. SIMULATIONSRESULTS Tgble 1: Two equipovyered sources with bearings 5 and O degrees in
quite resonant AR(1) noise, T=100 snapshots. (a) noise resonance at -30°,
Simulation results are presented to assess the potentialities of tiig§ noise resonance at 0°.
proposed method. A Uniform Linear Array witd = 10 sensors | [[ (a) noise resonance at B0[[  (b) noise resonance ak 0]

is considered and@ = 100 snapshots are used. The mafikas - - - -
19 rows (since an hermitian Toeplitz matrix of order 10 has 19 reJ' [ :eanngg [ anIIIUdleS [ t;eanngz [ amlp“tUdis [
degrees of freedom) and 209 columns, 100 equispaced columnsc]ffjir“e [ 5 | | [ [ 5 ] | [ |

model the potentials point source contributions, one to model themean || -5.14 | -11 | 88 | 95 || -495| .04 || .94 | .94
white noise contributions and 108 to model the complex AR(1) pot stdev || 23 | .22 || 14 ] 013 ] .29 | 035 .19 | .24
tentials noise contributions as described in section 5. The hype
parameterh is taken equal toy/2In2L ~ 2.70 as recommended
above.

Esti mates of the mean and standard deviation of the bearings and ampli-
tudes averaged over 1000 independent realizations.

6.1 Examplel. - ) - -

) . re, in r nzer mponents in m

Let us first comment on the smallstance that exists between a ?(%'f Iciir’:1eer1;\(l)(re1 3%3’ aArr?gﬁgiﬁeztﬁeofﬁgt 1%% (?ortr?plonter?t;igg- a
complex AR(1) process with = .9 and a point source. In the beam- ¢ iateq with the potential point sources; 8f them correspond to
former output, they lead to extremely 5|m|I§1r shapes, see Figure ]$e two (true) sources and once they are removed, there remains one
and 2 below. Though full rank, the covariance matrix associateth,,erq \eight in about 25 % of the realizations in case (a) and less
with such a process has essentially one large eigenvalue and makgs, "1 o in case (b). This nonzero weight corresponds to a false
all source number determination techniques based on the eigenvaly; 1, (the detection of a spurious source) has average vafue

ues |?ciperabbltta‘}v In thtﬁ present l_GIo(;bMti:hed Z_llter co_nttexc;, tht% in both cases, quite weak spurious peaks that are easily discarded,
correlation between theé normalized columnAmassocialed With g ca ahoyt 10 times smaller than the true sources.

such a process and the most resembling normalized colurn in Let us just mention that the closeness in bearings of the two

2§Fuoncqféeg Ygts'; ?hsg)nurlcg éfar% e'ée' |tth§ anegalfsbtit;\tlerfgvg:?hs; é‘é\f urces makes this a difficult scenario and that even in the usual
9 ' pp atial white noise case with unit variance, the standard MUSIC

algorithm is in general not mislead. If one simulates an comple - - :
AR(1) process wittB = p = .9 and variancey = 1.39 which mim- - Igorr;';hl?z"laftzia(l)lﬁéo separate the two sources in more than 1 fourth of

ics quite precisely a point source at 0 degree and unit power, th
GMF systematically identifies the AR process and only in 25% of
the realizations detects an additional source around 0 degree wifh3 Example3.

quite small average powerlB, about one tenth of the "true” value. |n the third scenario the noise is modeled using 3 AR(1) processes
Th|S IS Of course Wlthout glVlng any pl’lor |nf0rmat|0n abOUt the trUeWith variance equa| to 1 each and parame(ﬂ7s¢) respective|y

scenario to the algorithm. equal to(0.7, 211/3), (0.8, 1/3) and(0.9, 0) and there is one source
at 20 degrees witls; = 1 in (1), the diagonal of the exact global
6.2 Example2. covariance matrix is thus equal to 4. This fully characterizes the

In a second couple of simulations, one considers a single resonasifnulation and, depending upon the definition, the signal to noise
complex AR(1) process with = 0.9 andrg = 1 and 2 close sources ratio is slightly below 0 dB.
with bearings—5 and 0 degrees and powsr= s, = 1. The di- The output of the beamformer to this scenario is presented in
agonal of the exact snapshot covariance matrix is thus equal to Sigure 2, there are essentially 4 resonances associated respectively
The resonance of the noise is first (a) placed around -30 degreé&om left to right) with the 4 contributing components in the order
(¢ = m1/2) and then (b) placed around O degrges: 0). In both  they are listed above.
cases 1000 independent realizations are performed and the esti-
mates of the bearings and amplitudes of the two sources are pre- 120
sented in Table 1.

The output of the beamformer (for the exact covariance matrix) 100}
corresponding to both scenarios are presented in Figure 1.

80
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120 b 40 B
2150
’§100 g
H 20+ 1
E 80|
< 100
60
ol i i i i i i i i
40 50 -80 -60 -40 -20 o 20 40 60 80
. bearing in degrees
I - - Figure 2: The beamformer output: there are 3 more and more resonant

complex AR(1) processes with contributions at -40, -20 and O degrees and a
Figure 1: The beamformer output: there is one resonant complex AR(1) point source at 20 degrees. The 19 stars are the beams used as input to the

processes modeling the noise and two point sources at -5 and O degrees. localization and detection algorithm.

Left: the resonant noise contribution is around -30 degrees, right: it is Over 1000 independent realizations, the proposed algorithm al-
around 0 degrees. The 19 stars are the beams used as input to the local-  \yays |ocates the unique source and, in 48% of the realizations, it lo-
ization and detection algorithm. cates a second point with much lower amplitude (one sixth) around

The results obtained are quite similar in both cases (a) and (l) degrees in about half of these cases and around -20 and -40 de-
with however a slight bias on the bearings in case (a). The perforgrees in about one quarter of these cases each. If the valuis of
mances are close to the Cramer-Rao bounds but of course at no nbubled the number of false detection drops to less than one per-
ment one has to indicate to the algorithm that there are two sourcegnt. The parametdr can be shown to act as the threshold in a
and one AR(1) process to be estimated. The GMF decides by itseffeneralized likelihood ratio test and it allows to tune the probability
the model that best fits the observation¥inFor both cases, there of false alarm. The standard value recommended above correspond
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to a 10% probability of false alarm in the presence of white spatiatimization problem and most papers are concerned with smart ways
noise with unity variance. to make this problem solvable in practice. Suboptimal strategies

whose aim is to decouple the estimation of the signal parameters
6.4 Example4. from the noise parameters are often considered and sensitivity to

Let us consider now a noise spectrum that does not belong to t,{ge initialization is in general an important problem. This explains

complex AR class. The covariance function is generated using /8t NeW types of optimization routines, such as simulated anneal-
Bessel function of the first kind and order zero, i.e. the first col-Ng: genetic algorithms or particle swarm optimizations are being
umn of the hermitian Toeplitz matri® in (1) is taken equal to considered.

Jo(kr) with k = 0 to N — 1. This corresponds indeed to the other All these approaches nevertheless heavily rely on the validity

type of models (3) considered above since the covariance matrix & the model that is used, and not only upon the model itself but

also equal to(1/m)Ry, see (3). As in Example 2, the sources that @/s0 quite drastically upon the precise tuning of the model, i.e. the
are present are located a6 and 0 degrees and have unit power "Umber of assumed sources and the order (complexity) of the noise
s1 =5 = 1. The estimates of the bearings and amplitudes of thdnodel has to be precisely fixed a priori. This is of course a penaliz-
two sources, obtained over 1000 independent realizations, are prd Situation because somehow the detection problem and the order
sented in Table 2. and the output of the beamformer (for the exa etermination has to be done beforehand and these (probably more

covariance matrix) is presented in Figure 3. complex) issues are seldom addressed. .
The method proposed in this paper is only marginally con-

cerned by these preliminary tuning issues. Their is no need to know

a priori neither the number of sought sources, nor the noise type and
noise model order. Some sort of detection scheme has to be added
to the proposed procedure though, to discard occasional weak spu-

Table 2: Two equipowered sources with bearings —5 and O degrees in
Bessel noise, T=100 snapshots.

[ [ bearings [ amplitudes]] rious peaks that are to be_ considered as false al_grms. Ind_eed the
[fue | 5 | 0 [ & [ I | only parameter whose tuning has a drastic effettiis (9) that is
indeed strictly comparable to the tuning of the threshold in a de-
mean || -5.12| -044 1 0.65 | 0.64 tection test [14]. According to the performances observed in the
stdev]] 031 ] 036 [] 0.15] 0.21 simulation section, the value recommended for this parameter at the

Estimates of the mean and standard deviation of the bearings and very end of section 4 seems to be quite adequate.

amplitudes averaged over 1000 independent realizations.
180
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i i i
—-20 [0} 20
bearing in degrees

o I I
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Figure 3: The beamformer output: A spatially colored noise with Bessel
covariance function and two equipowered point sources at -5 and 0 degrees.
The 19 stars are the beams used as input to the localization and detection
algorithm.

The average number of non zero weights in the opti¥h&9)

(1]

(2]

(3]

(4]

(5]
(6]

(7]

is 8.7, and 52 of them are used to model this noise that does not

belong to the class considered, the remainirgc®ncern the two

point sources. In 15 % of the realizations there is one non-zero

(8]

weight left, ones the two sources are located, but its amplitude is
0.03 in the average and it can thus be discarded and considered as a

false alarm. One could add that, for this scenario, the basic Musicl

algorithm separates the two sources in less than 10% of the real-

izations, although the noise spectrum seems to be close to a whi&0]

noise spectrum.

7. CONCLUSIONS

(11]

This paper presents an approach that allows to localize sources in
the presence of additive noise of unknown spectrum. Itis indeed one
way to apply the Global Matched Filter [11, 13] to the unknown col-[12] K.S. Miller, Complex Stochastic Processes. An introduction to
ored noise situation. It has been presented for the case of a uniform

linear array but can be adapted to any array geometry.

The task that is considered is of great practical interest and h

been considered for at least two decades. Competing algorithm do

in general rely on a complete and precise parametric description
both the signals and noise covariances and aim to solve the asso
ated Maximum Likelihood criterion. This is of course a difficult op-
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