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ABSTRACT

Musical genres are categorical labels characterizing
pieces of music. Automatically classifying music into gen-
res is gaining importance as a way to structure and organize
the increasingly large numbers of music files available dig-
itally on the web. In this work such a classification algo-
rithm is developed and examined. The algorithm uses a vec-
tor of features based on the timbral texture of the music, and
maps it into a new Euclidean space, by a non-linear method
called “Diffusion Maps”, before the classification stage it-
self. This method allows dimensionality reduction while
preserving and emphasizing the distinction between differ-
ent genres. The proposed classifier classifies accurately 97%
when classifying 2 musical genres, and 52% when classify-
ing 10 musical genres. This is compared to an accuracy of
88% and 28% respectively, when classifying without the pro-
posed mapping.

1. INTRODUCTION

Musical genres are labels created and used for categorizing
and describing the vast universe of music. Different gen-
res differ from each other in their instrumentation, rhythmic
structure and pitch content of the music. They include, for
example - classic music, jazz, rock etc. In recent years there
is a growing interest in automatically categorizing music into
genres, as part of extracting musical information in general.
Automatically extracting musical information is gaining im-
portance as a way to structure and organize the increasingly
large numbers of music files available digitally on the web.
In addition, features evaluated by automatic genre classifica-
tion can be used for tasks as similarity retrieval, classifica-
tion, segmentation and audio thumbnailing.

In existing methods, the process of genre classification
is composed of two steps: in the first step, relevant features
(that represent the instrumentation, rhythmic structure, pitch
content, etc.) are extracted from the signal, and a vector of
features (feature-vector) is built. In the second step, a clas-
sification algorithm is applied on the feature-vector, such as
k-nearest neighbors (k-nn) or Gaussian mixture model [6],
support vector machines [7] or neural networks [4].

There are two fundamental problems in these methods:

1. In order to capture optimally the nature of the signal and
differ efficiently between genres, the feature-vector usu-
ally needs to be high dimensional. As the number of sig-
nals increases, the computational complexity increases as
well, leading to the need of a dimensionality reduction
technique.

2. The traditional classification techniques, applied directly
on the feature-vectors, might yield poor results if the
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feature-vectors lie in a non-linear manifold, in which Eu-
clidean distances do not represent the intrinsic distances
between them.

In this work we try to solve these problems using a technique
called “Diffusion Maps” [3, 1]. We add an intermediate step
to the process of classification - a step of dimensionality re-
duction of the feature space, before the classification oper-
ation itself. This technique performs a nonlinear reduction
of the dimension by providing a parametrization of the data
set on a lower-dimensional manifold, while emphasizing the
differences between feature-vectors of different genres.

Another task which is dealt with, is the out-of-sample
extension problem. A method called “Geometric Harmon-
ics” [2] allows to reduce the computational complexity when
building the classifier, by extending the parametrization of
diffusion maps from a limited training data set to the rest
of the data set. Furthermore, it embeds each new song we
wish to classify, into the diffusion maps parametrization of
the training set.

This paper is organized as follows: In Section 2 the clas-
sification algorithm is described, in Section 3 experimental
results are presented and analyzed, followed by conclusions
in Section 4.

2. THE CLASSIFICATION ALGORITHM

The classification algorithm is applied in three steps:

1. Feature extraction - a characteristic vector is defined for
each song. It captures the essence of the timbre and tex-
ture (the “color” of the sound).

2. Dimensionality reduction - the data is embedded into a
lower dimensional subspace. It is parameterized in a
lower dimensional manifold using diffusion maps and ge-
ometric harmonics algorithms [3, 1, 2].

3. Classification - the data is classified according to its new
parametrization using k-nearest neighbors algorithm.

Each of these steps is described in details:

2.1 Feature Extraction

The features used to characterize the songs are timbral tex-
ture features [6], which represent the spectral and temporal
characters of the songs. They are defined over 30s time win-
dows, called “texture windows”, and include the mean and
the variance of different coefficients calculated over short
“analysis windows” of 15ms, during the 30s texture win-
dows. The coefficients calculated over the analysis windows
are:

1. Spectral Centroid: The spectral centroid is defined as the
center of gravity of the magnitude spectrum of the STFT
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where M, [n] is the magnitude of the Fourier transform at
frame ¢ and frequency bin n.

Spectral Rolloff: The spectral rolloff is defined as the
frequency R, below which 85% of the magnitude distri-
bution is concentrated
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The rolloff is another measure of spectral shape.

Spectral Flux: The spectral flux is defined as the squared
difference between the magnitudes of successive spectral
distributions

(My[n] — My 1 [n])*.
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The spectral flux is a measure of the amount of local
spectral change.

4. Time Domain Zero Crossings:
1 N
Z; = 3 Z |sign(x[n]) — sign(x[n—1])|. )
n=2

where the sign function is 1 for positive arguments and 0
for negative arguments, and x[n] is the time domain sig-
nal for frame ¢. Time domain zero crossings provides a
measure of the noisiness of the signal.

5. Mel-Frequency Cepstral Coefficients: Mel-frequency
cepstral coefficients (MFCC) are also based on the STFT.
After taking the log-amplitude of the magnitude spec-
trum, the FFT bins are grouped and smoothed according
to the Mel-frequency scaling. A discrete cosine trans-
form is performed on the result, and the first five coeffi-
cients are taken.

Another feature is the Low-Energy Feature. It is defined as

the percentage of analysis windows that have less RMS en-
ergy than the average RMS energy across the texture window.
Tzanetakis and Cook [6] also extracted rhythmic and pitch
content features, but they don’t improve the results of our
proposed classifier, and therefore are not used in this work.

To summarize, the feature-vector consists of the follow-
ing 19 timbral texture features: low energy, means and vari-
ances of spectral centroid, rolloff, flux, zero-crossings over
the texture window, and means and variances of the first five
MEFCC coefficients over the texture window.

2.2 Embedding the data into a lower dimensional space

Let (X,A,u) be a measure space. The set X is the high-
dimensional data set and the function u represents the distri-
bution of the points on X.

In addition to this structure, suppose that we are given a
kernel function k : X x X — R that satisfies, for (x,y) € X:

e It is symmetric: k(x,y) = k(y,x)
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e It is positive semi-definite: k(x,y) >0

The kernel is a similarity function between two points of
X, and it constitutes our prior definition of the local geom-
etry of X. This is a major difference from global methods
for dimensionality reduction, like principal component anal-
ysis, where all correlations between data points are taken into
account [5]. The pair (X,k) define a graph in an Euclidean
space. Following classical construction in spectral graph the-
ory, a Markov random walk on the graph is defined:

(x,y)
d(x)

where d(x) = [yk(x,y)du(y). The function p can be viewed
as the transition kernel of a Markov chain on X, since
Jxp(x,y)du(y) = 1. The operator P is defined by

p(x,y) = 5)

P = [ P2 E)R(E)

The expression p(x,y) represents the probability of tran-
sition in one time step from node x to node y and it is propor-
tional to k(x,y). Accordingly, the probability of transition
from node x to node y in ¢ time steps is given by p;(x,y),
which is the kernel of the 7, power P' of P. Running the
chain forward in time, or equivalently, taking larger powers
of P, reveals geometric structures of X at larger scales. The
random walk exhibits some important mathematical proper-
ties:

e The Markov chain has a stationary distribution given by

o dy)
)= aw

If the graph is connected, which we now assume, then the
stationary distribution is unique [1].
e The chain is reversible:

n(x)p(x,y) = w(y)p(y:x).

e If X is finite and the graph of the data is connected, then
the chain is ergodic [1].

If we apply spectral decomposition, it can be shown [1]
that P has a discrete sequence of eigenvalues {A;};>o and
eigenfunctions {y;};>0 such that 1 = A9 > [A] > |A2] > ...
and Py; = A .

Now we relate the spectral properties of the Markov
chain to the geometry of the data set X. In order to compute
the powers of the operator P, we could use the eigenvectors
and eigenvalues of P. Instead, we will directly employ these
objects in order to characterize the geometry of the data set
X. The family of diffusion distances {D; };cn is defined by

Dl(xvy)z = le(xv')_pt(yv')||i2(x7d”/ﬂ) = (6)
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For a fixed value of ¢, D; defines a distance on the set X,
which reflects the connectivity in the graph of the data. The
distance D, (x,y) will be small if there is a large probability




of transition from x to y. It is shown in [1] that D;(x,y) can
be computed using the eigenvectors and eigenvalues of P:
1

Dy(x,y) = ( (y))2> -

Since the eigenvalues A, Az, ... tend to 0 and have a mod-
ulus strictly less than 1, the above sum can be computed to
a preset accuracy 6 > 0 with a finite number of terms: We
define s(8,t) = max{l € N such that |4, > &|A1|'}, then, up
to the precision 6 we have
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The family of diffusion maps {¥, },cn is defined by:
Ay (x)
, Ay (x)
W (x) = . (®)
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Each component of W, (x) is termed a diffusion coordi-

nate. The diffusion map ¥; : X — R*(34) embeds the data
set into an Euclidean space of s(8,7) dimensions, so that
in this space, the Euclidean distance is equal to the diffu-
sion distance (up to the relative accuracy &), or equivalently
[, () — ¥, )| = D (x.)

Therefore, if the dimensionality of the data can be re-
duced to s(68,7), then D, (x,y), provided by the family of the
diffusion maps, captures the distance between nodes x and
y in the manifold of dimension s(J,#). As ¢ increases, the
spectrum decay is faster, and less dimensions need to be used
[s(8,z) is smaller].

In this work, the set X represents the set of feature-
vectors of different songs. The kernel k(x,y) was chosen to
be Gaussian:

k(x,y) = exp(~|(x~)./ol|)? ©

where o is a vector that consists of elements proportional
to the standard deviations of each of the features. The di-
vision of (x —y) by o is element-wise, leading to a multi
scale embedding, which means a different normalization for
each component in the feature-vector. The matrix P is used
without taking powers (¢ = 1), and s(J,¢)=10, which means
that the top 10 diffusion coordinates (which correspond to
the largest eigenvalues that do not equal 1) are taken, so the
family of diffusion maps is reduced to:

A1y (x)
Ay (x)

Y(x

. (10)
AIOV/.IO(x)

2.3 Out-of-sample extension

The parametrization described in the previous subsection is
conducted over a limited data set, to maintain a limited com-
putational complexity. In order to extend the family of dif-
fusion maps to the rest of the data, we use a method called
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Figure 1: Diffusion coordinates (2D) of the classical and
metal feature vectors

“geometric harmonics” ([3], [2]). If we denote the limited
training data set, which was used to build the matrix P, as
X, and the rest of the training data set as X (X C X), then
the extended eigenvectors which belong to the feature-vector
X € X can be calculated as:

V(%) = L

2. Z p(x,)?)l//j(x)

] xeX

an

and the new family of diffusion maps for each vector ¥ is:

Ay (%)
o AW (%)
W(x) : (12)
A0 W10 (%)

Using this extension, the spectral analysis is performed only
over a limited training data set, and then the diffusion coor-
dinates of the rest of the training set are computed.

In order to classify new data from a set which will be de-
noted as X, the geometric harmonics method is applied again
for every feature-vector ¥ € X, and the extended eigenvectors
(%) are calculated as in (11). The new family of diffusion

maps P (%) for each vector ¥ is given by

A ()
o A2 (%)
P(x) = . (13)

AoWio(X)

A new song is classified using the k-nearest neighbors
(k-nn) method (k=5), where the corresponding family of dif-
fusion maps {¥(%)} is classified according to the closest k
nearest neighbors from the family of diffusion maps of the
training set {\¥(x)}, and the measure distance for the k-nn
is the Euclidean distance. We use k-nearest neighbors as the
classifier because of its simplicity, and show that using the
pre-stage of diffusion map yields good classification results
even with such a simple classifier.

For visualization, the embedding of the feature vectors of
the classical and metal genres to a 2D mapping is shown in
Figure 1.



Table 1: Averaged Confusion Matrix Using Diffusion Coordinates - 10 Genres

“Blues” | “Classic” | "Country” | "Disco” | "Hiphop” | “Jazz” | "Metal” | “Pop” | “Reggae” | “"Rock”

Blues 0.60 0.00 0.09 0.04 0.05 0.02 0.07 0.00 0.04 0.10
Classic 0.01 0.81 0.05 0.01 0.00 0.08 0.01 0.00 0.00 0.03
Country 0.07 0.02 0.48 0.05 0.01 0.11 0.00 0.06 0.07 0.13
Disco 0.02 0.00 0.08 0.37 0.11 0.03 0.07 0.12 0.06 0.14
Hiphop 0.04 0.00 0.02 0.08 0.52 0.00 0.02 0.13 0.16 0.02
Jazz 0.06 0.12 0.10 0.04 0.00 0.54 0.01 0.04 0.02 0.07
Metal 0.06 0.00 0.01 0.08 0.02 0.00 0.73 0.00 0.01 0.10
Pop 0.00 0.00 0.07 0.08 0.06 0.02 0.00 0.68 0.08 0.03
Reggae 0.05 0.00 0.07 0.05 0.07 0.01 0.01 0.07 0.62 0.05
Rock 0.06 0.00 0.19 0.09 0.04 0.10 0.11 0.05 0.05 0.30

3. EXPERIMENTAL RESULTS

The GTZAN dataset [6] was used to evaluate the perfor-
mance of the algorithm. It consists of 1000 songs of 10 dif-
ferent genres, 100 from each genre: blues, classic, country,
disco, hiphop, jazz, metal, pop, reggae and rock. The success
of classification was evaluated using 10-fold cross validation.
The training set was chosen randomly once, and the testing
set was chosen randomly 10000 times. The results presented
here are the average results for the 10000 testing sets.

First, in order to evaluate the feasibility of the algorithm,
we classified two distinct musical genres from GTZAN
dataset - metal and classic (100 songs from each genre). The
accuracy of classification when using the diffusion maps co-
ordinates was 96.74 4+ 3.75% (mean and standard deviation),
and when using the feature-vectors themselves, without map-
ping with diffusion maps, it was only 87.99 + 6.83%. This
means that the mapping contributes to better classification
results.

Then, we tried to classify the whole data set (10 different
genres). The accuracy of classification when using the dif-
fusion maps coordinates was 56.55 £4.50% (mean and stan-
dard deviation), and when using the feature vectors them-
selves, it was 28.27 +=3.93%. In both cases there is an im-
provement when mapping the feature-vectors to the lower di-
mensional manifold before the classification.

The confusion matrix for classification using the diffu-
sion maps coordinates is presented in Table 1. The names of
genres without quotation marks represent the true genres, and
those with the quotation marks represent the genres which
the songs were classified to.

From Table 1 we see that the highest classification per-
centages are given to the correct genre in all cases.

Next, we examined the algorithm on 5 genres only -
blues, classical, metal, pop, reggae. The accuracy of clas-
sification when using the diffusion maps coordinates was
84.91 +£4.88%, and when using the feature vectors them-
selves, it was 49.89 +6.21%. The confusion matrix for the
classification using the diffusion maps coordinates is pre-
sented in Table 2.

Here the classification results are much better, and they
are significantly better when using the diffusion maps coor-
dinates rather than the feature vectors.

The next experiment was to cluster the songs into pairs
of genres - blues & country, classical & jazz, metal & rock,
pop & hiphop and disco & reggae. The accuracy of clas-
sification when using the diffusion maps coordinates was
64.88 £4.29%, and when using the feature vectors them-
selves, it was 43.63 £4.33%. The confusion matrix is pre-

Table 2: Averaged Confusion Matrix Using Diffusion Coor-
dinates - 5 Genres

"Blues” | "Classic” | "Metal” | "Pop” | "Reggae”
Blues 0.85 0.03 0.09 0.00 0.03
Classic 0.04 0.91 0.02 0.01 0.02
Metal 0.11 0.00 0.88 0.01 0.00
Pop 0.00 0.01 0.01 0.88 0.10
Reggae 0.12 0.01 0.01 0.13 0.73

Table 3: Averaged Confusion Matrix Using the Diffusion
Coordinates - After Clustering to Pairs

“Blues "Classical | "Metal “Pop “Disco
& Country” | & Jazz” | & Rock” | & Hiphop” | & Reggae”
Blues & Country 0.64 0.08 0.14 0.04 0.10
Classical & Jazz 0.12 0.75 0.07 0.03 0.03
Metal & Rock 0.14 0.06 0.63 0.05 0.12
Pop & Hiphop 0.06 0.01 0.05 0.69 0.19
Disco & Reggae 0.12 0.02 0.13 0.20 0.53

sented in Table 3.

It is important to demonstrate the significant advantage of
this method over Principal Component Analysis (PCA) as a
method for dimensionality reduction, as indicated in Section
2. Because of the global and linear nature of PCA we would
expect its classification results to be inferior. We performed
dimensionality reduction using PCA to the same dimension
as before (10), and received accuracy results (when classify-
ing 10 different genres) of 28.28 +3.91%, the same as when
using the original 19 feature vectors for classification. This
means that the 10 first principal components captured the im-
portant information of the feature vectors, but did not add any
information that would improve the classification results, un-
like the diffusion map, which improved the classification re-
sults.

4. CONCLUSIONS

Using the method of “Diffusion maps” for manifold learn-
ing leads to improved classification of music by genre and to
reduction of the dimension of the problem. From this work
it seems that the features that distinguish between different
genres lie in a non-linear, lower-dimensional manifold, and
therefore the classification of the music signals should be
conducted in this manifold, and not in the original space of
features. Moreover, we achieve the advantage of dimension-
ality reduction, which leads to lower computational complex-
ity and saves storage space.
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Future work may include comparison to other methods of

manifold learning, such as ISOMAP, LLE, Laplacian Eigen-
maps or Hessian Eigenmaps.
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