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Instituto de Robótica y Tecnoloǵıas de la Información & las Comunicaciones (IRTIC)

Universidad de Valencia
46980, Paterna (Valencia), Spain

Email: {Cesar.Asensio, Baltasar.Beferull}@uv.es

ABSTRACT

In this paper, we show how to critically sparsify a given
network while improving the convergence rate of the as-
sociated average consensus algorithm. Thus, instead of
adding new links or reallocating them, we propose novel
distributed methods to find much sparser networks with
better convergence results than the original denser ones.
We propose two distributed algorithms; a) in the first
one, each node solves a local optimization problem using
only its two-hop neighborhood, b) the second one is a
distributed algorithm based on using, at each node, the
power method. As compared with previous work, the
reduction in the number of active links is doubled while
improving the convergence rate and having a much lower
power consumption. Simulation results are presented to
verify and show clearly the efficiency of our approach.

1. INTRODUCTION

Two of the most important issues of the existing aver-
age consensus algorithms [1-6] are the convergence speed
and the communication cost required to converge, which
in most cases are the principal reasons for not using
them in practical scenarios. Much of the research that
focuses on improving these parameters has been carried
out by Boyd [1][2]. They showed that it is possible to
formulate the problem of finding the fastest converging
iteration as a convex semidefinite optimization problem.
This approach gives the optimal weights to combine
the information based on a convex optimization prob-
lem. However, an important drawback of this method
is that it requires knowing, at every node, the connec-
tivity of the deployed network and secondly it requires
too many computational resources for achieving the op-
timal solution. For solving the first mentioned prob-
lem, a subgradient algorithm was proposed in [1]. How-
ever this method is relatively slow, and has no simple
stopping criterion that guarantees a certain level of sub-
optimality. Another solution is to set the neighboring
link weights to a constant and optimize this constant to
achieve maximum possible convergence rate. Since the
global knowledge of the network spectrum is required to
calculate this optimal constant, it is difficult to use this
expression in a practical distributed consensus process.
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For that reason, most of the existing related research
[3] focuses on properly redesigning the original topology
in order to improve the convergence time and power
consumption of the associated average consensus algo-
rithm, which in most cases, such as [4] and [5], involves
adding several unrealistic large links to the original net-
work. However, creating links between distant nodes
might not be possible due to the communication power
constraints that are present in battery supplied nodes.
Another solution to improve the average consensus, by
modifying the underlaying topology, consists on remov-
ing links instead of adding them. The authors of [6] show
how to improve the convergence of the average consen-
sus process by sparsifying the original network. It is
shown that it is possible to achieve similar convergence
results to the ones achieved using global knowledge of
the original network as in [1] but using a sparsifyed ver-
sion of the topology. The only information used in [6]
is the local degree of nodes. This approach achieves
quite good convergence results and reduces the power
consumption by using a very simple and low complexity
approach where no global knowledge is needed. In this
work, we use the same general idea, but making use of
a bite more of information while keeping low complex-
ity and the possibility of distributed computations. We
assume that each node knows a small part of the net-
work, that is, its own neighborhood and the ones of its
one hop neighbors (two-hop knowledge). Having this
extra information, each node can locally create a small
subnetwork from which extract useful graph spectrum
information for removing suitable links. This leads to
much sparser networks where the number of removed
links is doubled in comparison with [6]. Moreover, these
resulting networks present, at the same time, better con-
vergence time, power consumption and the possibility of
being obtained by only using distributed computations.

The rest of this paper is structured as follows: Sec-
tion II presents some background on consensus prob-
lems. The motivation of our approach is given in Section
III. In Section IV, we present a method for optimizing a
splited version of the network. In Section V, we present
a method for locating in a distributed way the suitable
links, so that removing them, it is possible to achieve
better convergence results. Section VI is devoted to val-
idate our claims by comparing our results with existing
approaches. Finally, conclusions are summarized in Sec-
tion VII.
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2. PROBLEM FORMULATION

A network of nodes can be modeled as a graph G =
(V,E), consisting of a set V of N vertices and a set E
of M edges. We denote an edge between vertices i and
j as a pair (i, j), where the presence of an edge between
two vertices indicates that they can communicate with
each other.

Given a graph G we can assign an N ×N adjacency
matrix A, given by:

Aij =

{
1 if (i, j) ∈ E
0 otherwise

The neighborhood of a node i is defined as

Ωi = {j ∈ V : (i, j) ∈ E, i = 1, ..., N}

where di = |Ωi| is the degree of node i.

Similarly, we denote by L the N ×N Laplacian ma-
trix of the graph, which is given by

L = D−A (1)

where D = diag(d1, ..., dN ) is the so-called degree ma-
trix.

Let us assume that the sensor measurements of the
nodes have some initial data at time slot k = 0. We
collect them in a vector, which we call the initial state
vector x(0), thus the average of the initial state x(0) is

xavg =
11tx(0)

N

where 1 denotes the all ones column vector. We consider
the general linear update of the state of each sensor i at
time k, using only local data exchange, namely

xi(k + 1) =

N∑
j=1

Wij(k)xj(k) ∀i = 1, 2..., N

where W denotes the mixing matrix, which in this pa-
per, it is assumed to be given by:

W = I− αL (2)

where α is a constant independent of time k, which we
take as 1

dmax
where dmax is the maximum degree in the

network. Even though the optimal value of α, for a
given connectivity graph is given by α = 2

λ2(L)+λN (L) ,

this choice requires to have a complete knowledge of
the global connectivity graph, at every node, which is
not scalable. On the other hand, the simple choice of
α = 1

dmax
ensures that, at each time slot k, we give

an equal weight to every available link and no global
knowledge or processing is required for computing the
weights. Since dmax is the maximum degree of the
network it can be easily calculated in a distributed way,
thus it is scalable.

The asymptotic convergence factor is defined as
usual [1] by:

r(W) = sup lim
k→∞

(
||x(k)− xavg||
||x(0)− xavg||2

)
which has been shown to be equal to:

r(W) = ρ

(
W − 11T

N

)
where ρ(A) denotes the spectral radius of a matrix1,
and the associated convergence time denoted by t(W)
is given by:

t(W) =
−1

log(r(W))
(3)

The convergence time t(W) is the main performance
indicator we use in our work. In this paper, we show
that it is possible to reduce the convergence time t(W)
by removing some properly chosen links, thus sparsify-
ing a given graph. We also assume a communication
cost associated with every link in the network. For the
sake of simplicity, we assume in this paper that this
cost is constant and proportional to the squared distance
of the corresponding link. Then, the total communica-
tion cost P (W) is proportional to t(W) times the power
consumption of one communication iteration across the
various links of the associated gossip algorithm.

3. MOTIVATION OF OUR APPROACH

Our main goal in this work is to exploit the effect of
improving the speed and power expenses of the average
consensus by sparsifying a given dense network. The
justification behind this idea is presented in detail in [6]
and we revise it here for convenience. It has been shown
in the literature [7] that given a graph G, if we remove
a link between two nodes of this graph, we get a new
graph G′ for which λ2(L(G′)) ≤ λ2(L(G)). Moreover,
since the eigenvalues of W and L are related as follows:

λi(W) = 1− αλi(L) (4)

if a link from the graph G is removed, we get that
λ2(W(G′)) ≥ λ2(W(G)), which implies slower consen-
sus convergence for the same value of α [1]. Note that
by writing (4) in that way, we are assuming that the
eigenvalues of the Laplacian matrix L are arranged in
increasing order and the eigenvalues of the Weight ma-
trix W are arranged in decreasing order. Then, if we
take α as 1

dmax
and we consider the action of removing a

particular link, this gives rise to a reduction in dmax and
we produce a positive effect on the value of λ2(W(G′)).

Therefore, by removing links (sparsifying the net-
work), it is possible to create two opposite effects which,
when well designed distributed methods are applied, the
second positive effect can dominate over the first nega-

tive by making λ2(L)
dmax

as large as possible, which in turn

amounts to make λ2(W) as small as possible [6]. Then,
sparsifying a network can improve both the convergence
rate and the power consumption of the associated con-
sensus algorithm. Thus, we are looking for a distributed

1ρ(A) = max{1≤i≤N} |λi(A)|
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Figure 1: Average results over 100 different topologies that are randomly deployed and composed by 100 nodes.
These graphs have been generated by using a greedy approach that removes, at each iteration, the link which

minimizes λ2(W). The different parameters
{

1
dmax

, λ2(L), λ2(L)
dmax

}
, as a function of the percentage of removed links,

are shown from left to right.

method which at the end of the process, reduces as much
as possible the value of λ2(W).

As a initial idea for introducing our distributed al-
gorithms, let us consider first the following centralized
algorithm. Consider the idea of reducing λ2(W) itera-
tively by using a simple greedy approach that reduces
the number on links in the network, that is, a simple
process where the link to be removed, at each iteration
step, is decided based on the criterion of minimizing this
value. Figure 1 shows the results using this criterion. It
is clearly shown that it is possible to reduce the value of
λ2(W), thus speeding up the convergence of the consen-
sus algorithm, by critically sparsifying (removing more
than 60% of the links) a given dense network. However,
this greedy approach is totally centralized and needs lot
of computational resources and time to achieve a proper
solution. Moreover, since it needs global information of
the whole network, it is not scalable. Therefore, this pa-
per focus on finding a distributed and scalable method
for achieving similar results.

4. DISTRIBUTED LOCAL OPTIMIZATION
ALGORITHM

The main idea behind this first distributed approach is
that each node i, instead of having only information
of its own neighborhood, we assume that it also knows
the neighborhood of its one hop neighbors, thus it has
local knowledge about the two hop subnetwork SGi sur-
rounding it. Having this extra information, the topology
of this local subnetwork can be created at each node.
Then, each node i can apply a convex optimization ap-
proach to the corresponding weight matrix W(SGi) in
order to improve its spectral properties. Note that each
link in a subnetwork is defined by a pair of nodes that
also exists in the complete network. Then, disabling
a link between a pair of nodes in the subnetwork also
disables a link in the whole network.

The structure of the optimization subproblems is
equivalent to the one used for optimizing the complete
network, which is presented in [6]. However, we need to
take into account two important differences: first, there
exists an overlapping between the subnetworks and sec-
ond, we need to fuse all the solutions in order to achieve

the general solution. Moreover, since usually most of
the links of the two-hop neighbors are not present in
the subnetworks, their degree (within the subnetwork)
is generally low and they are not good candidates to
disable their links. Then, we introduce an additional
constraint which consists on fixing their links to one, in
order to reduce the number of variables, hence the com-
plexity, in the optimization problem and the overlapping
issue between the different solutions.

Then, each node i solves the following SDP problem:

minimize{s,Z,Y} s
s. t. W = I− α(Z−Y)

Yjk = 0 if (j, k) /∈ E
Yjk = 1 if j ∈ Ωi , k ∈ {SGi\{Ωi, i}}
Yjk � 1, Yjk � 0

W − 11t

N � sI
W1 = 1
1tW = 1t

1 ≤ Zjj ≤ dj
1
Zjj
≥ α

Note that for the shake of simplicity, we use the no-
tation of W, Z for the variables instead of the corre-
sponding W(SGi), Z(SGi). Moreover, we bound the
maximum degree of the subnetwork with α, which takes

values in the interval
[

1
dmax(SGi)

, 1
dmax(SGi)−1 , ...1

]
.

We solve the previous subproblem for the different
values of α. It gives an array of solutions where the
best one is given by the minimum λ2(W), which im-
plies minimum convergence time. This eigenvalue can
be easily obtained by the nodes using some of the meth-
ods presented in [9][10]. Additionally, the solutions of
the subproblems are projected [6] and combined. The
only information used in the final solution is the corre-
sponding to the links between the central node and its
direct neighbors. Then, if the decision of removing a link
is only taken by one of the two subnetworks where the
link information is located, the conflict is solved based
on the final degree of the involved nodes. In practice,
the link is removed if their degree is greater or equal
than 0.35 times the average degree of the network.
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Figure 2: Average values of several parameters {t(W), λ2(W), P (W)} obtained by applying our power method
and averaging over 100 different topologies composed by 100 nodes. The different parameters values are shown
as a function of the percentage of removed links, from left to right: t(W), λ2(W) and P (W). The red flat line
represents their value when no links are removed.

One inconvenient of this approach is that every node
needs to solve a convex optimization problem whose size
depends on the average degree. Moreover, as we have
presented before, just having λ2(W) and applying a cen-
tralized greedy approach is possible to easily improve
the convergence by sparsifying the original network. It
is natural to ask whether the idea of using λ2(W), as a
indicator for choosing the links to be removed, can be
performed in a decentralized fashion.

5. DISTRIBUTED ALGORITHM BASED
ON LOCAL POWER METHOD

Assuming, at each node, the two-hop information pre-
sented before, nodes can use one of the several exist-
ing methods [9][10] for approximating the spectra of its
weight submatrix. One of them is the so-called power
method which is briefly recalled here for convenience.
Let W be the weight matrix defined in (2) which is
a N × N diagonalizable symmetric matrix with a cor-
responding dominant largest eigenvalue λ1(W). Then,
the power method consists on the following:

1. Let y0 = z0 be any initial vector in Rn whose largest
component is 1.

2. By repeating the following steps:

• Compute yk = Wzk−1
• Let mk be the component of yk with the largest

absolute value.
• Set zk = 1

mk
yk

The sequence of mk converges to the dominant
eigenvalue and zk converges to a dominant eigenvec-
tor. There exists several methods for finding subsequent
eigenvalues that are smaller in absolute value than a
given one. We assume that the deflation method is used
[9][10].

The main idea behind this second approach is that
each node applies the power method to its corresponding
weight two-hop neighborhood submatrix for quantifying
how much is lost or gained by removing a link between
the central node and one of its direct neighbors. Each
node i can use Algorithm 1 in order to obtain a vec-
tor containing the quality of its links. Then each node
applies locally the power method |Ωi| times, each time
corresponding to the removal of a one-hop link between

the central node and a directly connected one. Since our
goal is to minimize λ2(W), the links to be removed are
the corresponding vector entries with minimum value.

Then, instead of trying all the possible combinations
of removing 1,2...,etc. links we only remove one link
each time and the same for all the possible one link
removals in the first hop neighborhood of the central
node. The computational cost required by this method
only depends on the average degree of the whole network
and not on the total number of nodes N , so it is scalable.
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Figure 3: Consensus convergence time as a function of
the precision (number of iterations) needed by the power
method which is used by all nodes in parallel.

However, the precision of the eigenvalue approxima-
tion depends on the number of iterations used by the
power method, so we need to analyze the cost needed for
getting a good approximation in our specific problem.
Figure 3 shows that few iterations of the power method
are needed for getting good results, that is, nodes only
need a few iterations of the power method (between 50
and 100 in practice) for getting good approximations of
the corresponding eigenvalues and remove the correct
links. Therefore, the total computational cost of the
procedure is quite small.

Finally, a criterion for knowing how many links
should be removed is necessary. Figure 2 shows that the
optimal range is found when removing between 50% and
65% of the total number of links. Since, removing 65%
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Algorithm 1 Neighborhood Quality vector

Require: AM×M , d1, ..., dM
Ensure: Q contains |Ωi| values of λ2(W)

for j = 1 : ||Ωi|| do
A(i, j) = 0, A(j, i) = 0
D = diag(d1, di − 1, ..., dj − 1, ..., dM )
α = 1

max(d1,di−1,...,dj−1,...,dM )

W = I − α(D−A)
Q(j) = λ2(W) {Obtained using the power method}
A(i, j) = 1, A(j, i) = 1

end for

of the links has similar convergence time than removing
50% of the links, we take this first value as a stoping cri-
terion. Moreover, from this value, it can be easily found
[6] the corresponding degree as a function of the aver-
age degree of the complete network and this value can
be used by the nodes to compare it with its own degree
and decide if it needs or not to lose more links. Our ex-
perimental results show that, this new method ensures
that many more links are removed as compared to other
previous methods presented in the literature. Thus, in-
stead of only removing links between high degree nodes,
as proposed in [6], we also allow to remove links between
any pair of nodes based on λ2(W) approximations.
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optimized topology (centralized) 40% links used

optimized topology (distributed) 35% links used

original topology (no method) 100% links used

power method (distributed) 35% links used

reduced topology (distributed) 65% links used

Figure 4: Average convergence results over 100 different
topologies composed by 100 nodes. The comparison is
done between the consensus executed in the topologies
resulted from applying: a) our distributed optimization
method, which only uses 35% of the links, b) our dis-
tributed power method, which also uses 35% of the links,
c) and d) the two methods presented in [6] that use 65%
and 40% of the links respectively and e) the original
topology which uses 100% of the links.

6. NUMERICAL RESULTS

In this section, we focus on validating our algorithms by
comparing them with previous work. Figure 2 shows the
improvement of different parameters when applying the
power method. It presents similar eigen-results than the
centralized greedy approach, that is Figure 1. Although,
the minimum convergence time is achieved when 50%
of the links are removed, the time that is obtained by

removing 65% of them is almost the same and it has
much less power consumption. Then, this percentage
is used on Figure 4, which shows a comparison of the
convergence between our methods and the approaches
presented in [6]. Our new methods present very good
results in the initial interations. This is specially use-
ful in detection applications where some quickly aver-
aging is needed for taking a decision. Finally, Table 1
summarizes the numerical results of the corresponding
parameters (time, power consumption and used links).

Table 1: Simulation Results
Method t(W) P (W) used links %

original topology 10.2 4.7× 107 100%
previous work (dist) 7.6 2.9× 107 65%
previous work (cent) 5.5 1.7× 107 40%
power method 6.25 1.3× 107 35%
dist. optimization 6.5 1.5× 107 35%

7. CONCLUSION

In this paper, we have tackled the problem of improv-
ing the average consensus problem in a distributed way.
We have shown that it is possible to reduce the conver-
gence time and the power consumption of this process by
critically sparsifying a given network. The main contri-
bution can be summarized as twice the improvement on
link removal while having better convergence rate and
power consumption in the associated average consensus
method.
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