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ABSTRACT
Hearing loss research has traditionally been based on perceptual cri-
teria, speech intelligibility and threshold levels. The development
of computational models of the auditory-periphery has allowed ex-
perimentation via simulation to provide quantitative, repeatable re-
sults at a more granular level than would be practical with clinical
research on human subjects. This work seeks to create an objec-
tive measure to automate this inspection process and ranks hear-
ing losses based on auditory-nerve discharge patterns. A system-
atic way of assessing phonemic degradation using the outputs of
an auditory nerve model for a range of sensorineural hearing losses
would aid in rapid prototyping development of speech-processing
algorithms for digital hearing aids. The effect of sensorineural hear-
ing loss (SNHL) on phonemic structure was evaluated in this study
using two types of neurograms: temporal fine structure (TFS) and
average discharge rate or temporal envelope. The mean structural
similarity index (MSSIM) is an objective measure originally devel-
oped to assess perceptual image quality. The measure is adapted
here for use in measuring the phonemic degradation in neurograms
derived from impaired auditory nerve outputs. A full evaluation of
the choice of parameters for the metric is presented using a large
amount of natural human speech. The metric’s boundedness and
the results for TFS neurograms indicate it is a superior metric to
standard point to point metrics of relative mean absolute error and
relative mean squared error.

1. INTRODUCTION

This work examines a systematic way of assessing phonemic degra-
dation using the outputs of an auditory nerve (AN) model for a range
of sensorineural hearing losses (SNHL). The practical application
of this is to allow speech-processing algorithms for hearing aids
to be objectively tested in development without human trials. The
model used in this study was the cat AN model of Zilany and Bruce
[1]. It produces simulated auditory nerve neural spike train outputs
at specific characteristic frequencies (CF). The levels of degradation
in output due to a SNHL configured in the model can be assessed
by examination of the spectro-temporal output visualised as neuro-
grams. Two distinct types of neurograms are considered important
in describing speech signals- a temporal envelope (ENV) measure-
ment, and a temporal fine structure (TFS). The first averages the
power at each CF over a number of time bins while the latter pre-
serves fine timing structure of the auditory nerve spikes. They are
both seen as useful for cues to speech intelligibility. [2]

The proposed strategy is to design hearing aids by looking to
restore normal patterns of auditory nerve activity rather than focus-
ing on human perception of sounds. Sachs et al.[3] showed that if
auditory-nerve discharge patterns in response to sounds as complex
as speech can be accurately modelled and predicted, this knowledge
could be used to test new strategies for hearing-aid signal process-
ing. They demonstated examples of auditory-nerve representations
of vowels in normal and noise-damaged ears and discussed from a
subjective visual inspection how the impaired representations dif-
fer from the normal. Comparable model outputs for progressive
hearing losses are displayed in Fig. (1). This work seeks to create

an objective measure to automate this inspection process and ranks
hearing losses based on auditory-nerve discharge patterns.

Previous work [4] showed that a relative mean absolute error
metric (RMAE) that compared the neurogram outputs of phonemes
for impaired AN models relative to the output for an unimpaired
model “hearing” the same input, was not fully reflecting the com-
plexity of TFS effects - particularly in vowels at higher presentation
levels. This paper explores an alternative mean structural similarity
measure (MSSIM)[5] and uses it to compare neurograms produced
for utterances over a range of SNHL. It was chosen because unlike
RMAE, it examines the similarity over patches or windows, cap-
turing changes in features rather than individual point differences.
MSSIM is a statistical metric popular in image processing that was
originally developed to estimate the reconstruction quality of com-
pressed images. It has also been shown to have potential in audio
quality assessment to compare and optimise audio compression al-
gorithms [6]. Section 2 introduces the types of neurograms that
were analysed and the MSSIM. Section 3 describes how the mea-
sure was assessed. Section 4 presents and discusses important fea-
tures of the results, with conclusions and future work in Section 5.

2. BACKGROUND

2.1 Auditory Nerve Models

The Zilany & Bruce AN model used in this study[7] was designed
with an ultimate goal of predicting human speech recognition per-
formance for both normal hearing and hearing impaired listeners
[8]. It builds upon several efforts to develop computational models
including [9], [10] and [11]. It matches physiological data over a
wider dynamic range than previous auditory models. The model re-
sponses are consistent with a wide range of physiological data from
both normal and impaired ears for stimuli presented at levels span-
ning the dynamic range of hearing. It has recently been used to
conduct studies into hearing aid gain prescriptions [12] and optimal
phonemic compression schemes [13].

2.2 Neurograms

This study evaluated the effect of SNHL using two types of
neurograms- temporal fine structure (TFS) and average discharge
or temporal envelope (ENV). Both display the neural response as a
function of CF and time. Rosen [2] breaks the temporal features of
speech into three primary groups: envelope (2-50 Hz), periodicity
(50-500 Hz) and TFS (600 Hz and 10kHz). The envelope’s relative
amplitude and duration are cues and translate to manner of articu-
lation, voicing, vowel identity and prosody of speech. Periodicity
is information on whether the signal is primarily periodic or aperi-
odic, e.g. whether the signal is a nasal or a stop phoneme. TFS is
the small variation that occurs between periods of a periodic signal
or for short periods in an aperiodic sound and contains information
useful to sound identification such as vowel formants.

Smith et al. [14] looked at the relative importance of ENV and
TFS in speech and music perception finding that recognition of En-
glish speech was dominated by the envelope while melody recogni-
tion used the TFS. Xu and Pfingst [15] looked at Mandarin Chinese
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Figure 1: Sample ENV (left) and TFS (right) neurograms for vowel (/aa/) with progressively degrading hearing loss. Presentation Level
65 dB SPL in (A) and 85 dB SPL in (B). For reference purposes, the top rows in (A) and (B) show the signal, with the time axis shown at
a greater resolution in the TFS compared to the ENV. The next row displaysthe neurograms from a model with unimpaired hearing. The
bottom three rows are progressively impaired hearing loss neurograms. The TFS neurograms in (A) show that at lower presentation levels
the vowel degrades with progressive loss of fine timing information. In (B), it can be seen that at 85 dB SPL not only is information being
lost, phase locking and a spread of synchrony across CF bands is causing the addition of erroneous information with progressive hearing
loss.

monosyllables and found that in the majority of trials, identifica-
tion was based on TFS rather than ENV. Lorenzi et al. [16] showed
hearing impaired listeners had a reduced ability to process the TFS
of sounds which plays an important role in speech intelligibility es-
pecially when background sounds are present, suggesting that the
ability to use TFS may be critical for “listening in the background
dips.” They concluded that TFS stimuli may be useful in evalu-
ating impaired hearing and in guiding the design of hearing aids.
Work by Bruce et al. [17] compared the amplification schemes of
NAL-R and DSL to find single-band gain adjustments to optimize
the mean firing rates. They found that in general the optimal lay in
the order of +10dB above the prescribed linear gains for envelope
evaluations but -10dB to optimise with respect to TFS. The relation-
ship between the acoustic and neural envelope and TFS was exam-
ined by Heinz and Swaminathan [18]. It is apparent there is value
in analysing both neurograms in optimising hearing aids to restore
speech intelligibility to those with SNHL, even though the underly-
ing physiological bases have not been established from a perceptual
perspective.

2.3 Mean Structural Similarity Index (MSSIM)

The relative mean absolute error (RMAE) metric was used in [4] to
compare neurograms from phonemes presented to unimpaired and
impaired ANs. This measure normalised the absolute difference be-
tween the unimpaired and impaired representations (x & y) relative

to the mean unimpaired representation. The structural similarity in-
dex (SSIM) [5] betweenx andy is defined as a comparison of the
original and degraded signal constructed as a function of luminance
(l ), contrast (c) and structure (s):

SSIM(x,y) = f (l(x,y),c(x,y),s(x,y)) (1)

Luminance,l(x,y), looks at a comparison of the mean (µ) val-
ues across the two signals. The contrast,c(x,y) is a variance mea-
sure, constructed in a similar manner to the luminance but using
the relative standard deviations (σ ) of the two signals. The struc-
ture is measured as a inner product of two N-dimensional unit norm
vectors, equivalent to the correlation coefficient between the origi-
nal x andy. Each component also contains constant values (Cn) to
avoid instabilities and is weighted with a coefficient> 0 (α ,β andγ)
which can be used to adjust the relative importance of the compo-
nent. Thus (1) can be expressed as (2). The MSSIM metric has
properties similar to RMAE or relative mean squared error (RMSE),
as it provides symmetry,S(x,y) = S(y,x), identityS(x,y) = 1 if and
only if x = y. However, in addition, it satisfies a property of bound-
edness−1 < S(x,y) ≤ 1. See [5] for a full description.

SSIM(x,y)= (
2µxµy +C1

µ2
x + µ2

y +C1
)α

.(
2σxy+C2

µ2
x +σ2

y +C2
)β

.(
(2σxy+C3)

µ2
x +σ2

y +C3
)γ

(2)

1925



0

.2

.4

.6

.8

1

P65 P85 P65 P85 P65 P85 P65 P85 P65 P85 P65 P85

3x3 3x5 3x11 3x3 3x5 3x11

TFS ENVELOPE

Vowel

M
S

S
IM

A

0

.2

.4

.6

.8

1

P65 P85 P65 P85 P65 P85 P65 P85 P65 P85 P65 P85

3x3 5x3 11x3 3x3 5x3 11x3

TFS ENVELOPE

Vowel

M
S

S
IM

B

0

.2

.4

.6

.8

1

P65 P85 P65 P85 P65 P85 P65 P85 P65 P85 P65 P85

3x3 3x5 3x11 3x3 3x5 3x11

TFS ENVELOPE

Fricative

M
S

S
IM

C

0

.2

.4

.6

.8

1

P65 P85 P65 P85 P65 P85 P65 P85 P65 P85 P65 P85

3x3 5x3 11x3 3x3 5x3 11x3

TFS ENVELOPE

Fricative

M
S

S
IM

D

Figure 3:Data points represent hearing loss levels compared to unimpaired, beginning from MSSIM of 1 for comparison with unimpaired
and progressing through FLAT10, FLAT20, MILD, MODERATE and PROFOUND. Along the bottom of each graph 3x3 etc indicate the
window size in pixels (as illustrated in Fig.(2)). Each window size is tested for two presentation levels: P65 and P85. Top row vowels,
bottom row fricatives. (A+C): varying MSSIM window in time (3 by 3,5, and 11 pixels); (B+D): varying window size across CF bands (3,5
and 11 by 3).

The SSIM metric is applied locally over a window rather than
globally, as when comparing images the human observer can only
perceive a local area in the image at high resolution at one time
instance. The MSSIM is the mean of the SSIM calculated at each
comparative point. The choice of window size used by the SSIM
for image processing is related to how a person perceives an image,
or “how closely they look”. To evaluate the choice of window size
and weightings that best suit the proposed application, the following
criteria were defined. It should predict correctly the order of hearing
losses i.e. the metric should deteriorate with increased hearing loss.
Secondly it should minimise variance between error metrics for a
given phoneme type, given a fixed presentation level and hearing
loss. Thirdly, the chosen parameters should make sense in terms of
the physiological and signal processing boundaries on the system.
(e.g. the choice of window size makes sense in terms of allowing
different types of phonemes to be measured by being short enough
in the time axis to allow a measurement but long enough to take into
account the structural points of interest on longer phonemes.)

3. METHOD

Following the methodology in [4], the core TIMIT corpus [19] com-
prising of 192 sentences and 6854 phoneme utterances was used
as the speech waveform source. Each sentence was resampled to

the stimulated minimum sample rate for the AN Model (100kHz)
and scaled to 2 presentation levels, 65 and 85 dB SPL (denoted
P65/P85). As in [17], an outer ear filter with gains as per [20] was
used to pre-filter the speech waveforms to mimic the amplification
that occurs prior to the middle and inner ear. Each sentence was
then presented at the two presentation levels to the AN Model for
an unimpaired hearing profile and hearing losses with flat 10dB, flat
20dB, mild, moderate and profound.

The audiograms used match the samples presented by
Dillon[21] to illustrate prescription fitting over a wide range of hear-
ing impairments (Fig.(4)). The hearing loss profiles selected were
mild, moderate and profound. Two flat hearing losses 10 and 20
dB HL were also included in testing to investigate the ability to
discriminate between unimpaired and very mild losses in hearing
thresholds.

The response of the AN to acoustic stimuli was quantified with
neurogram images. 30 CFs were used, spaced logarithmically be-
tween 250 and 8000 Hz. The neural response at each CF was
created from the responses of 50 simulated AN fibres. In accor-
dance with Liberman [22] and as used for similar AN Model simu-
lations [17], 60% of the fibres were chosen to be high spontaneous
rate (>18 spikes/s), 20% medium (0.5 to 18 spikes/s), and 20%
low (<0.5 spikes/s). Two neurogram representations were created
for analysis, one by maintaining a small time bin size (10µs) for
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Figure 2: Illustrative view of window sizes. The input signal and
spectrogram are shown for the word “ship” in the top two rows.
The ENV neurogram shows the 3 time varied window sizes followed
by the 3 frequency varied window sizes. The bottom row shows the
TFS neurogram with the same window sizes illustrated. Note that
time scale in TFS neurogram is changed (zoomed in on the /i/ vowel)

analysing the TFS and another with a larger bin size (100µs) for
the ENV. The TFS and ENV responses were smoothed by convolv-
ing them with 50% overlap, 128 and 32 sample Hamming window
respectively.

The phoneme timing information from TIMIT was used to ex-
tract the neurogram information on a per phoneme basis at P65 and
P85. This yielded a pair of neurograms for each phoneme utterance
representing the original, distortion free reference TFS and ENV
images from the unimpaired AN model, and pairs of progressively
deteriorating images. The MSSIM measure was calculated between
the unimpaired reference image and each of the impaired images.
The basic metric described in [5] was used varying the window siz-
ing parameter.

Each neurogram was a standard height of 30 pixels (one per CF
band) and varied in width with the duration of the phoneme. The
length varied considerably in the region of 3-30 pixels for ENV neu-
rograms and from 100-1200 pixels for TFS neurograms. To assess
the impact of these parameters, the MSSIM was calculated across
the full data set and an average MSSIM and standard deviation were
calculated and aggregated by phoneme group (stop, affricate, frica-
tive, nasal, SV/glide, vowel) for each hearing loss. The window size
was assessed by altering its size in CF from 3 to 30 and then in time
coverage from 3 to 11 as illustrated in Fig.(2).

4. RESULTS & DISCUSSION

The data in Fig.(3) shows results from a subset of the full suite of
tests. Figs.(3A) and (3B) present the MSSIM for vowels for both
the TFS and ENV neurograms with corresponding fricatives results
in Figs.(3C) and (3D). Each shows 3 different NxM windows where
N is frequency and M time resolution. For each window size, the
MSSIM for both P65(�) and P85(�) can be seen progressively
deteriorating for the Flat10, Flat20, mild, moderate and profound
losses. The error bars show one standard devation around the met-
ric.

Fig.(3A) shows the results for progressively longer time sam-
ples in the MSSIM window. The TFS is relatively insensitive to
increases in the time window. However, the ability to differentiate
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Figure 4:Hearing Loss Audiograms tested- Flat 10, Flat 20, mild,
moderate and profound. To allow comparison with audiogram
thresholds the presentation levels of input signals and indicated
with dashed lines P65 and P85. Hence the profound loss will cause
most information above 500Hz to be sub-threshold.

between SNHL levels reduced in the ENV results as they clustered
over a smaller range as the time window expanded. This can be seen
in moving from 3x3 to 3x11 in (A). The choice of ENV window size
was also limited by the number of samples in the neurogram as for
some phonemes, stops in particular, may only be 3 pixels wide.

The effect of including progressively more CF bands is shown
in Fig.3(B). The MSSIM is stable for frequency windows of 3-5
pixels for the TFS but the variance starts to increase significantly
for larger windows, e.g. 16x3 as shown in (B). The ENV results
became more clustered for this larger window size. Space limits the
ability to present the results for all phoneme groups. A detailed ex-
amination of plots from the other phoneme groups revealed broadly
similar behaviour. This led to the overall conclusion that a suitable
window size is 3-5 pixels wide for comparing both the TFS and
ENV neurograms. Intuitively this makes sense insofar as the resolu-
tion of both has been determined in the choice of window size used
to construct the neurograms. In frequency, the MSSIM is looking at
information in just 1 or 2 CF bands around the ‘ideal’ band and the
time resolution is±20µs for TFS and±200µs for ENV. Fig.3(C)
and 3(D) show that the results for fricatives are significantly less
sensitive to changes in window size. This is likely due to fricatives
having less defined structure than vowels (e.g no formants).

Fig.(5) compares the relative mean absolute error (RMAE) and
relative mean squared errors (RMSE) with the 3x3 window MSSIM
metric. Again the error bars represent one standard deviation. Note
that for RMAE and RMSE the metric is 0 for the equality and in-
creasing, i.e. the reverse to MSSIM. The difficulties with the RMAE
metric that were previous reported in [4] and which are illustrated
in Fig.(1) are apparent in the TFS behaviour and the MSSIM ad-
dresses this. Both measures have less spread at P85 and the use of
the MSSIM for ENV is not as beneficial here for vowels although it
performed well for other phoneme groups.

5. CONCLUSIONS AND FUTURE WORK

Overall, MSSIM has been demonstrated to have good potential as
a metric to quantitatively compare AN outputs via neurograms. A
physiological basis of hearing aid desing relies on the restoration
of AN outputs of impaired nerves as closely as possible to that of
an unimpaired nerve. The ability to quantify this similarity is an
important stage of this process. This work shows that as a metric
for comparing TFS neurograms, MSSIM is more informative than
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RMAE or RMSE. The choice of window size was significant in
the ENV neurograms but the TFS results were not as sensitive to
the size of window. A window size of up to 5 pixels was optimal
for both neurograms. The metric’s boundedness and the results for
TFS neurograms indicate it is a superior metric to simple RMAE or
RMSE. Work is ongoing to correlate these results with data from
sensorineural hearing loss listener tests. Ultimately, these results
will aim to justify replacing early stage clinical trials with simulated
trials.

REFERENCES

[1] M.S.A. Zilany and I.C. Bruce, “Representation of the vowel
/E/ in normal and impaired auditory nerve fibers: Model pre-
dictions of responses in cats,”J. Acoust. Soc. Am., vol. 122,
no. 1, pp. 402–417, July 2007.

[2] S. Rosen, “Temporal information in speech: Acoustic, audi-
tory and linguistic aspects,”Philosophical Transactions: Bio-
logical Sciences, vol. 336, no. 1278, pp. 367–373, 1992.

[3] M. B. Sachs, I. C. Bruce, R. L. Miller, and E. D. Young, “Bi-
ological basis of hearing-aid design,”Annals of Biomedical
Engineering, vol. 30, pp. 157168, 2002.

[4] A. Hines and N. Harte, “Error metrics for impaired auditory
nerve responses of different phoneme groups,” inInterspeech
09, Brighton, England, 2009, pp. 1119–1122.

[5] Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli, “Im-
age quality assessment: from error visibility to structural sim-
ilarity,” Image Processing, IEEE Transactions on, vol. 13, no.
4, pp. 600–612, 2004.

[6] S. Kandadai, J. Hardin, and C.D. Creusere, “Audio quality
assessment using the mean structural similarity measure,” in
Acoustics, Speech and Signal Processing, 2008. ICASSP 2008.
IEEE International Conference on, 2008, pp. 221–224.

[7] M.S.A. Zilany and I.C. Bruce, “Modeling auditory-nerve re-
sponses for high sound pressure levels in the normal and im-
paired auditory periphery,”J. Acoust. Soc. Am., vol. 120, no.
3, pp. 1446–1466, Sept 2006.

[8] M. S. A. Zilany, “Modeling the neural representation of
speech in normal hearing and hearing impaired listeners,”PhD
Thesis, McMaster University, Hamilton, ON., 2007.

[9] L. Deng and C. D. Geisler, “A composite auditory model for
processing speech sounds,”J. Acoust. Soc. Am., vol. 82, pp.
2001–2012, 1987.

[10] X. Zhang, Heinz, M.G., I.C. Bruce, and L.H. Carney, “A
phenomenological model for the responses of auditory-nerve
fibers. i. non-linear tuning with compression and suppression,”
J. Acoust. Soc. Am., vol. 109, pp. 648–670, 2001.

[11] I. C. Bruce, M. B. Sachs, and E. D. Young, “An auditory-
periphery model of the effects of acoustic trauma on auditory
nerve responses,”J. Acoust. Soc. Am., vol. 113, pp. 369–388,
2003.

[12] F. Dinath and I. C. Bruce, “Hearing aid gain prescriptions
balance restoration of auditory nerve mean-rate and spike-
timing representations of speech,”Proceedings of 30th In-
ternational IEEE Engineering in Medicine and Biology Con-
ference, IEEE, Piscataway, NJ, pp. 1793–1796, 2008.

[13] I.C. Bruce, F. Dinath, and T. J. Zeyl., “Insights into opti-
mal phonemic compression from a computational model of the
auditory periphery,”Auditory Signal Processing in Hearing-
Impaired Listeners, Int. Symposium on Audiological and Au-
ditory Research (ISAAR), pp. 73–81, 2007.

[14] Z.M. Smith, B. Delgutte, and A.J. Oxenham, “Chimaeric
sounds reveal dichotomies in auditory perception,”Nature,
vol. 416, no. 6876, pp. 87–90, 2002, 10.1038/416087a.

[15] L. Xu and B.E. Pfingst, “Relative importance of temporal en-
velope and fine structure in lexical-tone perception (l),”The
Journal of the Acoustical Society of America, vol. 114, no. 6,
pp. 3024–3027, 2003.

[16] C. Lorenzi, G. Gilbert, and and S. Garnierand B.C.J. Moore
H. Carn, “Speech perception problems of the hearing impaired
reflect inability to use temporal fine structure,”Proceedings
of the National Academy of Sciences, vol. 103, no. 49, pp.
18866–18869, 2006.

[17] I.C. Bruce, F. Dinath, and T. J. Zeyl., “Insights into opti-
mal phonemic compression from a computational model of the
auditory periphery,”Auditory Signal Processing in Hearing-
Impaired Listeners, Int. Symposium on Audiological and Au-
ditory Research (ISAAR), pp. 73–81, 2007.

[18] M. Heinz and J. Swaminathan, “Quantifying envelope and
fine-structure coding in auditory nerve responses to chi-
maeric speech,”JARO - Journal of the Association for Re-
search in Otolaryngology, vol. 10, no. 3, pp. 407–423, 2009,
10.1007/s10162-009-0169-8.

[19] U.S. Dept. Commerce DARPA, “The DARPA TIMIT
Acoustic-Phonetic Continuous Speech Corpus,”NIST Speech
Disc 1-1.1, 1990.

[20] F.M. Wiener and D.A. Ross, “The pressure distribution in the
auditory canal in a progressive sound field,”The Journal of
the Acoustical Society of America, vol. 18, no. 2, pp. 401–408,
1946.

[21] H. Dillon, “Hearing Aids,” New York: Thieme Medical Pub-
lishers, 2001.

[22] M.C. Liberman, “Auditory nerve response from cats raised in
a low noise chamber,”J. Acoust. Soc. Am., vol. 63, pp. 442–
455, 1978.

1928


