18th European Signal Processing Conference (EUSIPCO-2010) Aalborg, Denmark, August 23-27, 2010

MULTIWAY SPACE-TIME-WAVE-VECTOR ANALYSIS
FOR SOURCE LOCALIZATION AND EXTRACTION

Hanna Becker 12, Pierre Comon?, Laurent Albera2, Martin Haardt?, 1sabelle Merlet®

(1) Lab. 13S, UMR6070 CNRS, (2) Comm.Research Lab., llmenau (3) Inserm, UMR 642, LTSI, Bat. 22,
Univ. of Nice, BP 121, F-06903  Univ. of Technology, PO Box 100565, Univ. Rennes 1, F-35042 Rennes

Sophia-Antipolis, France D-98684 limenau, Germany Cedex, France
tel: + 33 492942717, fax: +33 492942898%e|: +49 3677692613, fax: +49 367769119%I: +33 223235058, fax: +33 223236917,
becker@i3s.unice.fr, pcomon@unice.fr Martin.Haardt@tu-ilmenau.de laurent.albera@univ-rennes1.fr
ABSTRACT The method was tested both on real and simulated data and

Deterministic approaches for source localization andaextr 1€d t0 promising results. However, this technique has some
tion are desirable for short or nonstationary data, as opimitations pointed outin Section 3. _ _
posed to techniques based on second or higher order statis- /" the following, we present a different multiway-

tics. Techniques based on tensor decompositions are recd’(‘throaCh' which is extraneous to the temporal behaviour of
nized to be efficient in this framework, provided some gi-the sources. Our technique is based on data transformed into

versity is available, in addition to time and space. Wittsthi e Space-Time-Wave-Vector (STWV) domain. The advan-
goal, some authors have proposed to decompose a SpaE%ge of this method is that it permits to accurately Iocaﬁze
Time-Frequency data tensor. In this paper, we propose &€ O several dipole sources and extract at the same time a
new multiway approach based on Space-Time—Wave-Vectc_QOOd estimate of the_ assoc[ated source S|gnals. Moreover, i
(STWV) data which is obtained by a 3D local Fourier trans-'S Very robust to additive white Gaussian noise.

form over space accomplished on the measured data. This

method does not only permit to accurately localize sources 2. MULTILINEAR MODELING

even in a noisy environment, but simultaneously extra@s thpata are collected with the help of an array of sensors as a
temporal behaviour associated with each source. The pefanction of time and at various locations. Hence this bivari
formance of this STWV analysis is investigated by meanste functiorx(r,t), sampled in time and space, can be stored
of computer simulations in the context of ElectroEncephaloj, 5 data matrixX € RN*K whereN andK denote the num-

Graphic (EEG) data analysis. ber of sensors and time samples, respectively. Assuming a
static propagation medium, this matrix can be factorizéa in
1. INTRODUCTION a mixing matrixA° € RN*R depending on spatial parame-

jRes and a signal matri§ € RR*K which contains the time

Most antenna array processing techniques are devoted to t
y D ¢ d samples of th& sources:

localization of radiating sources. When signal copies aere r

quired, another procedure needs to be executed afterdacali X = A°S 1)

tion. This two-stage approach has several drawbacks., First

the signal estimation quality depends on the accuracy of th€he goal is to find a relevant transformation allowing to pro-

localization stage. Second, when the knowledge of the arra§uce a data tensor from the mat&x In fact, in contrast to

manifold is utilized, the estimation of sources is seneity ~Mmatrices, a tensor of order strictly greater than two adenits

calibration errors. Third, properties of the sources (sash Unique decomposition into a sum of rank-one terms, under a

nonstationarity, sparseness...) are not utilized. Andtfpu reasonable assumption on its rank (see below). This allows

techniques based on second or higher order statistics are rig restore identifiability in a number of problems.

robust in case of very short data records. Notation. Once bases of the linear spaces are fixed, ten-
With this in mind, deterministic techniques based onsors of orded are represented by-way arrays. For sim-

tensor CANonical Decompositions (CAND) — sometimesplicity, they are then usually identified with their arraypre-

known as PARAFAC — have been introduced; =g, [1].  sentation. We assume the following notation throughoust thi

The common feature of these techniques is that an additionphper: bold italic uppercase letters denote tensegs, T,

diversity is required, and that the array manifold is notdjse bold uppercase letters denote matriceg, , A, bold low-

at least in a first stage. In order to restore identifiability, ercase letters denote column vectag, , a, and plain font

proper tensor of order strictly greater than two is built, bydenotes scalarg,g. , Xijx, Tij or a.

exploiting this diversity. In [1] for instance, this divélss CAND decomposition. Let T be a third order tensor of

comes from a space invariance of the array of sensors.  dimensiong xJx K. The rank ofT'is defined as the minimal
Several authors have studied the use of the CAND aphumberP of vector outer products that need to be summed

plied to Space-Time-Frequency (STF) data [3, 4, 5, 6, 7]up in order to have the exact representation below:

1This work has been supported in part by ANR-06-BLAN-0074jgxrb P
Decotes, and theComputational Advances in Multi-Sensor Signal Process- Tijk = Z ai(p)bj(p)ck(p)
ing (CAMPUS) project. p=1
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WhenP is smaller than the boun +J'j'§72, the above de- estimate of the time samples of theses sources can be readily

Composition into decomposab|e tens’)ois almost Sure'y Ot.)tained. The STWV ana|ySiS iS particular|y We" Suited fOI‘
unique (seeeg. , [2] and references therein), and will be this purpose because the tempo_ral characteristics eatract
referred to asCanonical, and denoted with the CAND Dy the CAND of the tensoF constitute an accurate approx-
acronym. Note that, even when the CAND Bfis unique, it imationS of the signal matrixS. This property is due to the
is non uniquely represented by 3 loading matriaedB and ~ fact that the Fourier transform over space does not affect th
C of sizel xP, JxP andK x P, respectively. In fact, scale source activities, which means that the tenBoadmits the
and permutation indeterminacies (which may be fixed) exiséxact bilinear model:

in such a representation.

P
F(r,t. k)= b(t; p)D(r,k; 5
2.1 Space-Time-Frequency (STF) analysis ( ) p; (t: ) D P) ®)

In order to collect an additional diversity to turn the dat@m By contrast, to estimate the signal activities using the

trix X into a tensor, a frequently used idea is to computesTE gnalysis, the signal matrix needs to be computed using
the wavelet transform (or a short-term Fourier transforfn) o, pseudo-inverse of the mixing matrix. This can be prob-

the measured data. If we assume that time and frequengymagic if A° is not a tall matrix, meaning that there are more
variables approximately separate in the time-frequereystr ¢4\, rces than sensors.

form of every source signal, which means that the frequency
content of each signal has to be approximately constant overs sgurce localization

time, then the bilinear model (1) is transformed to a trigine , .
one. In other words, one obtains a 3rd order ter#¥Hmwhich Another_ reason for using t_ensor modeling and CAND de-
admits the CAND below: compositions is that an estimate of the source positions can

be determined. The source localization consists of twasstep
P the estimation of the mixing matrix and the determination of
Wir,t,f) =% a(r;p)b(t;p)c(f;p) (2)  the source parameters which best match the estimated mixing
p=1 matrix using a non-linear least squares algorithm.
In the case of the STF method, the wavelet transform
oes not affect the mixing matrix, which means that the spa-
yfial characteristicsA extracted with the STF approach al-

In fact, the variables, t and f (denoting the sensor loca-
tion, the time index and the frequency index, respectivel
are sampled and hence belong to finite sets, so that the . S o .
mensions ofW are finite and the above decomposition is in—[ifdy constitute a good approximation for the mixing matrix
deed a CAND. Note that the exact functional decomposition
(2) into a finite sum of functions with separated (continjous
variables does not exist in general.

The STWV approach however, via its Fourier transform
over space, does not lead to clearly separated space and wave
vector characteristics. Consequently, the loading matrof
2.2 Space-Time-Wave-Vector (STWV) analysis the STWV method does not permit to localize the source, and

) s i another approach based on the signal matrix has to be taken.

Instead of applying a transform on the time variable, one cagynce an accurate estimaief the signal matrix is available

instead act on the space variable. If a 3D Fourier transferm isee previous section), the mixing matrix can be computed
computed within a small patch on the sensor array, which igqm:

selected by the window functiamcentered at, the trivariate A° — XS+ (6)

function below is obtained, where the third dimensionis now . ) o .
the wave vectok. using the original data. Note that, since it is always pdssib

to have more time samples than sources, the computation of
F(r,t,k) = / w(r' —r) x(r’,t)ejkTr’dr’ (3) the pseudo-invers®™ of the signal matrixS does not raise
—o0 any problem.

Similarly to the STF approach, a CAND decomposition into 3. EEG APPLICATION
a finite number of componenisis possible.
One possible application for multivay models is the analysi
P of ElectroEncephaloGraphic (EEG) data, on which we focus
F(r,t.k) = % a(r;p)b(t; p)c(k; p) (4)  in this article. Due to its good temporal resolution complare
=1 to other methods (like for example functional Magnetic Res-
onance Imaging (f-MRI)), EEG is routinely used to record
%eizures in epileptic patients. An important issue in this r
gard is the identification of the epileptogenic zone, whiagh ¢
then be removed by surgery. To localize the sources underly-
2.3 Source extraction ing thg electric potential measured on the surface of the sca
] ) a multitude of different approaches has been proposed in the
After separating the measured data into several componerdgst [10]. These methods vary mainly in the assumptions

2decomposable tensors are by definition rank-1 tensors [8]. technique consists in fitting a few equivalent dipolar sesrc
30ne could also talk about “polyadic decompositions”; sdeafai ref-  t0 the measured EEG data. The performance depends es-
erences therein. sentially on the assumptions which are exploited to loealiz

The number of termspP, equals the number of dipolar
sources if the wave vector content of each of the componen
is the same at every sensor.
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these sources and on the parameters related to the methamad STWV methods described above, and the RMSE local-
applied. The statistical approach described in [11] iseher ization error is computed according to
fore limited by the number of time samples used to estimate
higher order statistics, and its performance depends on the 1 R
statistical properties of source signals. In [12, 13] anlyana RMSE= | = Z ||Eqp — Tapl|2 (7)
ical approach is presented for the localization of monopole R p=1
and dipole sources within a disk from given boundary data.

In[3, 4,5, 6, 7], the CAND is applied to STF EEG data. wherery, andrq, denote the estimated and original source
But this technique does not permit to separate several simupositions, respectively.
taneously active brain regions with correlated activitregs
more than one component, thus preventing the representg.,
tion of such a scenario by an adequate number of equivalemv
dipoles.

Number of time samples. To examine the influence of

number of time samples on the performance of the mul-

ay methods, the correlation coefficient between esthat
and original signals, and the RMSE localization error of a
source positioned at, = [—71/12, 11/5, 8] (in spherical coor-

4. COMPUTER RESULTS dinates) are determined for different numbers of time sam-

. . . les; see Figure 1. The EEG data are recorded at a SNR of -3

In this section, we focus on the application of the STF an%

STWV analyses to EEG data and investigate the influence gf¢ 50 trials and show that the STWV analysis allows for
various parameters on the capability of localizing supeiific o, 5ccyrate source extraction, which diminishes only f&s le

radially oriented dipole sources with the help of computety, 40 time samples. Furthermore, the STWV method still

sim(ljJIati_ons. ;0 Lhiﬁ enr(]:l, gle::tr:ic gotenéiall dz?ta f{e 1g4ener ermits to localize the dipole source if only very few tempo-
ated using a 3-shell spherical head model (cf. [11, 14]) tq, snapshots are used whereas more than 150 time samples

colrlls(tjrur(it tlhe dr?lxllgg matrix, V(;’héCh |s;_b|n thr']s context also e necessary for the STF analysis to give nearly as accurate
called the leadfield matrix, and describes the geometry angiqts  |f the tensors of both approaches are of the same

conductive properties of the head; then white Gaussiamanoiq_;ize (which is the case fdt — 63 temporal snapshots), the
is added (this corresponds to preprocessed noisy EEG datgr/ method clearly leads to better results '
where artifacts have already been removed). The radii o ) ) o
the shells representing brain, skull and scalp are 8 cm, 8.5 _Influence of noise. Since EEG data is usually very
cm and 9.2 cm with conductivities3x 1073, 8.25x 10-5  Noisy, an important issue of source localization methods is
and 33 x 103, The Jansen model [15] is used to createtheir robustness to noise. In the following simulation, the
K = 200 snapshots of epileptic activity at time intervals ofinfluence of additive spatially and temporally white Gaus-
T — 0.008 s. To construct the tensd¥ ¢ RN*KxM yyhere  Sian noise on the source localization accuracy is examined
M = K stands for the number of frequency snapshots in thér both STWV and STF analyses. The dipole source is po-
STF approach, the discrete Wavelet transform is used with $itioned atrq = [11/2,71/8,8] (in spherical coordinates) and
real-valued Morlet-Wavelet. The tensBre CN*KxJ js ob-  the electric potentiaK is computed for 64 sensors. To ob-
tained using the non-uniform, discrete 3D local Fouriengra  t@iN Noisy data a matrix containing white Gaussian noise is
form over space with a Blackman window function where@dded according to the SNR/P, whereR, is the power
J = 63 is the number of wave vectors. of1 theN n0|§e anzd where the signal power is givenRy=

A rank P approximate of each of the data tensors is the?W Zi:lzj_:lxii" Subsequentresults, displayed in Figure 2
determined with a semi-algebraic CAND, namely a Joint Ap-{{0P and middle),, constitute an average over at least 200 tri
proximate Diagonalization (JAD) algorithm [16], followed als with different noise and signal matrices. Even for a SNR
in the case of the STWV method, where the tenB@s com- c_)f -8 dB, the cor_relatlc_)n coeff|C|ent between or|g|na_1l and es
plex — by one step of the alternating least squares algorithiijnated source time signals is more than 90 %, which means
to ensure a real valued loading mafBxor the discrete-time  that the signal activity is still well captured by the STWV
signals. The optimal rank is determined using Corcon- methOd' This can als_o be seen in Figure 2 (bottom) where
dia [L7]. In the case of the STWV analysis, the number of°fdinal and estimed signals are plotted for a SNR of -3 dB.
component® extracted fromF can be assumed to equal the Régarding the source localization, the STWV approach
number of dipolar sourceR because the hypothesis that the/€2ds t0 results clearly superior to those of STF analysis.
wave vector content of each of the components is the samg!iS can be explained by the fact that the STWV method
at every sensor is reasonably well met for superficial d-,p0|areduces the noise by computing a local average over space

sources as examined here. This is due to the fact that the et the time of the 3D Fourier transform and averaging over

ergy at each source is concentrated within a small region 0_p]me when the leadfield matrix is calculated from the pseudo-

the scalp where the wave vector content is nearly identicallverse of the estimated signal matixOn the contrary, the
On the contrary, for the STF approadR generally equals STF method tries to eliminate the noise by separating it into
P — 1 in the presence of noise because noise accounts for & additional component of the CAND model, whichiis often
additional component [3, 4] in (2). not as efficient.

Eventually, the source extraction is analyzed by the Several sources. If there are several dipole sources of
correlation between original source time signals and estiepileptic activity, a main point of interest is whether tloayn
mated temporal characteristics as an intermediate rasult be separated accurately. In the case of the STWV approach,
the source localization process of the STWV technique. Fithis depends largely on the distance between the sources and
nally, the source locations are estimated according toTite S the number of sensors used to record the scalp potential.

B using 64 electrodes. The results consist of the outcome
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Figure 1: (Top) RMSE source localization error and (bot- . : estimated signal ||
tom) correlation coefficient of original and estimated silgn - - - original signal
for the STWV approach plotted as a function of the number
of time samples for a SNR of -3 dB and 64 electrodes.

signal amplitude

In the absence of noise, the STWV method permits for
example to distinguish two sources separated by a distance
of 3.35 cm up to a RMSE of 0.52 cm if 128 sensors are used.

-3F ! v

On the contrary, if electric potential data are only avdéab 0 50 100 150 200

at 32 positions, the sources cannot be separated. Thisyis onl index of time snapshot

possible if the distance is increased to 4 cm, although this

leads to a relatively high RMSE of 1.03 cm. Figure 2: (Top) Correlation coefficient of original and esti

mated source time signals for the STWV approach and (mid-
le) RMSE source localization error as a function of the SNR
or K =200 andN = 64. (Bottom) Original and estimated
ignals for the STWV approach for SNR-3 dB,K = 200,
=64

For the STF method, the energy, the frequency an
the correlation of the source activities are the crucial fac
tors determining whether a distinction of the sources i
possible. An accurate estimation of the source locatio
can only be achieved if the characteristics of different
sources are not mixed in the components extracted using 5. CONCLUDING REMARKS
the CAND decomposition. Resulting problems can for in-
stance be seen in a simulation with three sources locatedks we have demonstrated here in the context of EEG data,
atrq = [—1/2,1m/4,8], rep = [-1/12,11/5,8] andrgz =  the newly presented multiway model is a powerful tool for
[1/2, /5,7 where the STF approach does not allow to sepsource analysis, not only providing an estimate of the sourc
arate all sources because of their similar activities. Beis locations, but simultaneously extracting the discrateeti
comes manifest by an optimal tensor rank (determinded bgignals associated with each of the sources. Moreover, the
Corcondia) of only two. Since the sources are spread over tH&TWV approach is more robust than STF to white Gaussian
whole head, a separation with the help of the STWV methodoise, especially for short time samples, which could bel use
is not hindered though (cf. Figure 3). to trace the spatial evolution of sources. Problems are only
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ponents using parallel factor analysisNeurolmage,

vol. 22, pp. 1035-1045, 2004.
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closed-form PARAFAC,” in CASSP, Taipei, 2009.

M. Morup, L. K. Hansen, C. S. Herrmann, J. Parnas,
and S. M. Arnfred, “Parallel factor analysis as an
exploratory tool for wavelet transformed event-related
EEG,” Neurolmage, vol. 29, pp. 938-947, 2006.

[8] J.B.Kruskal, “Three-way arrays: Rank and uniqueness

(9]

(10]

(11]

Figure 3: Topographic plots of the absolute values of theflz]

original potential distribution, (a) averaged over alléisam-

ples; the estimates for both (b) the STF analysis and (c) the
STWV approach for 128 sensors, 200 time samples and a

SNR of -3 dB. Original dipole positions are marked by a

white cross, estimated dipole locations by a white point.

(13]

encountered when trying to separate very close sources, but
if the dipolar EEG sources cannot be distinguished becaug&4]

of their small distance despite a sufficient spatial regmut

of at least 64 electrodes, they are likely to belong to theesam

larger source. The identification of sudistributed sources,

which constitute a more realistic representation of thesund

(15]

lying physiological phenomena, is a crucial aspect in EEG

analysis and will be addressed in further studies.
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