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ABSTRACT 

Random field models characterize the correlation between 

neighboring pixels in an image. Specifically, a wide-sense 

Markov model is obtained by assuming a separable correla-

tion function for a 2D auto-regressive (AR) model. In this 

work we analyze the effect of sub-sampling on statistical fea-

tures of an image such as histogram and the autocorrelation 

function. We show that the Markovian property is preserved 

for the 2nd-order case (of the wide-sense model) and use this 

result to prove that, under mild conditions, the histogram of 

such images is invariant under sub-sampling. Furthermore, 

we develop relations between the statistics of the image and 

its sub-sampled version in terms of moments and noise char-

acteristics. Motivated by these results, we propose a new 

method for texture interpolation, based on orthogonal de-

composition. Experiments with natural texture images dem-

onstrate the advantages of the proposed method over pres-

ently available interpolation methods. 

 

1. INTRODUCTION 

The 2D auto-regressive image model is well known for its 

various applications in image processing. Specifically, it is 

useful in the analysis and synthesis of textures [1], as well as 

in texture classification and segmentation. In its general 

from, this model may be described by the equation  

       
  ,,

, , , ,
m nk l

w m n a k l w m k n l u m n


     ,     (1) 

where   ,w m n  is the modelled image field,  ( , )a k l are the 

AR model parameters,   ,u m n  is zero mean white noise 

(also termed the innovation process) and 
,m n  is some 

neighborhood of the pixel at location  ,m n . 

A special case of the model in (1) is obtained by assuming a 

2D causal pixel neighborhood [1], i.e., 

   
( , )

, ( , ) ,ij
i j D

w m n c w m i n j u m n


    ,           (2) 

where ijc are the model parameters (coefficients) and the 

neighborhood is given by 

      0,1 , 1,0 , 1,1D .                         (3) 

Furthermore, assuming a separable correlation function of 

the form 

( , )ww h vR C
     ,    0 , 1h v   , 

where C  is some constant, and applying the Yule-Walker 

equations, the following straightforward solution for the 

model is obtained: 

10 ,hc  01 vc  , 
11 h vc   .          (4) 

The AR model, which is described by Equations (2), (3) and 

(4) is known as the wide-sense Markov model. In this work 

we focus our interest on this model, and show that when sub-

sampling an image that obeys this model, (i) the down sam-

pled image also possesses the wide-sense Markov property; 

and (ii) the image gray level distribution is preserved. In ad-

dition, we formulate expressions that relate the white noise 

statistics of the image and its sub-sampled version.   

 

The paper is organized as follows. Section 2 presents the 

invariance of the wide-sense Markov property, as well as the 

statistical features of the sub-sampled image. Motivated by 

these results, we propose in Section 3 a method for texture 

interpolation. Experimental results of the proposed method 

are shown in Section 4. Section 5 summarizes the main re-

sults.  

 

2. WIDE-SENSE MARKOV RANDOM FIELDS AND 

SUB-SAMPLING OPERATION 

 2.1 Sub-sampling  

Denoting by f a given 2 2M M  square image, we define 

its low-resolution version
*f  as an M M  image such that  

*( , ) (2 1,2 1).f k l f k l    

The relation between the high and low-resolution versions is 

illustrated in Figure 1.  

 

2.2 Theoretical Results 

In this subsection we show that the wide-sense Markov prop-

erty is retained under sub-sampling as defined in Section 2.1. 
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We then proceed to statistical relations between the high and 

low resolutions. Due to the limited space, only the main steps 

of the proofs are presented - the detailed derivations are 

available in [2]. 

 

Figure 1(a) –low-resolution image. 

 

Figure 2(b) – high-resolution image. 

From now on we denote  ,
mn

f m n f  for simplicity. 

We start with our first theorem.  

Theorem 1:  Let f be a wide-sense Markov image, i.e.  

   
( , )

, ( , ) ,ij
i j D

f m n c f m i n j u m n


    , 

and let 
*f be its low-resolution version. Then, 

*f  is also 

wide-sense Markov, and its coefficients are given by 
* 2

01 01c c , 
* 2

10 10c c , 
* * *

11 10 01c c c .             (5) 

Proof: See Figure 1 for the notation of f ,
*f . Using the 

wide-sense Markov model (2), we can express 55f  in 

terms of 35 33 53, ,f f f  to obtain the pixels' relation in the 

low-resolution image
*f . Doing so and re-arranging 

yields the following result: 
2 2 2 2

55 01 53 10 35 01 10 33 totalf c f c f c c f N    ,           (6) 

where totalN  is white noise given by 

 01 10 44 01 54 10 45 55.totalN c c u c u c u u      (7) 

It is important to note that due to the wide-sense rela-

tion 11 10 01c c c  , the terms in totalN  that depend on 

24 42 23 32, , ,f f f f  vanish, and so totalN  is orthogonal to 

33 35 53, ,f f f  in the low-resolution image. This property is 

required in a valid autoregressive process, in which the 

innovation process should maintain orthogonality in rela-

tion to ‘past’ samples of the process. 

Without loss of generality, this calculation holds for all the 

pixels in the low-resolution image
*f , and thus, by com-

paring (6) to (2) we obtain the above result.                       □ 

 

Based on Theorem 1, the next 3 corollaries follow. 

Corollary 1: Denoting by 2 2

*,u u   the variances of the 

generating white noise of *,f f  respectively, the following 

relation holds: 

 2 2 2 2 2 2

* 01 10 01 10 1u uc c c c     . 

Corollary 2: Denoting by    * , , ,ff ffR R    , the auto-

correlation functions (matrices) of the low and high-

resolution versions, respectively, 

   * , 2 ,2ff ffR R    ,                   (8) 

i.e., the autocorrelation function of the low resolution im-

age is given by sub-sampling the autocorrelation function 

of the high-resolution image.  

Corollary 3: The second-order moments of 
*,f f are 

equal, i.e., 

 
22 *Ef E f . 

For detailed proofs of the above mentioned corollaries, the 

reader is referred to [2].  

If we further assume that the white noise  mnu is nor-

mally distributed, we can prove the following result. 

Theorem 2: The moments of 
*f  up to any order are 

equal to those of f ; i.e., the gray level probability distri-

butions of the high-resolution image f  and its lower reso-

lution version 
*f are equal. 

Proof:  We first show that the gray level of f  is normally 

distributed. To see that, we observe that each pixel in f  

may be expressed as a linear combination of samples of 

the normally distributed white noise u . For example, 

11 11f u  

   
22 10 12 01 21 11 11 22

10 01 11 12 01 10 11 21 11 11 22

10 01 11 10 01 11 10 12 01 21 22

10 01 11 10 12 01 21 22

2

.

f c f c f c f u

c c f u c c f u c f u

c c f c c f c u c u u

c c u c u c u u

    

      

     

   

 

 

Now, since u  is normally distributed white noise, the last 

result implies that each pixel in f  is a linear combination 

of statistically independent normally distributed random 

variables, and thus each pixel in f  is also a normally dis-

tributed random variable. Furthermore, the low-resolution 

image *f  is also normally distributed, since as we saw in 

previous sections, *f  is also wide-sense Markov and the 

same arguments regarding the normal distribution are still 

valid. 

Recalling Corollary 3, according to which the variances of 

the low and high resolutions are equal, and using the as-

sumption that the expectation value of the noise is zero to 

conclude that the low and high resolutions also have zero 

mean, we obtain that the first two moments of 
*,f f are 
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equal. But since f  and 
*f are normally distributed and 

have equal first and second moments, their gray level dis-

tributions are also equal, which concludes the proof.        □ 

 

We now proceed to propose a method for texture interpola-

tion. We first describe the texture model used, and then 

describe our proposed method. 

3. A PROPOSED TEXTURE INTERPOLATION 

METHOD 

3.1 Texture Model 

We use a texture model proposed by Francos et al. [3-5]. 

In this model, the texture field is assumed to be a realiza-

tion of a 2D homogeneous random field. Based on a 2D 

Wold-like decomposition of homogeneous random field, 

the texture field is decomposed into a sum of two mutually 

orthogonal, spatially homogeneous components: (i) the 

global structural component, which is deterministic in the 

prediction theory sense; and (ii) the purely stochastic com-

ponent, or a purely non-deterministic component. Denot-

ing the homogeneous 2D texture field by   ,y m n , the 

above decomposition may be expressed as 

     , , ,y m n w m n v m n  ,         (9) 

where  ,w m n  is the purely non-deterministic component 

and  ,v m n  is a deterministic field. It is important to note 

that the deterministic component  ,v m n  may be further 

decomposed into  

     , , ,v m n h m n g m n  , 

where  ,h m n  is called the harmonic field, and  ,g m n  is 

termed the generalized evanescent field. Generally speak-

ing, the harmonic field generates the periodic features of 

the texture field, while the evanescent component gener-

ates global directional features in the texture field. The 

spectral density function of the harmonic field is a sum of 

2D Dirac Delta functions, while the spectral density func-

tion of the generalized evanescent field is a sum of 1D 

delta functions that are supported on lines of rational slope 

in the frequency domain [3-5]. For simplicity, in this paper 

we assume that  , 0g m n  , that is, we treat the determi-

nistic component  ,v m n  as composed of only the har-

monic field, i.e.,    , ,v m n h m n . According to this as-

sumption, we confine our discussion to textures that pos-

sess periodic features, and not directional ones. Experi-

ments with Brodatz and VisTex textures [6],[8] reveal that 

this assumption is not restrictive in practice, and in fact it 

enables us to simply treat a wide variety of textures.  

To complete the description of this model, we note that the 

non-deterministic component is modelled as a 2D AR 

model, i.e., it may be expressed as in (1). 

 

3.2 A New Method for Texture Interpolation 

The problem of texture interpolation may be stated as fol-

lows: given a down-sampled (low resolution) version of 

the texture, we wish to obtain a high-resolution texture 

image. This problem is of practical interest, since many 

natural images are a collage of texture patches, or rela-

tively smooth areas and texture patches. 

The framework of our method is as follows. Given a 

down-sampled (low-resolution) texture, we extract its 

purely non-deterministic component, evaluate its optimal 

(low-resolution) auto-regressive model parameters, and 

use these parameters to generate the high-resolution 

purely non-deterministic component.  

The harmonic component of the down-sampled texture is 

also extracted, and by filtering and zero padding in the 

frequency domain is perfectly interpolated to create its up-

sampled version. The generated deterministic (i.e., har-

monic) and non-deterministic components are then com-

bined to yield the high-resolution output texture. 

As noted above, we use the evaluated optimal AR model 

parameters of the low resolution as an approximation to 

those of the high resolution. This approximation is moti-

vated by the results of Section 2, that show that for the 

case of the wide-sense Markov field, generated by white 

Gaussian noise, the gray level distribution was the same in 

the high and low resolutions. Noting that the wide-sense 

Markov field is a special case of the auto-regressive 

model, and as such may be treated as a special case of an 

non-deterministic texture component, it is thus motivating 

to assume that the probability distributions of the low and 

high versions of the non-deterministic components of gen-

eral auto-regressive causal model (not necessarily wide-

sense Markov) will also be approximately equal and will 

have similar visual features, and as such – also similar 

autocorrelations [5]. Thus, it is motivating to approximate 

the AR model parameters of the high-resolution version by 

the parameters of the low resolution, and in this manner 

obtain an interpolation from low to high resolution for the 

non-deterministic component. 

 

The method we propose for texture interpolation is sum-

marized as follows: 

Input: 
*y  - a N M  low-resolution texture image. 

Output: y  - a 2 2N M  high-resolution texture image.  

Step 1: Extraction and interpolation of the harmonic com-

ponent: 

1.1 Calculation of the DFT and periodogram (i.e., 

squared absolute value of the DFT) of 
*y . 

1.2 Finding the peaks (2D delta functions) of the 

periodogram from Step 1.1, and creating a fre-

quency domain filter (mask) whose value is 1 at the 

locations of those peaks and 0 elsewhere. 

1.3 Filtering the DFT of 
*y  with the frequency   

domain mask from step 1.2, to obtain the DFT of 

the harmonic component of 
*y . 

1.4 Zero padding the filtered DFT of 
*y  from Step 

1.3 to obtain the DFT that corresponds to the har-

monic component of the high resolution y . 
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1.5 Applying the inverse DFT on the output of 1.4, 

to obtain the estimated harmonic component of the 

high resolution, denoted by ĥ . 

 

Step 2: Extraction and interpolation of the purely non-

deterministic component: 

2.1 Filtering the DFT of 
*y with a mask that is the 

negative version of the mask in Step 1.2, to obtain 

the DFT of the purely non-deterministic component 

of the low resolution.  

2.2 Applying inverse DFT to the output of Step 2.1, 

to obtain an estimation of the (space domain) purely 

non-deterministic component in low resolution, de-

noted by 
*ŵ .  

2.3 Choosing the number of AR model parameters 

(AR order), or in other words, the size of the past 

support that is used in the model.  

2.4 Estimating the optimal AR model parameters 

according to the minimum innovation process vari-

ance criterion, using a least squares solution. These 

AR model parameters are estimated from the low-

resolution version. 

2.5 Re-arranging the pixels of 
*ŵ  in a 2 2N M ma-

trix, such that sub-sampling of this matrix yields 

again the low resolution 
*ŵ  (as shown in Figure 1). 

2.6 Calculating the gray levels at the locations of 

missing pixels (i.e., that are not populated by the 

original low-resolution pixels' values) according to 

the AR model (1), and using the model parameters 

that were obtained from the low resolution (in Step 

2.4). The innovation process u  that generates the 

model is white Gaussian noise with some pre-

determined variance 
2

u . Pixels whose support 

neighborhood exceeds the boundaries of the image 

are initialized simply by white noise with the same 

distribution like the innovation process.  

2.7 The output of Step 2.6 is the estimated purely 

non-deterministic component in the high resolution, 

denoted by ŵ . 

 

Step 3: Combining the estimated harmonic and purely 

non-deterministic components from Steps 1 and 2, to ob-

tain the estimated texture image in high resolution, de-

noted by ŷ , i.e., ˆˆ ˆy h w  . 

4. EXPERIMENTAL RESULTS 

In this section experimental results of the proposed 

method are shown. The textures were taken from the Bro-

datz album [6] and from the VisTex [8] database. Each 

original 2 2N M image texture was sub-sampled such 

that an N M  texture was obtained. Then, various inter-

polation methods were applied to the sampled texture and 

compared to the original (high-resolution) texture in terms 

of visual impression and PSNR.  

The textures ‘wood grain’ and 'Fabric-0004', and a close-

up on their interpolations using various interpolation 

methods (nearest neighbor, bilinear, bicubic and Spline) 

and the proposed method are shown in Figures 2, 3. For 

these textures, a causal 4 4  pixel neighborhood, i.e., the 

15 nearest neighbors composing the top-left corner of a 

given pixel, was found to yield good results. 

Additional experiments with other textures yielded similar 

results [2]. 

Inspection of Figures 2 and 3 reveals that the proposed 

texture interpolation method outperforms other interpola-

tion results visually, in terms of preservation of fine details 

of the textures. For most of them it also obtains higher 

PSNR values (except for Spline). The average improve-

ment in PSNR was 0.92dB, 0.71dB and 1.37dB for the 

textures 'Water', 'Wood Grain' and 'Herringbone Weave', 

respectively. For specific PSNR values see [2]. 

It is important to note that due to the stochastic nature of 

the non-deterministic component of the texture, the PSNR 

is clearly not the best measure for texture reconstruction 

quality. It is thus desirable to obtain a measure for texture 

reconstruction. Such a measure is currently developed by 

the authors of this work, and is based on the decomposi-

tion of the textures to their deterministic (harmonic) and 

non-deterministic components. The comparison of the 

deterministic components may be obtained by well-known 

measures, while the comparison of the non-deterministic 

components may be done according to their second-order 

statistics. Preliminary results show that such a combined 

measure is more suitable than PSNR for the evaluation of 

texture reconstruction quality. 

 

5. SUMMARY 

In this work we have shown that, under sub-sampling, the 

wide-sense Markovian property is retained. In addition, we 

have proved that under mild conditions, the gray level dis-

tribution is invariant. This result motivated us to propose a 

new method for texture interpolation, based on an or-

thogonal decomposition texture model [7]. The proposed 

method performance was tested on Brodatz and VisTex 

textures. The experimental results demonstrate the advan-

tages of the proposed method over existing interpolation 

methods in terms of PSNR values (except for Spline) and 

conservation of fine texture details. In other words, the 

proposed method achieves less blurry reconstructions.  

Future research will focus on extension of the proposed 

algorithm to color textures, as well as on further analysis 

of the relations between the high and low resolutions of a 

general 2D AR model.  
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Figure 2 - A close-up on a patch from the original and interpolated textures ('wood grain').  Top left to bottom right: 

Original texture, Nearest Neighbor, Bilinear, Bicubic, Spline and New Method.

 

Figure 3 - A close-up on a patch from the original and interpolated textures ('Fabric-0004'). Top left to bottom right: 

Original texture, Nearest Neighbor, Bilinear, Bicubic, Spline and New Method. 
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