16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP

ROBUST TRANSMISSION OF HTML FILES: ITERATIVE JOINT
SOURCE-CHANNEL DECODING OF DEFLATE CODES

Zied Jaoua*™, Anissa Mokraoui-Zergainoh™, Pierre Duhamel*

*LSS/CNRS, SUPELEC, Plateau de Moulon, 91 192 Gif sur Yvette, France
TL2TI, Institut Galilée, Université Paris 13, Avenue Jean Baptiste Clément, 93 430 Villetaneuse, France
{jaoua,duhamel}@lss.supelec.fr, anissa.mokraoui@galilee.univ-paris13.fr

ABSTRACT

This paper considers the transmission problem over a noisy
mobile radio channel of encoded html files according to the
httpl.1 protocol specifications. The deflate algorithm en-
codes the html files using the combination of two entropy
coding algorithms: Lempel-Ziv and Huffman. The developed
receiver is based on an iterative joint source channel decoding
approach using the turbo principle built from two serial con-
catenated codes. The proposed Soft-Input Soft-Output inner
decoder is based on the traditional sequential M-algorithm
which is modified in order to improve the performance of the
decoder. The proposed algorithm exploits the specific gram-
matical rules of Huffman codes, Lempel-Ziv codes and the
syntax of the html language. This decoder is combined to
a Soft-Input Soft-Output channel decoder of convolutional
codes. Simulation results, over an additive white gaussian
noise channel, show that the proposed receiver reduces the
number of errors occurring in the transmitted html file com-
pared to any conventional channel decoding.

1. INTRODUCTION

Wireless Internet is being used more and more in many appli-
cations. A huge amount of data is handled such as to trans-
fer or to download html pages from a web server to a mobile
client. In the recent http release standard, i.e. httpl.1 ([1]),
an additional functionality is proposed to encode the html
(or xml) files to be downloaded or transferred before their
transmission over the communication channel. The specified
encoding method is the deflate method which is the com-
bination of some variant of Lempel-Ziv (LZ) plus Huffman
entropy coding algorithms. The deflate codes are then encap-
sulated according to the specifications given either in Gzip
([2]) or Zip ([3]) standards.

Since the deflate bitstream is represented by variable
length codes, a loss or an alteration of a single bit in the
received bitstream leads to propagation of errors and syn-
chronization losses which could be catastrophic for the de-
coded html file. The lack of error resilience in the deflate
codes remains a real problem since, to our knowledge, no
investigation has been devoted to this topic.

Compared to robust Huffman codes, only few papers
have been developed in the framework of robust LZ codes.
The authors of reference [4] proposed a joint source chan-
nel coding algorithm to protect the universal Lempel-Ziv-77
(LZ-77) codes against a number of errors. They modified the
traditional LZ-77 encoder in order to organize the inherent
remaining redundancy (even if this redundancy is small) in
such a way as to achieve error-resilience. Their approach re-
quires specific encoders and decoders. In our previous work,
we proposed a joint source channel decoding approach of LZ-
77 codes ([5]). However the html files are compressed using
a different variant of LZ-77 algorithm, meaning that some

Thanks to French National Research Agency for funding this
work under the DITEMOI Project http://rnrt.ditemoi.free.fr/

investigations are required to propose an efficient error re-
silience method according to the specified version of the LZ
codes described in the httpl.1 standard.

The problem of decoding Huffman codes transmitted via
a noisy communication channel has received an increasing
attention during the recent years, because the Huffman en-
tropy coding algorithm is often applied as a final step for
source compression in many multimedia applications. At
the same time, the interest for joint source channel coding
and decoding has considerably increased ([6], [7]). In joint
source channel decoding approach, the Huffman code struc-
ture is exploited in order to perform efficient decoding of the
corrupted bitstream ([7]). The Most developed Huffman de-
coding algorithms take advantage of the encoders properties.
Indeed, the Huffman encoding operation is generally mod-
elled as a discrete time finite-state Markov process. In our
specific context, the situation is more complex since the Huff-
man coding algorithm is applied directly on the LZ codes.
Unfortunately the modelling of the source by the Markov
process is not sufficient. The decoding problem becomes
more complicated.

The main objective of this paper concerns the protection
of the deflate codes against transmission errors over a mobile
channel. This paper is organized as follows. The next section
introduces the deflate entropy coding algorithm. Section 3
presents the proposed Soft-Input Soft-Output decoding al-
gorithm. Section 4 proposes a receiver based on an iterative
joint source channel decoding approach. Section 5 provides
simulation results over an additive white noise channel.

2. DEFLATE ENTROPY CODING
ALGORITHM

This section presents the deflate entropy coding algorithm
imposed in the httpl.1 standard. The deflate is the combi-
nation of two well known entropy coding algorithms: a vari-
ant of the universal LZ-77 and Huffman algorithms. This
section begins with the outline of the LZ algorithm adopted
by the httpl.1.

2.1 LZ entropy coding algorithm in deflate

A large family of LZ coding algorithms has been proposed.
This paper focuses on the LZ algorithm implemented in the
httpl.1 protocol . This version is closely related to the LZ-77
universal lossless encoding algorithm developed in [5].

The LZ coding algorithm exploits the redundant nature
of the html (xhtml, xml) file considered as an ASCII docu-
ment as follows. Denote by T' the html text of length n over
a finite alphabet. The i-th symbol in T is denoted by T7[i].
Ti, j] represents the substring composed by the following
symbols T[i]T[i + 1]T[¢ + 2]...T[j]. The LZ algorithm parses
the text sequentially left to right and processes the data on
line as it is read in order to adaptively build a dictionary.

Suppose that ¢ — 1 symbols have been parsed provid-
ing h — 1 substrings composing the dictionary denoted by

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP

T[1,i — 1] = s182...Sh—1, where sy represents the k-th sub-
string. At this step, the algorithm searches in the dictionary
(i.e. T[1,i—1]) the largest h-th string that matches with the
longest string available in T[i,4 4), — 1] with I, < L where
L is the fixed size of the search window. If some match is
selected during the encoding process, the retained substring
is encoded using a codeword denoted by < p;,l; > where
p; is the pointer toward the dictionary indicating the begin-
ning of the substring to be encoded and [; the length of the
new substring to be included in the dictionary. Otherwise, if
no match occurred, the codeword is given by < ¢; > corre-
sponding to the symbol T'[4] to be included in the dictionary.
Therefore the text to be encoded by LZ is represented by two
kinds of codewords as follows: ..., < p;,l; >,...,<¢; >,... In
the deflate normalization ([8]), the size of the dictionary and
the search window are respectively fixed to 256 bytes and 32
K-bytes. Consequently the words p;, I; and ¢; are respec-
tively encoded on 15 bits (i.e. p; = pit..pF...p?), 8 bits (i.e.
li =1]..17..17) and 8 bits (i.e. ¢; = cj...c}...c).

2.2 Huffman entropy coding algorithm in deflate

Deflate offers three different operating modes ([8]). The first
one concerns the segmentation of either compressed or un-
compressed big file. This mode is not considered in this pa-
per. Two other modes are proposed in order to compress the
LZ codewords. The main difference between these modes is
that one is sometimes more efficient in terms of compression
ratio than the other one but is much more time consuming.

The sophisticated compression method, referenced as
mode 3 in deflate, proposes the construction of two dynamic
Huffman code tables according to a specific reorganization
of the traditional Huffman tree structure. These tables are
adapted to the statistics of the LZ codewords. Moreover, the
Huffman tables are also compressed with entropy run length
encoding algorithm and then inserted in the compressed LZ
bitstream. For more details one can refer to [8]. The second
compression mode, referenced as mode 2 in deflate standard,
proposes two predefined static Huffman code tables. These
tables are directly used by the deflate encoder and decoder.
This strategy speeds up both the compression and decom-
pression processes. Moreover, no Huffman table need to be
transmitted to the deflate decoder, since they are predefined.
Obviously, the cost to be paid is a (hopefully slightly) de-
creased efficiency of the compression, incase the predefined
tables do not match the actual source statistics. The first
table contains 256 ”edoc” which are used to encode the LZ
lengths and characters. For a given "edoc” in the table, the
Huffman code is constructed by the concatenation of the cor-
responding prefix and suffix codes leading to variable length
codes. For LZ length, the Huffman codeword can be encoded
between 8 and 13 bits, while the Huffman LZ characters are
encoded between 8 and 9 bits. The second table is designed
to encode LZ pointers. The table contains 32768 ”edoc”.
For each LZ pointers, the table associates an ”edoc”. From
this ”ecdoc”, the Huffman codeword is constructed using the
concatenation of the corresponding prefix code written on 5
bits, and its suffix code of at most 13 bits.

As first step in the robust transmission of deflate codes,
this paper concentrates on the second deflate mode given in
the standard. The main reason is a good tradeoff between
simplicity and efficiency: its implementation is not complex
and is much faster than the third mode, while its perfor-
mance in terms of compression ratio is reasonable compared
to mode 2. In the 4 examples of html files that are processed
in the simulation section (standard examples from the real
world), the average compression ratio for mode 3 is 2.95,
while in mode 2 it is 2.5. It is clearly seen that mode 2 is
still efficient, while its complexity is largely reduced. Fur-
thermore, it is likely that robustification of mode 3 towards

transmission errors is very difficult. Its use when transmit-
ting files to mobiles remains also to be seen, due to lack of
robustness and computational load.

3. SISO INNER DECODER BASED ON
MODIFIED SEQUENTIAL DECODING
M-ALGORITHM

This section focuses on the Soft-Input Soft-Output (SISO)
inner decoder used by the developed iterative receiver. The
proposed SISO decoder, denoted SD-deflate, is based on a
modified version of the traditional decoding M-algorithm.
This SISO decoder processes in two main steps. The first
one estimates the deflate sequence using a modified version of
the generic sequential decoding M-algorithm and the second
one derives the soft values which will be discussed in the next
section. First briefly describe the principe of the traditional
sequential decoding M-algorithm.

Denote by x = (x1,...,%¢,...,xn) the sequence to be
transmitted over an additive white gaussian noise (AWGN)
channel and y = (y1,...,Yt,...,yn) the sequence of the re-
ceived symbols. The M-algorithm, processes on a tree struc-
ture using at each depth of the tree the best M memo-
rized paths. This algorithm belongs to the breadth first
approaches ([9]). At each iteration, the best M memorized
paths at the same depth in the tree are extended one step for-
ward. For each extended path, the cumulated metric based
on the maximum likelihood criterion is computed as follows:

X = arg max log(P(y/x)) (1)
where P(y/x) is the maximum likelihood. The channel being
memoryless, the maximum likelihood becomes:

N

P(y/x) =H (yk/z1) =

ﬁ exp(~ W2t

V2ro? 202
(2)

where o2 represents the variance of the zero-mean Gaussian
white noise. The estimated sequence is thus given by:

N

X = arg min > (@ —ww)? 3)
k=1

where pu(N) = Zg:l(xk —yi)? corresponds to the cumulated
metric allowing to find the best path. Among these paths,
only M best paths are selected in accordance with the cu-
mulated metric. When the algorithm reaches the maximum
depth, the best stored path in terms of cumulated metric is
considered as the best sequence estimate.

3.1 Previous works oriented to robust LZ-77 codes

The sequential decoding M-algorithm, as briefly described
above, does not take into account any property the decoded
sequence should meet. However, sequential algorithms eas-
ily allow to restrict the sequences to those meeting a given
syntax or set of rules. This restriction allows to reduce not
only the computational complexity but also to improve the
decoding efficiency. Indeed, in reference [10], the authors ex-
ploit the LZ-77 grammatical rules and the syntax of the html
language which are combined altogether during the decoding
step of the received sequence. In the proposed strategy, the
modified algorithm chooses the M best sequences, only af-
ter having read all the elements corresponding to one LZ-77
codeword such as length, pointer or character code. If the
conditions for valid LZ-77 sequences are not met, the corre-
sponding branches are dropped from the tree. Among the
remaining ones, those which do not correspond to valid html
syntax are also dropped. Simulation results showed that the

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP

performance is drastically improved compared to a generic
sequential decoding M-algorithm applied to LZ-77 files.

Based on this strategy, this paper concentrates on the
modifications to be included in the above approach for ap-
plying M-algorithm to the concatenation of LZ plus Huffman
met in deflate. The difficulty lies in the existence of Huff-
man codes, which do not allow to progress by blocks which
have some signification in terms of syntax, thus preventing
efficient pruning of the trees.

3.2 Modified sequential decoding M-algorithm

The proposed sequential decoding M-algorithm (Fig. 1), de-
noted SD-deflate, parses from left to right the received bit-
stream and checks the grammatical rules of Huffman and LZ,
plus the syntax rules of the html language. In addition to the
metric criterion, if the grammatical and syntax rules are not
satisfied, the SD-deflate drops the corresponding branches
from the tree structure. The proposed grammatical rules to
be checked are listed as follows:

e The parsed deflate codes must be Huffman codes;

e The decoded LZ pointer does not exceed the number of
symbols already read and inserted in the dictionary;

e The LZ length code is followed by a LZ pointer code;

e The decoded LZ character must belong to the specific
range reserved to the ASCII codes;

e In addition, to these grammatical rules, the syntax of the
decoded html text is progressively checked according to
the specifications provided in the SGML [11].

According to these rules, the modified sequential M-
algorithm processes as follows.

1. For each received information yx, extend the M current
branches of the tree until building 2" M paths, where 7 is
a parameter which is tuned for a good tradeoff between
complexity and performance of the algorithm;

2. Among these 2" M paths, drop the branches which do not
satisfy the Huffman grammatical rules using the provided
Huffman tables;

3. For each retained branch, analyse the decoded Huffman
bitstream as follows:

(a) if the number of the decoded Huffman elements, is
not sufficient but some bits seem to be part of a valid
LZ prefix of any pointer codeword, then memorize the
branch corresponding to the beginning of the prefix
and do not take any decision at this stage, then follow
the process described in step 7. Otherwise go to the
following step.

(b) if the number of the decoded Huffman elements, is
sufficient to consider that the decoded codeword is a
LZ candidate codeword then check the LZ grammat-
ical rules and take a decision.
If this LZ code is not valid drop the branch and go to
4. Otherwise continue the html syntax verification. If
the syntax is not valid drop the corresponding branch
and go to 4.

(c) if the number of the decoded Huffman elements, is
not sufficient to consider that the decoded codeword
is a LZ candidate codeword, go to 1.

4. Compute the cumulated metrics of all retained branches,
i.e. those satisfying the grammatical rules of the codes
and the html syntax;

. Sort these branches according to their metrics;

6. Select the M best paths according to the metrics then go

to step 1;

7. Among the different LZ prefix pointers previously located
and memorized, extend again each retained branch from
the last detected prefix pointer using at this time 5 bits
(i.e. 5 received information) since it corresponds to the

ot

number of bits required to represent any prefix pointer
as specified by the deflate standard;
8. Compute the cumulated metrics of all retained branches;
9. Sort these branches according to their metrics;
10. Select the M best paths according to the metrics then go
step 1.

The performance of the SD-deflate is closely related to
the choice of the parameters 7 and M. If these parameters
take large values, the performance of the algorithm increases.
Indeed with higher parameters, the research of the optimal
solution tends to an exhaustive research. However, the algo-
rithm becomes much more time consuming. Moreover, if the
metric decision is taken at inappropriate depth in the tree,
without any consideration, the performance of the SD-deflate
may be affected considerably while reducing significantly its
computational complexity. A tradeoff between complexity
and performance must be considered. For equivalent perfor-
mance but a reduction of the computational cost of the SD-
deflate, a slight modification concerns step 7. Rather than
using the last located prefix pointer, we propose to select the
first located prefix pointer. At this location, before extend-
ing each branch, we add a metric decision reducing then the
number of the retained branches. Steps 8, 9 and 10 are re-
moved. Note that all these modifications keep the property
of the M-algorithm to compare paths of same lengths only.

4. ROBUST DEFLATE TRANSMISSION
BASED ON ITERATIVE JOINT SOURCE
CHANNEL DECODING

The communication system developed in this paper is illus-
trated by Fig.2. Based on this transmission model, the re-
ceiver estimates the deflate sequence of the transmitted bits
from the sequence of the received symbols. This problem is
solved using an iterative approach based on the turbo prin-
ciple with serial concatenated codes as developed in [12].
Denote d = (da, ..., dk, ...,dn) the binary sequence gen-
erated by the deflate algorithm where N is the length of the
sequence and dy, is the k-th coded bit. The coded bits {dx}
are assumed to be uniformly distributed. This deflate binary
sequence is first permuted by a pseudo-random interleaver to
break the error burst at the receiver, then used as an input to
the convolutional encoder with rate % The convolutional en-
coder outputs are then modulated by a BPSK modulator and
transmitted over memoryless AWGN channel. The trans-
mitted data stream is denoted as x = (X1, ooy Xy ovey XN)
where x; = (Zk,0, Zk,1, .., Lk,n—1). The received data stream

y is denoted by y¥ = (¥, ¥4 - Yy) Where y, =
(yk,07 Yk,1y -5 yk,nfl)-

Define two sets R and D of binary sequences d of length
N. The first set R = {[di,dz,...,dn] € {0,1}} con-
tains all possibles sequences, while the second one D =
{[d1,d2, ...,dn] € {0,1}V} contains only the sequences sat-
isfying the deflate structure and the syntax of the html lan-
guage.

The first block corresponds to the channel outer de-
coder and the second block concerns the source inner decoder
(i.e. SISO SD-deflate) described in the previous section (see
Fig.2). Each decoding block is fed with soft inputs and can
deliver soft outputs. This soft information is exchanged, in
an iterative process, between the channel decoder and the
source decoder. Classically, this soft information is the so-
called eztrinsic probability of each bit (i.e. the a posteriori
probability of the bit, divided by its a priori probability).
The iterative receiver estimates the transmitted message b so
as to iteratively optimize the maximum a posteriori (MAP)
criterion within each block, and considering the extrinsic in-
formation provided by the other block as an a prior:i proba-
bility. Thus, at a given iteration I, the decoding algorithm
proceeds in two steps as described below.

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP

4.1 Owuter BCJR channel decoder

In the first step, the BCJR channel decoder computes the
a posteriori probability Pr(d/y) for for every d € R
(all possible sequences) which is also equivalent to the
product of the marginals a posteriori probabilities (APP)
ngl Phcyr(d/yr) since the channel transmission is as-
sumed to be memoryless and the {dy} are assumed inde-
pendent. At any iteration I, the output of the outer BCJR
channel decoder is given by the extrinsic probability associ-
ated to the coded bit as follows:

PéCJR(dk/yk)
P}éCJR(dk)

where Kpcjr 1s the normalization factor such as
Epcar(de = 0) + Epcyr(de = 1) = 1; Pher(di) is the
a priori probability associated to the coded bit correspond-
ing at the interleaved extrinsic information (Fpg ,(dk))
computed by the SD-deflate decoder at the previous iter-
ation (i.e. J—1). The de-interleaved extrinsic information
FLoyr(dy) is then sent as an a priori input to the SD-deflate
decoder.

(4)

Epcsr(di) = Kposr

4.2 Inner SD-deflate source decoder

The second step, related to the inner source decoder SD-
deflate, consists in a projection of the distribution of the
APP evaluated on R, on the set of the APP distribution
compatible with the deflate structure codes and the syntax
of the html language. The distribution of the required APP,
denoted by PJ,; ,(d), is that which minimizes the Kullback-
Leibler distance given by:

Pip—destare(d) = arg min dist(Pp(d), Pa(d/y)) (5)

It has been shown in [12] that the required APP distribution
is given by :

Pr(d/y) ifdeD

Pt d) = { Xaep Pr(d/y) 6
SD*defla,te() {0 if d GR\D ()

At any iteration I, the output of the inner source decoder
(SD-deflate) is given by the extrinsic probability associated
to the coded bit as follows:

PéDfdeflate (dr/yx)

PéD—deflate(dk)

(7)

Eé’D*deflate (dk) = KSD*deflate

where Kgsp—_defiate is the normalization factor such as
Esp—defiare(de = 0) + Esp_geiare(de = 1) = 1;
PéD—deflate(dk) is the a priori probability associated to the
coded bit corresponding to the interleaved extrinsic infor-
mation (ELg;x(dk)) computed by the BCJR decoder at the
previous iteration (i.e. I—1). The marginal APP is deduced
from equation (5) as follows:

PéD*deflate(dk/yk) = Z P;'—D—deflate(d) (8)

dp:0,1

The de-interleaved extrinsic information EéD_deflate (di) is
then sent as an input of the BCJR decoder. The SD-deflate
decoder focuses on the distribution of the APP that maxi-
mize P;D 1z(d) which is equivalent to preserve the optimal
solutions with respect to the complete sequences and the
individual bits as follows:

dk = arg 52%3(1 log(d;D P;Dfdeflate(d)) (9)

Most of the required work is performed by a slight change in
the modified M-algorithm described in section 3: the prob-
abilities computed from the channel outputs are replaced by
the extrinsic values provided by the other blocks. As an
output, this version provides the set of M best paths which
are compatible with the deflate and html syntax. The only
additional computation is to marginalize the corresponding
probabilities on these M paths rather than on all feasible
sequences. Since (hopefully) these M paths are the likeliest,
this a rather valid approximation.

Rather than using the soft-outputs, as described in
the SOMA algorithm ([13], i.e. max-log-approximation of
the LLR), the SD-deflate M-Algorithm estimates the soft-
outputs using the LLR computed on all M previously ex-
tended paths. This method overcomes the problem of over-
estimating the LLR avoiding therefore the degradation of the
performance of the system,

5. SIMULATION RESULTS

The simulations are carried out on two html files. The first
one is a WAP file available in [14] which is a small file of size
413 bytes. It contains 60.5 % of tags compared to the total
number of characters in the html file. The second one is a
WEB file available in [15] which corresponds to a medium
file of size 3031 bytes, containing only 11.5 % of tags com-
pared to the total number of characters in the html file. The
performance of the proposed receiver is measured in terms
of symbol error ratio (SER) for various (Ey/Ny). Obviously,
since we aim at transmitting files to mobiles with small to
medium size screens, the file is likely to be not too large in
practical situations. Note also that, due to the nature of
the files, the percentage of tags increases when the file size
decreases. This impacts the efficiency of our method. The
simulations are carried out in an environment reminiscent of
the IEEE 802.11.a standard using the first operating mode
[16], which is intended to be used around 6dB. Therefore,
the specified convolutional encoder has the following charac-
teristics: a constraint length equal to 7, with a polynomial
generator presented by its octal representation [171,133] and
a code rate equal to 1/2.

The simulation results corresponding to the two html
files are respectively illustrated by the graphs given by Fig.
3 and Fig. 4. The iterative receiver is implemented with
the following values: M = 10, 7 = 5. Three iterations are
performed. Initially, the SISO SD-deflate is implemented
as described in section 3. For a given Fy/No equal to 6dB
(i-e. in the operating zone defined in the IEEE 802.11a), the
proposed iterative receiver reduces the SER by a factor 9
compared to the results achieved by a conventional decoder
using only a hard decision at the output of the BCJR channel
decoder (see Fig. 2). For this particular example, increasing
the parameter M to 20 does not improve the performance
of the iterative receiver (see Fig. 3). However the compu-
tational time increases approximatively by a factor equal to
2. As commented at the end of section 3, the SD-deflate
decoder is slightly modified in order to reduce the computa-
tional time of the decoding process using also M = 10 and
7 = 5. For the first html file, the simulation results provided
Fig 5, show that around 6dB, the performance remains un-
changed. However the computational time is reduced by a
factor of 1/3 compared to the initial version of the SISO
SD-deflate decoder.

6. CONCLUSION

This paper proposes an iterative joint source channel de-
coding approach allowing the error correction of corrupted
deflate compressed html pages during their transmission via
a noisy mobile channel. The proposed receiver is based on
the turbo principle where the inner SISO decoder is based

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP

on a modified version of the generic sequential decoding M-
algorithm. This new decoding algorithm exploits the gram-
matical rules of the second specified compression mode given
in the deflate standard combined to the syntax rules of the
html language. The provided simulation results, in a mobile
environment, show that the proposed receiver improves the
SER performance without introducing additional redundant
information in the transmitted deflate bitstream.

M-Algorithm

Sequential decoding using the deflate codes and HTML syntax

Figure 1: Sequential decoding M-algorithm adapted to the
Deflate codes and the syntax of the html language (SD-
deflate)

- Source i
HTML a o
b, Coding Channel Coding | Modutation
File (deflate) (Convolutional Coding) (BPSK) e
HTML y
ML [Deciion] AwGN_ by
File
AppP’
]
Sequential Channel Y
Decoding || S
deflate hem (d) E e (dy) (BCIR)
Ebsir (d,) 1 Ehsir (dy)
—_

Iterative receiver

Figure 2: Communication system using iterative joint source
channel decoding

BCJR+Hard decision
| ——lteration1 M=10
lteration2 M=10
i1 — — —lteration3 M=10

| —=— Hteration3 M=20

4 4‘5 5 5‘5 é 5;5
EbsMo (dB]

Figure 3: SER performance of the iterative receiver applied

to the first html file

75

—#— BCJIR+Hard decision
— — — Iteration] N=10
: Tteration2 W=10
3| —— Iterationd N=1

SER

Et/No (dB)
Figure 4: SER performance of the iterative receiver applied
to the second html file

...... e
3| —+— BCJR+Hard decision |
—+— Iterationl M=10 r

Iteration2 M=10
.| —S— Iteration3 M=10 H
| ———Iteration3 M=20 E

4 4 : 5 5 5 ! 5 é [i 5 '; 7.5
Eb-Ho (dB)

Figure 5: SER performance of the iterative receiver applied

to the first html file using modified SD-deflate

REFERENCES

[1] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masin-
ter, P. Leach, and T.Berners-Lee, “Hypertext transfer
protocol- http/1.,” June 1999.

[2] L.P. Deutsch, “GZIP Compressed data format specifi-
cation,” in rfc1952, May 1996.

[3] L.P. Deutsch, “ZLIB Compressed data format specifi-
cation,” in rfc1950, May 1996.

[4] S. Lonardi, W. Szpankowski, and M. D. Ward, “Error
resilient 12’77 data compression: Algorithms, analysis,
and experiments,” in IEEE Transactions on Informa-
tion Theory 53(5), May 2007, pp. 1799-1813.

[6] J. Ziv and A. Lempel, “A universal algorithm for se-
quential data compression,” in IEEE Transactions on
Information Theory, 23(3), May 1977, pp. 337-343.

[6] V.B. Balakirsky, “Joint source-channel coding with
variable length codes,” in Proc. Intl. Conf. Inform. The-
ory, 1997, p. 419.

[7] R. Bauer and J. Hagenauer, “Turbo-fec/vlc-decoding
and its application to text compression,” in Proc. of the
Conference on Information Sciences and Systems, 2000.

[8] L.P. Deutsch, “DEFLATE Compressed data format
specification,” in rfc1951, May 1996.

[9] J.B. Anderson and S. Mohan, “Source and channel cod-
ing: an algorithmic approach,” in Kluwer Academic
Publishers, Norwell, MA 1991.

[10] Z. Jaoua, A. Zergainoh-Mokraoui, and P. Duhamel,
“Robust transmission of html files : Iterative joint
source-channel decoding of lempel ziv-77 codes,” in
IEEE International Conference on Acoustics, Speech,
and Signal Processing, 2008.

[11] “http://www.w3.org/markup/sgml/” .

[12] P. Magniez, B. Muquet, P. Duhamel, V. Buzenac, and
M. deCourville, “Optimal decoding of bit-interleaved
modulations: Theoretical aspects and practical algo-
rithms,” in 2nd Intl. Symposium on Turbo Codes and
Related Topics, Sept. 2000, pp. 284-287.

[13] K. K. Y. Wong and P. J. Mclane, “Bi-directional
soft-output M-algorithm for iterative decoding,” in
IEEE International conference on Communications,2,
Juin 2004, pp. 792-797.

[14] “Samples database of nokia mobile internet toolkit
www.forum.nokia.com/tools, worldcup.html” .

[15] “ftp://ftp.uu.net/graphics/png/documents/zlib/zdoc-
index.html” .

[16] “http://www.ieee802.0rg/11/” .

