16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP

LATTICE IMPLEMENTATION OF SUM-SQUARED AUTO-CORRELATION
MINIMIZATION (SAM) CHANNEL SHORTENER

Emna Ben Salem', Roberto Lopez-Valcarce?, Sofiane Cherif' and Hichem Besbes'

! Research Unit TECHTRA, Ecole Supérieure des Communications de Tunis Sup’Com, Tunisia

emna.bensalem @isetma.rnu.tn,

ABSTRACT

The Sum-squared Autocorrelation Minimization (SAM) al-
gorithm is one technique proposed for blind adaptation of
the time-domain equalizer in multicarrier systems. The SAM
cost depends on the effective channel autocorrelation, which
will not be changed if any TEQ zeros are flipped over the unit
circle. As a consequence, the SAM cost is multimodal, and
different minima may yield very different shortening perfor-
mance. In order to aid SAM converge to a suitable mini-
mum, we impose a minimum phase constraint on the TEQ
by means of the lattice structure and develop a lattice version
of SAM with low computational complexity.

1. INTRODUCTION

Multicarrier modulation techniques such as discrete multi-
tone (DMT) and orthogonal frequency division multiplexing
(OFDM) are adopted in broadband communications as an
effective tool to compensate the time dispersiveness of the
channels. In multicarrier systems, a cyclic prefix (CP) is ap-
pended to each symbol, after the IFFT operation, to ensure
tone orthogonality after propagation through the channel. If
the CP is longer than the channel impulse response (IR), de-
modulation can be implemented by means of an FFT and
simple one-tap frequency domain equalization. On the other
hand, when the channel IR is longer than the CP, interference
between different symbols and carriers (ISI and ICI) arise.

To combat ISI and ICI, a common approach is to insert
a time domain equalizer (TEQ) at the receiver, previous to
the FFT operation. The TEQ is a finite impulse response
(FIR) filter whose purpose is that the delay spread of the
combined channel-plus-TEQ impulse response is not longer
than the CP length. The TEQ design problem has been ex-
tensively studied in the literature [1] for the case in which the
channel IR is available. This knowledge is usually gathered
by means of training symbols inserted in the data sequence.
To avoid some drawbacks of supervised channel shortening
approaches, blind algorithms for TEQ adaptation have also
been proposed [2, 3, 4]. As opposed to trained designs,
which require periodic existence of a training signal, blind
adaptive techniques can lead to reduced complexity and if
there are any further variations in the channel, a blind short-
ener can track those variations.

In [3], it is proposed to update the shortener by minimiz-
ing the sum of the effective channel squared autocorrelation
(Sum-squared Autocorrelation Minimization, SAM). SAM
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Figure 1: System model (CP: cyclic prefix, P/S: parallel to
serial, S/P: serial to parallel).

is a blind adaptive channel shortening algorithm which at-
tempts to suppress the effective channel autocorrelation out-
side a window of length equal to that of the CP. However,
the cost function serving as starting point to the development
of SAM is always multimodal [2]. Certain considerations,
presented in Section 3, motivate the use of a minimum phase
TEQ in order to ensure convergence of the SAM algorithm
to a good stationary point. This minimum phase constraint
can be effectively imposed if a lattice structure is adopted.

The paper is organized as follows. Section 2 gives the
system model and notation. Section 3 motivates the use of
the lattice structure to implement the TEQ, whereas Section
4 develops the steepest descent implementation of the lattice-
based SAM algorithm. Section 5 determines the optimal step
size used to improve convergence rate of the proposed algo-
rithm. Section 6 presents comparative simulation results for
lattice-based and the original SAM algorithms. Conclusions
are given in Section 7.

2. SYSTEM MODEL

Multicarrier modulation divides the transmission bandwidth
into N parallel tones by means of an inverse fast Fourier
transform (IFFT). A CP is appended to each symbol to en-
sure tone orthogonality after propagation through the time-
dispersive channel. Demodulation of the received signal is
performed by an FFT.

The discrete-time system model is shown in Fig. 1. Let
x(n) be the source sequence to be transmitted through a linear
channel with IR vector h having L, + 1 taps. The real-valued
process x(n) is modeled as zero mean, wide sense stationary
with unit variance, and white (this property holds provided
that sampling is done at twice the signal bandwidth). The
noise b(n) is a zero mean white Gaussian process with vari-

ance 0'3 uncorrelated with the transmitted signal x(n). The
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discrete-time signal after sampling at the receiver is then

Ly

r(n) = Zh(l)x(nfl)er(n). (€))

1=0

The received data will be filtered through an L,, + 1 taps TEQ
with an IR vector w to obtain the output sequence y(n) given
by

Ly

y(n) =Y wl)r(n—1) = wlir,, ?2)

=0
where w = [w(0),w(1),---,w(L,)]" and r, = [r(n),r(n —
1),---,r(n—L,)]". The effective channel is denoted by the
convolution ¢ = hxw and has L. + 1 coefficients, where
L.=L,+L,.

3. LATTICE STRUCTURE OF SAM EQUALIZER

The short autocorrelation of the effective channel is a prop-
erty that is degraded by a long channel impulse response.
SAM is a blind adaptive channel shortening algorithm that
attempts to restore this short autocorrelation property. It per-
forms a gradient descent of a cost function defined as the
sum of the squares of autocorrelation coefficients of all lags
greater than the desired channel memory. This cost function
is given by

Lc
J(w) =D [Rec(1)2, 3)
I=v

where v is the cyclic prefix length, and R..(I) =
Zﬁ;o ¢(n)c(n—1) is the autocorrelation of the overall IR ¢(n).
A suitable constraint has to be imposed on w in order to
avoid the trivial solution w = 0. Note that if ¢(n) = 0 for
n > v, then R..(I) =0 for [ > v so that J will be zero. In
other words, a short channel implies a short autocorrelation.
The converse is not true: for example, consider the IR

a, n=0,
a—1, n=1, “)
a(az—l), 2<n<L.

c(n) =

with |a| < 1. Then for sufficiently large L., one has R..(/) =
6(1), whereas the IR cannot be said to be ’short’ (just take
|a| close to 1). This, of course, is due to the fact that c(n)
in (4) resembles the IR of an allpass system. Nevertheless,
shortening R..(I) seems to be a useful way to attempt channel
shortening in practical scenarios [3].

Another important observation regarding the SAM cost
(3) is its invariance to flipping any of the zeros of the overall
transfer function C(z) = Zln‘;o ¢(n)z~" with respect to the unit
circle, since this operation leaves R..(/) unchanged. Since

any zero of the TEQ transfer function W (z) = Zﬁiow(n)z‘"
is a zero of C(z), flipping the TEQ zeros leaves the cost J
unaltered. As a result, for any point on the cost surface there
will be 2' points giving identical cost elsewhere, and in par-
ticular, any minimum (local or global) will be repeated 25
times [2]. These minima may or may not yield good perfor-
mance in terms of shortening the effective channel IR. For
example, consider a channel with IR 4(n) given by (4). Then
the 2-tap TEQs wi = [1 —a]” and wy = [—a 1]7 result in
identical short autocorrelation. But while w; yields good
performance in terms of overall IR shortening, w, does not.

r(n) ui(n)

Figure 2: Lattice implementation of the TEQ.

In twisted pair lines the channel is well modeled by an
IIR filter with a slowly decaying IR [5, 6]. This means that
the channel transfer function presents poles inside, but very
close to, the unit circle. An effective TEQ will place zeros on
these critical poles to cancel them out. However, proximity
to the unit circle means that small perturbations unavoidable
in algorithm implementation may produce zero flipping, in
such a way that the adaptive TEQ may get stuck in an un-
desirable minimum. To ensure SAM algorithm convergence
to the good TEQ zeros cancelling poles causing the tail, we
propose imposing a minimum phase constraint on the TEQ.
This can be effectively implemented by using of the lattice
structure [7].

The lattice implementation of the TEQ is shown in fig-
ure 2. The transfer function of lattice filter is determined by
the reflection coefficients k,, for p=1,2,--- L,,. Stage out-
puts are obtained as follows: with u;(n) =vi(n+1) = r(n),

vp(ntl1) =

up(n) =

kpflupfl(n) “'fol(n)v (5)
kp—1vp—1(n) +up—1(n) (6)

and the output TEQ is given by

L,
y(n) =r(n)+ Y kyvp(n). )

p=1

A necessary and sufficient condition for this filter to be
minimum phase is that all reflection coefficients have mag-
nitude less than unity. We propose to check this condition as
the algorithm progresses. The mapping from transversal to
lattice form may be achieved via the Levinson-Durbin recur-
sions [7]. Note that the lattice structure effectively imposes a
monic constraint on the TEQ, i.e. the first tap is always 1.

To present the cost surface behavior of SAM lattice
equalizer, we consider the same example treated in [3]. The
channel is h = [1 0.3 0.2]7, the cyclic prefix is 1 sample,
the lattice shortener has three taps (L,, = 2) and no noise is
considered, with lattice implementation the TEQ first tap is
already equal to 1. A 3D plot of the SAM cost function is
shown in Fig. 3, in terms of the TEQ reflection coefficients
ki and k;. We observe that in the working range |k,| < 1,
the SAM cost for this example is convex and has a unique
minimum. Whether this property can be extended to general
channels and higher-order shorteners remains an open issue
for further research.

4. ADAPTIVE ALGORITHM

Under the assumptions on x(n), b(n) in Section 2, the auto-
correlation sequence of the TEQ output y(n) satisfies

Ryy(1) = Rec(1) + 03 Runw (1), 8)
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Lattice SAM cost

Figure 3: SAM cost function versus k; and k3.

where R, (1) = ,Llwow( yw(n—1). For typical SNR values,
the noise variance is small and the second term in (8) can be
ignored [3]. Then the SAM cost can be approximated by the
sum squared autocorrelation of the TEQ output sequence:

L.
k)~ 3 Ry (1), Q)
I=v

where k is the vector of TEQ reflection coefficients. Given
the output signal y(n), the task is to update k so as to mini-
mize (9). This can be done by means of a gradient descent:

k(n+1)=k(n)— puVyJ, (10)

where VyJ is the gradient of J evaluated at k = k(n), and
u is the step size. To implement (10), we define an instan-
taneous cost function by replacing the expectation operation
by a moving average over a defined window of length M,

s~ 3|8 -y
~ y , (11)

I=v kel

2
, with &(n,1) =

where I, = {n,n—1,...,n— M+ 1}. The partial derivative
of J with respect to k), is given by

o) 2 L
(9k Mzzé( m1) 8(k - (12
Now one has
o&(nl) oy(k—1) | dy(k)

ok, = k%:,, y(k)é’ikp—'— ok, y(k—1)|(13)

~ ) kvp (k=1 +vp(k)y(k=1)]  (14)
kel,

~ vp(n)y(n—1). (15)

In (14) we have neglected the dependence of the signals v;(n)
with the reflection coefficients (see (7)), whereas (15) ne-
glects all but one term in the summation in order to keep
computational complexity at bay. Let us define the vectors

Yo = [yn—v) yn—v-1) y(n—Le) 17 (16)
g = [ &) Emv+1) EnL) ) (A7)
v(n) = [ vi(n) va(n) v, (n) 1" (18)

Then, after absorbing the factor % into the stepsize u, the
proposed update rule can be written as

k(n+1)=k(n) — uv(n)e(n), e(n)=E2ly,. (19)

The lattice version of SAM (19) requires on the order of
L,,(L; — v) multiplications and additions per update, which
is comparable to that of the original tapped-delay-line imple-
mentation.

with

5. NORMALIZED SAM ALGORITHM

To improve the convergence rate of the lattice SAM algo-
rithm, a variable stepsize can be used in the update rule:

kp(n+1) =ky(n) — wayp(n), 1<p<L,, (20)
where y,(n) = v, (n)Ely,.

In order to determine the optimal value of p,, we propose
to minimize, at each n, the a posteriori cost function JP%

depending on the updated TEQ output signal yP*(n):

LW
+ D kp(n4 1% (n). @01
p=1

Y (n) = r(n)

To determine v}, (n), we exploit the recursive relations (5),

at a posteriori time. By neglecting terms proportional to u™
for m > 2, it can be verified that v} (rn) and u},*(n) are re-
cursively computed as follows:

W) = () — paty (), 2)
uh™(n) = up(n)— pasp(n), (23)
where
tpr1(n) = t,(n—1)+kp(n)sp(n—1)+7y,(n)u,(n—1),
Spr1(n) = kp(n)tp(n)+yp(m)vp(n) +sp(n).

Neglecting again terms in p™ for m > 2, and replacing (20)
and (22) into (21), the a posteriori TEQ output yields:

Ly
(Zk n)+vp(n )yp(n)> . (24)

() =

We define the a posteriori cost function at the n™ iteration as

L. n—1 2
=3 ( 2 YRyk=0)+y"  (m)y(n—1) | .
I=v \k=n—M+1
(25)
Replacing the expression of yP°(n) from (24) into (25), it
follows that

L. Ly 2
JP = J+”r% Z)’(n_l)z (Z ky(n)t,(n) +Vp(n)7p(n)>
I=v p=1

LM
- “n—‘n Yn ( z k

p=1

(n)tp(n) +vp(n )?’ﬁ(”)) .

The value of w,, minimizing JP° is found to be

:'T
poPt = Zn Y . (26)

liy(n—l)2<zk n)ty(n) +vp(n )?’P(”))
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Using this optimal step size at each iteration, the updating
rule for the lattice version of SAM will be given by

kp(n+1) = ky(n) — Py, (n), @7

where 0 < o < 1 is a fixed stability factor.

6. SIMULATION RESULTS

We study the performance of the proposed TEQ implementa-
tion in an ADSL environment, where the transmission line is
modeled as an IIR channel. Parameters were chosen to match
the ADSL standard system: the cyclic prefix is 32 samples,
the FFT size is 512, 4-QAM signaling is used on all of the
tones, additive white gaussian noise at -140 dBm/Hz, and no
crosstalk. We consider the carrier serving area (CSA) test
loops, which is the standard channel model for DSL systems
[8], combined with a plain old telephone service (POTS)
splitter. The sampling frequency is 2.208 MHz.

The DSL channel is characterized by its long tail, caused
by poles close to the unit circle. These offending poles can be
cancelled by a minimum phase TEQ. First, we consider CSA
loop 1, a 3-tap TEQ implemented with the lattice structure
and M = 100 for the moving average window length. The
performance metric is the mean square deviation (MSD) with
respect to the optimal reflection coefficients corresponding to
the minimum of the SAM cost:

MSD = ||k(1) — kop|*- (28)

For a 3-tap TEQ, kopt = [-0.991  0.549]. Using the update
rule (27), Fig. 4 shows the MSD variation during normalized
lattice SAM algorithm adaptation for different values of o,
the MSD curves are obtained by averaging several indepen-
dent runs. Notice that when « is increased, the adaptation
noise in steady state increases, as could be expected.

After convergence of the normalized lattice SAM algo-
rithm, the shortened channel is compared to the original one
in Fig. 5. To compare convergence speed of the normalized
lattice SAM algorithm to the original lattice algorithm, we
have tabulated in Table 1 the MSD values achieved after 3000
iterations. For each algorithm the MSD value is determined
for optimal fixed convergence factors (the values of p and o
that result in smallest MSD for each algorithm).

In the sequel we consider o = 1072, Next we provide the
performance comparison in term of frequency signal to noise
ratio (SNR), using the sub-channel SNR as defined in [9] and
which incorporates ISI and noise distortion :
ze,ilcivin‘z
o0 |Craul* + 0 Wi

SNR; = (29)

where Uﬁ i G,i i Cﬁvm S Wi and Civall are the transmitted signal
power, channel noise power (before the equalizer), effective
channel gain inside the window of width v, equalizer gain,
and the ISI path gain in the i sub-channel, respectively. The
equivalent path gains in sub-channel i are the i FFT coeffi-
cients of the ¢l ;,, ¢!, and w' effective channels and equal-
izer impulse responses. Fig. 6 presents a comparative of dif-
ferent algorithms in terms of SNR; for 3-tap equalizers and

after algorithm convergence.

MSD

| -~ ~a=510"
a=10"2
=107
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Figure 4: Mean Square Deviation (MSD) versus iteration
number.
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Figure 5: Original and shortened impulse responses for CSA
loop 1.

Another measure of shortening performance is the
achievable bit rate, approximately given by

SNR;

=), (30)

R=)"log,(1+

ieS

where S is the index set of used sub-channels and T is
the SNR gap to Shannon capacity, assumed to be constant
over all sub-channels. Fig. 7 shows the bit rate evolution
over time, comparing the normalized lattice and the origi-
nal transversal implementations of SAM. The performance
of the maximum shortening SNR (MSSNR) TEQ given in
[10] is shown as well as a benchmark. Table 2 summarizes
the achievable bit rate R for CSA loops 1 — 8 using a 6 dB
margin. For all algorithms, we use the unit tap constraint; the
SNR; is computed for all possible delays and the best one is
taken. From Table 2, we can see that the normalized lattice
SAM equalizer outperforms the transversal SAM algorithm
(which is updated with a moving average implementation as
well).
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Figure 7: Achievable bit rate versus iteration number, CSA
loop 1.
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Table 1: MSD for CSA loop 1 shortened with the unnormal-
ized and normalized lattice SAM algorithms.

CSA loop || Transv. SAM | Lattice SAM || MSSNR bit
number % % rate, Mbps

1 51.53 77.16 8.1510

2 54.67 79.05 9.7368

3 68.37 90.30 8.3605

4 52.11 89.33 8.0593

5 60.19 75.56 8.5252

6 57.42 91.31 8.3591

7 46.51 92.79 5.4010

8 40.90 77.96 6.2810

Table 2: Percentage of MSSNR achievable bit rate for the 8
CSA loops shortened with the transversal and lattice SAM
algorithms.

7. CONCLUSION

In order to impose a minimum phase constraint, the lattice
structure has been used for implementation of the TEQ. An
implementation of the SAM adaptation algorithm has been
proposed for the lattice structure, with computational com-
plexity similar to that of the original version. Convergence
of this lattice SAM algorithm has been observed, yielding
comparable performance, in terms of achievable bit rate, to
the optimal MSSNR TEQ.
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