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ABSTRACT

In this paper, we develop a novel method to detect salient
points in an image from a multiresolution representation.
Our contribution is twofold. Firstly, the multiscale rep-
resentation results from the Dual Tree Wavelet Transform
(DTWT) since it enables a great directional selectivity with
a reduced redundancy ratio. The second novelty of our work
relies on the reliable outliers statistical tests that we apply to
detect salient points from the DTWT coefficients. The exper-
iments show the robustness of the approach to noise.

1. INTRODUCTION

During the past years, a great interest has been given to glob-
ally describe any image by defining appropriate signatures
built on its keypoints or Salient Points (SP). By SP, we mean
pixels carrying enough information about the local neighbor-
hood so that they will be distinct from their nearest neigh-
bors. They are also characterized by their robustness to scal-
ing, rotation and illumination changes. Their positions are
invariant with respect to geometric and radiometric distor-
tions [1]. Typical examples of SP are blobs, corners and
junctions. SP detection is a key issue for various matching
problems in computer vision such as image retrieval [2, 3],
object recognition [4]. SP detectors can be classified in two
categories. The first one employs contours [5]. However,
this class of detectors is not always the most suitable one
since edge extraction is very sensitive to noise and the con-
tour chaining may not be well in cluttered scenes. In the sec-
ond class of detectors, the Harris detector [6] is the most em-
ployed technique. It consists in locating the local changes in
the image by using the first derivative. This detector is robust
to image rotation, additive noise and illumination changes
but it is not designed for deriving SPs at different scales.
Recently, it has been modified to work as a scale-invariant
detector [7]. Another solution is to perform the SP detec-
tion in a transform domain which is expected to make the
problem easier to solve. To this respect, multiscale trans-
forms are suited to this task since they decompose the input
image into different scales and orientation that are coherent
with the human perception. In [3], a multiresolution frame-
work is retained to detect global as well local image vari-
ations and the interest points are assumed to correspond to
areas where the local contrast is the highest. However, the
lack of shift invariance and the directional selectivity of the
wavelet transform has motivated the choice of more sophis-
ticated scale-space transforms [8]. In [9], the dual tree com-
plex wavelet transform is used to generate an “accumulated
energy map” that enables the keypoint selection. However,
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it is worth noting that heuristic criteria have been considered
at the detection step. In this paper, we propose a novel mul-
tiscale keypoint detection. Our approach departs from the
conventional ones: instead of using empirical criteria, SP ex-
traction is based on outliers statistical tests performed at dif-
ferent scales. Furthermore, we will operate in the Dual Tree
M-band Wavelet Transform (DTWT) since it has been recog-
nized to offer a great directional selectivity and to be nearly
shift invariant with a limited redundancy w.r.t. the dual tree
complex wavelet transform [10]. The rest of this paper is
organized as follows. Section 2 is dedicated to a review of
DTWT. In section 3, we describe the statistical behavior of
wavelet details coefficients. In Section 4, we briefly describe
the most pertinent outliers statistical tests. Then, in Section
5, we explain how we apply them for detecting SP from the
resulting DTWT coefficients. In Section 6, experimental re-
sults are given and some conclusions are drawn in Section
7.

2. A BRIEF REVIEW OF M-BAND DTWT

Multiresolution decomposition allows a multiscale analysis
of the details contained in the image corresponding to ghys—
ical structures. An M-band wavelet transform of .Z*(R),
(where M € N*) is considered as a very versatile multi-
scale decomposition. It is characterized by a scaling func-
tion ¢ € £?(R), and M — 1 wavelet functions ¥, € Z*(R),
(m=1,...,M — 1) that satisfy the following dilation equa-
tions:

ViER, (1) = VM Y ho(k)o (Mt —k) (1)

keZ
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where the h,, € (>(Z). The set UM- (M~ 2y, (Mt —
k)} j kez is an orthonormal basis of .#?(R) if the para-unitary
condition holds for any couple (n,m’) in {0,..., M —1}2:
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where * denotes the Fourier transform. Therefore, hg is a
low-pass filter, hy,...,hy—o are band-pass filter and fyy—; is
a high-pass filter. Consequently, the expansion of any 1D
signal f € .#%(R) over J resolution levels can be expressed
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as:

f@) =X ay(k)M2 (M1 —k)
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The coefficients a; correspond to a coarse version of f
whereas d,, ; correspond to details at the scale j in the m-
th band. The M-band decomposition is applied to 2D signals
of & 2(Rz), in a separable manner. At each resolution level,
M? sub-bands are then generated.

A dual M-band multiresolution analysis is derived thanks
to a scaling function ¢ and mother wavelet functions w7,

(m=1,...,M —1) that are related to the primal wavelet func-
tions w (m =1,...M — 1) through a Hilbert transform.
More precisely, form=1,...,M — 1, we obtain the following

relationships in the Fourier domain:

vl () = —isign(w)¥n (@), |¥(0)] = Gm(@) )

where sign is the signum function. In a similar way, it is easy

to obtain scaling equations for Y involving real-valued se-
quences (gm[k|)rez- A dual M-band orthogonal wavelet basis
of L?(R) is obtained if also g,, satisfies para-unitary condi-
tions. The 2D dual tree M-band wavelets decomposition can
be generalized from the 1D dual-tree decomposition in a sep-
arable manner for the primal and the dual tree. Furthermore,
it is advantageous to add preprocessing and postprocessing
steps to the whole DTWT [11]. More precisely, preprocess-
ing enables to extend the formalism of DTWT concerning
analog images to the underlying discrete images whereas a
linear postprocessing aims at improving the directional se-
lectivity of the decomposition [10]. As a result, the decom-
position ouputs postprocessed coefficients of the primal and
the dual tree, respectively denoted by &; [k, ] and 5ﬁm [k, 1]

where m = 1,...,M?> — 1 and [k,[] are the spatial indices.
Fig. 1 provides a generic block-diagram of the 2D DTWT.
After this brief overview on M-band DTWT, we are inter-
ested in studying the statistical properties of the resulting co-
efficients in order to built efficient SP detectors.

3. A STATISTICAL BEHAVIOUR OF WAVELET
DETAILS COEFFICIENTS

In [12], the distribution of the wavelet coefficients could be
modelized by a Generalized Gaussian (GG) distribution. The
GG distribution depends on three parameters (U, @, ) where
U, @ and B are respectively location, scale and shape param-
eters. An example of fitting in Fig. 2 shows the histograms of
wavelet coefficients of the cameraman image for M = 2 and
J = 1. As well as many generalized distributions, the GG dis-
tribution derives from power transformation introduced by
Box-Cox [13]. The goal of the power transformations is to
preprocess data from any distribution to data that could be
modelized by a Gaussian distribution. Moreover, if we as-
sume that the data comes from a GG variable Z(u, a, ), the

power transformation f(Z) = (@)M 2 provides data that
could be modelized by a Gaussian distribution.

Most of the reported Outliers Statistical Test (OST) require
that the considered data have a Gaussian distribution. There-
fore, it seems natural to preprocess the wavelet coefficients at
each scale j and each subband m in order to transform their

distribution into a Gaussian distribution. More precisely, we
map the wavelet coefficient &, j[k, /] at each location (k,[) to

Eilhl] = F(G k1)) = (OB = Bnslyg, 2 ()

O, j

where [y, j,0,,; and By, ; are the GG density parameters that
could be estimated by maximum likelihood estimation [14].
The same mapping is applied to the second postprocessed
ouputs coefficients of the primal and the dual tree 5,7) k1]

to obtain the related Cf;{ ;& 1]. In Fig. 2, the histograms of {
of the cameraman image for M = 2 and J = 1. The shape of
these histograms are close to those of Gaussian data with a
distortion at the right due to the power transformation. In-
deed, the negative and positive coefficients with significant
magnitudes simultaneously contribute to high positive val-
ues. In the sequel, we will show that the outliers corre-
spond to the distorted parts of the transformed coefficients
histograms.

4. A BRIEF REVIEW OF OUTLIERS STATISTICAL
TESTS

After performing the power transformation mapping, it is
possible to carry out the detection of the SPs among the
wavelet coefficients.

An outlier is defined as an observation generated from a
different distribution from the one associated to the whole
data sample. In this paper, we assume that SPs can be ob-
tained by locating wavelet coefficients at each orientation
and scale that have significant magnitude related to those of
their neighbour coefficients. As most of the OST require
that the considered data have a Gaussian distribution, we
define a wavelet coefficient that have significant magnitude
as an outlier of the transformed coefficients { and {y intro-
duced in the previous section. Let {V = {{(1),...,{(N)} be
the transformed coefficients sorfed in ascending order of a
window where the central coefficient has the maximal value
C(N). Resulting from the power transformation of Eq.( 6),
we can assume that ¢V is an independent realization of a
Gaussian random variable. Generally, an outlier corresponds
to a measure that has a significantly different magnitude w.r.t.
the remaining measures in the data set. If we assume that
all the values in ¢V are non-negative, the maximum value
C(N) is considered as a suspect value. Therefore, the prob-
lem amounts to decide whether {(N) is an outlier or not and
more precisely to a decision problem with the two following
hypothesis Hy and H;:

Hy:{(N)~G, H,:{(N)=G 7)

where G is the density function of the transformed coeffi-
cients. As all statistical tests, the decision is based on a statis-
tic T whose distribution is well known under the hypothesis
Hy. If (N) = G, the value ¢, of the statistic T computed on
the sample leads to a small value of the p-value = 1 — F(t;)
where F is the distribution function of T under Hy. The fi-
nal decision is obtained by the use of a critical value 7, =
F~!(1 —a) where a is a significance level of adjusted by the
user:

Ny =G if ty>t.=F '(1-a). (8)
The final decision is therefore equivalent to:
E(N)»G if p—value<a. 9
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Among the most known OST, more attention is paid to the
Dixon test and the Grubbs test. The first one (the Dixon test)
is based on the difference of the suspect value {(N) from its
nearest one (N — 1) related to the range of all the values of
sample [15]. The Dixon test employs an experimental statis-
tic Tpixon called the Q-value defined as follows:

EWN) —EIV-1)
cN)—¢(1)

Tpixon 1s compared to a threshold Qi which could be viewed
as a critical Q-value found in the Dixon table only for N < 30.
If Tpixon > Qcrit, the suspect value can be judged as an out-
lier and consequently as a suspect salient point. The deci-
sion criterion based on the maximum of sample is similar to
the classical criteria applied in SP detection in the wavelet
transform domain reported in [16][9]: a coefficient J; [k, 1]
is retained if |8; [k, ]| > A.max ;) [8jm(K',I")| where A is
a threshold lower or equal to 1 subjectively adjusted. It is
worth pointing out that our contribution consists in aplying a
critical threshold deriving from a statistical test.

The Grubbs test evaluates how far the suspect value is from
the other sample measures [15]. The distance is computed
w.r.t the arithmetic mean of the data { normalized by the
empirical standard deviation of the sample s. The statistic
TGrubps Of this test is therefore:

Em -&1

Tpixon = ( 1 0)

1)

TGrubbs =

The suspect value §(N) is detected as an outlier if Tgypps >
Zcrit with:

2 1/2
(N—1) Ha/NnN-2)
Zcrit = ) 2 9 (12)
VN \N-2+ N N-2)

and where t(za INN-2) denotes the critical value of the Student

distribution with N — 2 freedom degrees and a significance
level equal to a/N.

After recalling the basic background on DTWT and OST, we
are now able to describe the SP detection method we propose.

5. PROPOSED SP EXTRACTION BY OUTLIERS
STATISTICAL TESTS

Here, SPs correspond to wavelet coefficients at each orienta-
tion and scale that have significant magnitude related to those
of their neighbour coefficients. More precisely, we consider
that a SP has significant coefficients in at least two wavelet
subbands at the same scale, oriented in different directions.
Indeed, for a fixed scale and for each location, if two wavelet
coefficients of two different subbands are judged as two out-
liers, then this position corresponds to SP location for that
scale. Therefore, the SPs extraction algorithm is applied in
the DTWT domain through OST according to the following
steps.

o Step 1: Power transformation. We start by estimating the
parameters of the GG distribution of each subband (m, j).
Then, we apply the aforementioned power transformation of
Eq. (6) in order to obtain transformed wavelet coefficients
that approximately have a Gaussian density.

e Step 2: Outliers detection. In each subband (m,j) of

transformed coefficients, a sliding window of size (n,,,m,,)
centred at the current location [k, ] is used. At this point, we
test whether a suspect value is an outlier coefficient or not.
More precisely, a suspect value is found when the coefficient
located at the center of the sliding window takes the maxi-
mum value within that window. Giving a significance level
a, either Dixon or Grubbs tests is applied in order to judge
if the window’s center is an outlier related to its neighbours.
As a result, we obtain sets of outlier coefficients in all the
possible orientations m.

o Step 3: SP detection of the considered scale. The singu-
larity of SP is exploited by this process: a location is judged
as a SP if two outlier coefficients are at least detected at the
step 2 in the same position by scanning all the subbands at
the same scale j. Consequently, we obtain sets of possible

SP in all possible orientations (m,m).

We summarize the detection results at all scales: we locate
each SP of the first scale on the image by a circle with a ra-
dius proportional to the last scale j at which it was detected.
Fig. 3(a) shows an example of SPs detection by using the
Grubbs test for M =4, J =2 and a = 0.1 on a synthetic and
binary image.

A parallel illustration of our SP detection approach is pro-
vided by a p — value map based on the existing relation-
ship between outlier decision of the statistical test and its
p —value. Indeed, we deduce from Eq. (9) that an outlier is a
suspect coefficient with small p — value w.r.t the significance
level a. Consequently, each subband coefficient is classified
into one of the 3 following classes.

e Outlier coefficient: a suspect coefficient such as p —
value < a.

e Suspect but not an outlier coefficient: a suspect point such
as p —value > a.

e Not a suspect coefficient: the window’s center coefficient
is not the maximum of that neighborhood. The statistical test
is not applied and then no p — value is provided. We set ar-
bitrarily the p — value to 1 which is the maximum possible
value of p —value.

As a result, the illustration is performed according to the fol-
lowing steps of the algorithm.

e At step 2: at each subband (m, j), we assign a p — value
to each coefficient according to its class (outlier, suspect, not
suspect).

e At step 3: at each scale, a SP is detected at a position [k,]]
if this position corresponds to outlier coefficients in at least 2
subbands. The related p — value are less than the significance
level a. Consequently, their maximum is less than a and we
retain this maximum value in the p — value map at location
[k,1] at scale j. By convention, we have decided that a SP
is detected in the full resolution image if its corresponding
coefficients are SP in all the resolution levels.

Fig. 3(b) shows an example of the global p — value map of a
test image.

6. EXPERIMENTAL RESULTS

In our experiments, two gray images were used as test im-
ages. The first one was artificially created containing junc-
tions of different sizes at different scales. The second one is
the “cameraman” image. Our detector is compared to the de-
tector (say detector A) based on the accumulated map of key-
point energies proposed in [9]. For both detectors, we will
report the results achieved with the best parameters adjust-
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ment. More precisely, we have tested M =2 and J = 2,3,4
for the DTCWT related to the detector A. Concerning our de-
tector, the DTWT was tested with M =2,3,4and J =2,3,4.
The best results of detector A are obtained by using the Dual
Tree Complex Wavelet Transform (DTCWT) with M =2 and
J =4 as proposed in [9] whereas our detector operates with
Meyer wavelet transform for the DTWT with M = 4 and
J = 2. We can note that increasing the subband number M
improves the detection results since it yields a greater num-
ber of spatial analysis directions. Our approach require to
tune the size of the sliding window and the significance level
of test a. We have employed windows of size 5 x 5 because
the critical Q-value of the Dixon test is tabulated only for
samples of size less than 30. Concerning a, its adjustment
is different for each OST: Grubbs test requires a small sig-
nificance level in order to detect nearly all SPs of the image
unlike Dixon test. As shown in Fig. 4 and Fig. 5, for the
same value of a, our approach with Grubbs test detects SPs
more than with Dixon test but we observe more false SPs
detection with Grubbs test. In the case of the “cameraman”
image, the significance level a must be set to a smaller value
than for synthetic images which are noiseless. Even when
the window size is increased, SPs detector is not improved
for both tested images. Fig. 6 displays the ouptut of de-
tector A. We observe that the results for the synthetic image
are quite similar for both detectors. The main difference be-
tween the two detectors is the grass region of the cameraman
image. Our approach is less sensitive to the presence of noise
or micro-texture.

7. CONCLUSION

We presented a new approach to perform multiscale salient
points detection based on a dual tree M-bands wavelet de-
composition and outliers statistical tests. Junctions of dif-
ferent sizes at various scales can be detected. Compared to
the detector proposed in [9], our approach seems to be more
robust to noise.
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Figure 5: SPs detection with our approach applied on cam-
eraman image. Using Grubbs test a = 0.01 (left). Using

Figure 2: Histograms of wavelet coefficients (left) and trans-  Dixon test @ = 0.01 (right).
formed wavelet coefficients (right) of the “cameraman” im-
ageforM =2and J = 1.

Figure 3: An illustration of SPs detection by using Gru
test for M =4, J =2 and a = 0.1.(left) Our SPs localizal
on the image. (right) The global p — value map of the im

Figure 6: SPs detection with the detector based the accumu-
lated map of keypoint energies applied on test image (left)
and cameraman image (right).

Figure 4: SPs detection with our approach applied on test
image. Using Grubbs test a = 0.05 (left). Using Dixon test
a = 0.05 (right).



