
TENSOR-BASED BLIND IDENTIFICATION OF MIMO VOLTERRA CHANNELS IN
A MULTIUSER CDMA ENVIRONMENT

Carlos Alexandre R. FERNANDES , Gérard FAVIER, and João C. M. MOTA

I3S Laboratory
University of Nice-Sophia Antipolis/CNRS

2000 route des Lucioles, BP 121,06903
Sophia-Antipolis Cedex, France.

phone: + (33) 492942736, fax: + (33) 492942896
email: {acarlos,favier}@i3s.unice.fr

Dep. de Engenharia de Teleinformática
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ABSTRACT

This paper is concerned with the blind identification of
Multiple-Input-Multiple-Output (MIMO) Volterra channels in a
multiuser Code Division Multiple Access (CDMA) environment.
The channel is modeled using the most generic representation of
complex-valued Volterra systems. A Parallel Factor (PARAFAC)
decomposition of a third-order tensor composed of channel output
covariances is used, the transmitted signals being assumed to be
Phase Shift Keying (PSK) modulated. The channel estimation is
carried out by two algorithms: the Alternating Least Squares (ALS)
algorithm and a non-iterative least squares algorithm that exploits
the redundancy provided by the Khatri-Rao product. The perfor-
mance of the proposed estimation methods is illustrated by means
of computer simulations.

1. INTRODUCTION

This paper proposes two blind identification methods for identify-
ing Multiple-Input-Multiple-Output (MIMO) Volterra channels in
the context of a multiuser Code Division Multiple Access (CDMA)
communication system. The channel is modeled as the most generic
representation of complex-valued Volterra systems. This kind of
nonlinear models has important applications in the field of telecom-
munications, e.g. to model uplink channels in Radio Over Fiber
(ROF) multiuser communication systems [1, 2, 3], the nonlinearity
of which is introduced by the electrical-optical conversion. These
links can be modeled as a MIMO Wiener filter, that constitutes a
particular case of MIMO Volterra filters. Another application of
such models can be found in CDMA systems with power ampli-
fiers driven at or near saturation to achieve the power consumption
requirements [4].

The proposed identification methods use second-order statis-
tics of the signals received by an antenna array, assuming that the
transmitted signals are Phase Shift Keying (PSK) modulated. These
methods are based on a Parallel Factor (PARAFAC) decomposition
[5] of a third-order tensor (three way array) composed of channel
output covariances. One of the great advantages of these methods is
that they allow working with weak uniqueness conditions compared
with previous works [4, 6, 7, 8], that require a number of channel
outputs greater than the number of Volterra filter parameters. In-
deed, the proposed tensor-based algorithms provide a great flexibil-
ity on the number of antennas, which is particularly important when
identifying Volterra systems. Moreover, PARAFAC decomposition
avoids the use of a pre-whitening step, an operation that increases
the computational complexity and may degrade the channel estima-
tion.

The PARAFAC decomposition is first carried out by a two-steps
Alternating Least Squares (ALS) algorithm [5]. As the ALS algo-
rithm may need many iterations to converge [9], a non-iterative es-
timation method exploiting the redundancy of the Khatri-Rao prod-
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uct is also proposed. Few works deal with blind channel estimation
or source separation in the context of multiuser nonlinear commu-
nication channels. For instance, [4] proposes a blind zero forcing
receiver for multiuser CDMA systems with nonlinear channels and
[10] develops blind and semi-blind source separation algorithms for
memoryless Volterra channels in ultra-wide-band systems.

The paper is organized as follows. Section 2 introduces the
nonlinear CDMA channel model used in this work. In Section 3,
the chip-level channel output covariance matrices are characterized.
In Section 4, a tensor composed of these covariances is defined and
a sufficient condition for its uniqueness is given. In Section 5, we
present two new blind channel estimation algorithms. In Section
6, we evaluate the performance of these algorithms by means of
simulations and some conclusions are drawn in Section 7.

2. THE CDMA SYSTEM WITH NONLINEAR CHANNEL

The discrete time signal transmitted by the tth user (1 ≤ t ≤ T ) at
time instant n and associated with chip p, is given by

ut(n̄) = ct(p)st(n), (1)

where n̄ = (n−1)P+ p, T is the number of users, ct(p) (p = 1, ..,P)

is the pth element of the spreading code of the tth user, P is the
length of the spreading code and st(n) is the information signal of

the tth user at the nth symbol period. The signal st(n) (1 ≤ t ≤ T )
is assumed to be PSK modulated, stationary and independent from

s
t
′ (n), for t 6= t

′
.

The sampled baseband equivalent channel is modeled as a
complex-valued MIMO Volterra filter:

yr(n̄) =
K

∑
k=0

T

∑
t1=1

T

∑
t3=1

· · ·
T

∑
t2k+1=0

M

∑
m1=0

M

∑
m3=0

· · ·
M

∑
m2k+1=0

h
(r)
2k+1(t1,t3, . . . ,t2k+1,m1,m3, . . . ,m2k+1)

k+1

∏
i=1

uti(n̄−mi)

2k+1

∏
i=k+2

u∗ti(n̄−mi)+υr(n̄), (2)

where yr,p(n) = yr(n̄) = yr((n− 1)P + p) (1 ≤ r ≤ R) is the chip
rate sampled signal received by antenna r at time instant n and as-
sociated with chip p, R is the number of receive antennas, (2K +1)
is the nonlinearity order of the model, M is the channel memory,

h
(r)
2k+1(t1, . . . ,t2k+1,m1, . . . ,m2k+1) are the kernel coefficients of the

rth sub-channel and υr(n̄) is the Additive White Gaussian Noise
(AWGN) at antenna r. It is assumed that the noise components
υr(n̄) are zero mean, independent from each other and from the
transmitted signals ut (n̄).

The model (2) contains only odd power terms composed of
products of k +1 non-conjugated and k conjugated delayed inputs.



The other nonlinear combinations of delayed input signals gener-
ate distortions producing spectral components lying outside of the
channel bandwidth, which implies their elimination by bandpass fil-
tering [11, 12, 13, 14, 15].

Assuming that the channel memory is in the order of a few
chips, i.e. M < P, nonlinear Inter-Symbol Interference (ISI) can be
avoided by considering spreading codes that contain “guard-chips”
[16]. In this case, the M last elements ct(p) of spreading codes are
equal to zero, i.e. ct(p) = 0, for P−M +1 ≤ p ≤ P. From (1), we
may write:

ut(n̄−m) = ut((n−1)P + p−m)

=

{

ct (p−m) st(n), if 1 ≤ p−m ≤ P,
ct (P+ p−m) st(n−1), if p−m ≤ 0. (3)

For p−m ≤ 0, we have P−M +1 ≤ P+ p−m ≤ P and the spread-
ing codes ct(P+ p−m) are null, leading to ct(P+ p−m) = ct(p−
m) = 0. We can therefore replace ut(n̄−m) by ct(p−m)st(n), and
equation (2) can be rewritten as:

yr,p(n) =
K

∑
k=0

T

∑
t1=1

· · ·
T

∑
t2k+1=1

ḡ
(r,p)
2k+1(t1, . . . ,t2k+1)

k+1

∏
i=1

sti(n)
2k+1

∏
i=k+2

s∗ti(n)+υr(n̄), (4)

where

ḡ
(r,p)
2k+1(t1, . . . ,t2k+1) =

M

∑
m1=0

· · ·
M

∑
m2k+1=0

h
(r)
2k+1(t1, . . . ,t2k+1,m1, . . . ,m2k+1)

k+1

∏
i=1

cti(p−mi)

2k+1

∏
i=k+2

c∗ti(p−mi). (5)

The use of “guard-chips” leads to an equivalent memory-
less Volterra representation of the channel, the kernel coef-

ficients ḡ
(r,p)
2k+1

(t1, . . . ,t2k+1), given by (5), depending on the

spreading codes ct(p) and the original kernel coefficients

h
(r)
2k+1(t1, . . . ,t2k+1,m1, . . . ,m2k+1). Note that the linear kernel

ḡ
(r,p)
1 (t) is given by the linear convolution of the linear kernel

h
(r)
1 (t,m) with the spreading code ct(p). It should be also high-

lighted that each value of p generates a new output for the equiva-

lent channel ḡ
(r,p)
2k+1(t1, . . . ,t2k+1), leading to a Volterra system with

RP outputs at each symbol period n.
Some input terms of (4) are redundant. They can be elimi-

nated by rewriting the Volterra filter in a triangular form. More-
over, as the information signals st(n) are PSK modulated, the non-
linear terms corresponding to ti = t j, for all i ∈ {1, ...,k + 1} and
j ∈ {k + 2, ...,2k + 1}, can be eliminated from (4) due to the fact

that the term |sti(n)|2 reduces to a multiplicative constant that can
be absorbed by the associated kernel coefficient, leading to the fol-
lowing equivalent model writing:

yr,p(n) =
K

∑
k=0

T

∑
t1=1

· · ·
T

∑
tk+1=tk

T

∑
tk+2=1

· · ·
T

∑
t2k+1=t2k

︸ ︷︷ ︸

tk+2,...,t2k+1 6=t1,...,tk+1

g
(r,p)
2k+1(t1, . . . ,t2k+1)

k+1

∏
i=1

sti(n)
2k+1

∏
i=k+2

s∗ti(n)+υr,p(n), (6)

where υr,p(n) = υr(n̄) = υr((n−1)P + p).

The RP output signals can be expressed in a matrix form:

y(n) = Gs̃(n)+v(n), (7)

where y(n) = [y1,1(n) . . .yR,1(n) · · ·y1,P(n) . . .yR,P(n)]T ∈

CRP×1 is the vector composed of the signals received
by the R antennas and associated with the P chips,

G = [g1,1 . . . gR,1 · · ·g1,P . . . gR,P]T ∈ CRP×Q is the channel

matrix, with gr,p = [gr,p,1 gr,p,2 . . . gr,p,Q]T ∈ CQ×1 contain-

ing the Volterra kernel coefficients g
(r,p)
2k+1(t1, . . . ,t2k+1) of the

((p−1)R+ r)th sub-channel, Q being the dimension of each vector

gr,p, v(n) = [v1,1(n) . . .vR,1(n) · · ·v1,P(n) . . .vR,P(n)]T ∈ CRP×1

is the noise vector and s̃(n) = [s̃1(n) . . . s̃Q(n)]T ∈ CQ×1 is the
nonlinear input vector formed from the spread signals. This vector
contains all the linear and nonlinear terms in st(n) and s∗t (n) of (6).

3. CHANNEL OUTPUT COVARIANCE MATRICES

The proposed identification methods rely on the use of covariances
of the chip-rate sampled received signals. The covariance matrix of
the output signal vector y(n) is given by:

Ry(d) = E

[

y(n+d)yH (n)
]

= GRs̃(d)GH ∈ C
RP×RP, (8)

with

Rs̃(d) = E

[

s̃(n+d)s̃H(n)
]

∈ C
Q×Q (9)

and 0 ≤ d ≤ D− 1, where D is the number of delays (covariance
matrices) taken into account. The noise covariance matrix is not
considered in (8) since it can be estimated and then subtracted from
Ry(d) [17].

In telecommunication systems, the transmitted signals are often
assumed to be white. That means that some precoding must be used
to introduce time correlation in the signals, otherwise, the covari-
ance matrices Rs̃(d) are null for d 6= 0. In [6, 18], by exploiting
some properties of PSK signals, we developed a precoding scheme
that introduces a modulation memory in such a way that the matri-
ces Rs̃(d) are non-null and diagonal. In other words, time correla-
tion is added to the transmitted signals while keeping the orthogo-
nality between products of the transmitted signals. The following
theorem states sufficient conditions for assuring the diagonality of
the matrices Rs̃(d).

Theorem 1: Assuming that the information signals st(n) are
PSK modulated with cardinality C > 2K + 1, the matrices Rs̃(d),
d = 0, ..,D−1 are diagonal if the following conditions are satisfied
for (T −1) users:

• µ
(i, j)
t (d) = 0, for all 0 ≤ i, j ≤ K +1 with i 6= j;

• ρ
(i, j)
t (d) = 0, for all 0 ≤ i, j ≤ K +1 with i or/and j 6= K +1;

where

µ
(i, j)
t (d) ≡ E

[

si
t(n+d)

[

s
j
t (n)

]∗]

(10)

and

ρ
(i, j)
t (d) ≡ E

[

si
t(n+d)s

j
t (n)

]

. (11)

See [18] for the proof. The precoding scheme is designed to en-
sure that the transmitted signals satisfy the constraints of Theorem
1. The precoding consists in modeling the transmitted signals as
Discrete Time Markov Chains (DTMC) that introduce redundancy
by expanding the order of the PSK constellation, which means that
the number of constellation points is higher than the number needed
to modulate the useful data. The states of the DTMC are given by

the PSK symbols ac = {At · e j2π(c−1)/C}, for c = 1,2, ...,C, where



At is the amplitude of the signal of the tth user and C is the number
of points of the PSK constellation. The state transitions are defined

by a set of LB bits, denoted by Bn = {b
(1)
n ,b

(2)
n , ..., b

(LB)
n }, that are

uniformly distributed over the set {0,1} with 2LB <C. In addition, it

is assumed that the b
(l)
n (l=1, ...,LB) are mutually independent. For

each of the C states, the set Bn of bits defines 2LB equiprobable pos-
sible transitions. Therefore, this coding imposes some restrictions

on the symbol transitions. For each state, there is
(
C−2LB

)
not as-

signed transitions. For further details about this coding scheme, see
[18].

The diagonality of Rs̃(d) implies that (8) can be rewritten as:

Ry(d) = Gdiagd+1[Z ]GH , (12)

where diagi[·] denotes the diagonal matrix formed from the ith row

of the matrix argument and the rows of the matrix Z ∈ CD×Q

contain the diagonal elements of Rs̃(d) for 0 ≤ d ≤ D − 1, i.e.
zd+1,q = [Z]d+1,q = [Rs̃(d)]q,q.

4. TENSOR OF CHANNEL OUTPUT COVARIANCES

4.1 Description of the Tensor

A third-order tensor R ∈ CD×RP×RP composed of channel out-
put covariances can be defined in such a way that rd+1,r1,r2

≡
[R]d+1,r1,r2

= [Ry(d)]r1,r2
, for 0 ≤ d ≤ D− 1 and 1 ≤ r1,r2 ≤ RP.

This means that the element (r1,r2) of the matrix Ry(d) is placed
at position (d + 1,r1,r2) of R. 2D-slices or matrix slices of the
tensor R are obtained by fixing one index of the tensor and vary-
ing the two other ones. For instance, the first-mode matrix slice

Rd+1·· ∈ CRP×RP, obtained by fixing the first index of R to (d +1),
and by varying the second and third indices, is given by (12). That
corresponds to a matrix slice writing of the PARAFAC decomposi-
tion of a third-order tensor with rank Q and matrix factors (compo-
nents) G, G∗ and Z. The corresponding scalar writing of the tensor
R is:

r(d+1),r1,r2
=

Q

∑
q=1

gr1,qg∗r2,qzd,q, (13)

where gr1,q = [G]r1,q. The other matrix slices of R are given by:

R·r1· = G∗ diagr1
[G]ZT ∈ C

RP×D (14)

and

R·,·,r2
= Z diagr2

[G∗] GT ∈ C
D×RP. (15)

All the elements of a tensor can be organized in unfolded matri-
ces by stacking all the matrix slices of a given type. The estimation
algorithms presented in the next section are based on the following
unfolded matrices of the tensor:

R[1] ≡






R1··
..
.

RD··




 , R[2] ≡






R·1·
..
.

R·RP·




 (16)

and

R[3] ≡






R··1
..
.

R··RP




 , (17)

where R[1] ∈CRPD×RP, R[2] ∈CR2P2×D and R[3] ∈CRPD×RP denote

respectively the first, second and third-mode unfolded matrices of
the tensor R. These unfolded matrices are given by:

R[1] = (Z⋄G)GH , (18)

R[2] = (G⋄G∗)ZT (19)

and

R[3] = (G∗ ⋄Z)GT , (20)

where ⋄ denotes the Khatri-Rao (column-wise Kronecker) product.

It is important to note that, in the case of a memoryless channel
(M = 0), equation (5) becomes:

ḡ
(r,p)
2k+1(t1, . . . ,t2k+1) = h

(r)
2k+1(t1, . . . ,t2k+1,0, . . . ,0)

k+1

∏
i=1

cti(p)
2k+1

∏
i=k+2

c∗ti(p). (21)

This means that the contributions of the channel coefficients

h
(r)
2k+1(·) and of the codes ct(p) in the Volterra kernel coefficients

ḡ
(r,p)
2k+1(·) can be decoupled. In this case, a fifth-order PARAFAC

tensor can be formed from the channel output covariances, with two
dimensions corresponding to the receive antennas, two dimensions
corresponding to the chips and one corresponding to the covariance
delay [19].

4.2 Uniqueness Condition

The main property of the PARAFAC decomposition is its essential
uniqueness, demonstrated in [20]. Let us denote by kA the k-rank
of matrix A, i.e. the greatest integer kA such that every set of kA
columns of A is linearly independent. Considering a F th-order ten-

sor A of rank Q, with matrix factors A f ∈ CL f ×Q, f = 1, ...,F , it is
proved in [20] that if:

F

∑
f=1

kA f
≥ 2Q+F −1, (22)

then the matrix factors A f are unique up to column scaling and per-
mutation ambiguities. In the case of the tensor R, essential unique-

ness means that any other set of matrices G
′
, G

′′
and Z

′
satisfying

(13) is such that G
′
= GΠΛa, G

′′
= G∗ΠΛb and Z

′
= ZΠΛc, where

Λa, Λb and Λc are diagonal matrices such that ΛaΛbΛc = IQ and Π
is a permutation matrix.

The matrix Z containing the information about the time corre-
lation introduced by the precoding scheme, can be assumed to be
known, as shown in [18]. So, if condition (22) is verified, we have

Z
′
= Z and, hence, Π = Λc = IQ and Λb = Λ−1

a . Thus, G
′
= GΛa

and G
′′

= G∗Λ−1
a . This means that the permutation ambiguity is

eliminated. Moreover, the scaling ambiguity does not represent an
effective problem, as it can be removed by a gain control at the re-
ceiver or using a few pilot symbols.

Assuming that the matrix factors G and Z are full k-rank, the
condition (22) for the tensor R becomes:

2min(RP,Q)+min(D,Q) ≥ 2Q+2, (23)

This uniqueness condition is weaker than that associated with other
estimation methods [4, 6, 7, 8, 18]. The flexibility on the choice of
R provided by condition (23) is one of the main advantages of us-
ing a tensor-based approach, which is particularly interesting when
identifying nonlinear systems that are characterized by a high num-
ber of parameters. In particular, it is possible to choose R ≪ Q
(underdetermined case).

We have to note that the sufficient condition (22) is not nec-
essary for the uniqueness of the tensor decomposition. In the next
section, we state an alternative sufficient uniqueness condition when
the matrix Z is known.



5. CHANNEL ESTIMATION

5.1 Two-Steps ALS algorithm

The PARAFAC factors are classically estimated by means of the
ALS algorithm [16]. If all the matrix factors are unknown, the ALS
algorithm allows to estimate these matrix factors in an alternating
way. A two-steps version of the classical ALS algorithm can then
be used by exploiting the fact that the matrix Z is assumed to be
known. The algorithm provides two channel estimates, denoted by

Ĝa and Ĝb, corresponding respectively to the matrices G and G∗.
The channel estimation problem is solved by minimizing the fol-
lowing cost functions in an alternate way:

J[3] =
∥
∥
∥R̂[3] − (Gb ⋄Z)GT

a

∥
∥
∥

2

F
, (24)

J[1] =
∥
∥
∥R̂[1]−

(
Z⋄ Ĝa

)
GT

b

∥
∥
∥

2

F
, (25)

where R̂[1] and R̂[2] are respectively the sample estimate of R[1] and

R[2], and ‖·‖F denotes the Frobenius norm. The itth iteration of the

ALS algorithm is given by:

Ĝ
(it)
a =

[(

Ĝ
(it−1)
b ⋄Z

)†

R̂[3]

]T

, (26)

Ĝ
(it)
b =

[(

Z⋄ Ĝ
(it)
a

)†

R̂[1]

]T

, (27)

where the initial value Ĝ
(0)
b is chosen as an RP × Q Gaussian ran-

dom matrix and (·)†
denotes the matrix pseudo-inverse. The algo-

rithm iterates until the convergence of the estimated parameters is
achieved. The existence of the left inverse of the matrices (Z⋄G)
and (G∗ ⋄Z) is assured if condition (23) is satisfied [21].

5.2 Single-LS algorithm

The ALS algorithm is monotonically convergent but it may require
a large number of iterations to converge and/or it can converge to-
wards a local minimum. In order to avoid these convergence prob-
lems, we propose a non-iterative channel estimation method. This
method exploits the redundancy of the Khatri-Rao product in the
following cost function:

J[2] =
∥
∥
∥R̂[2] − (G⋄G∗)ZT

∥
∥
∥

2

F
(28)

Defining W ≡ (G⋄G∗) ∈ CR2P2×Q, the LS estimate of W is given
by:

Ŵ = R̂[2]

(

ZT
)†

. (29)

The channel matrix G can be estimated from Ŵ by using the fact
that:

G⋄G∗ =






G∗Λ1

...
G∗ΛRP




 , (30)

where Λr , r = 1, ...,RP, is a diagonal matrix formed with the ele-

ments of the rth row of G. Let us define Ŵ
(r)

, for r = 1, ...,RP,
as the matrix formed from the lines [(r−1)RP +1] up to (rRP) of

Ŵ. Thus, the channel matrix Ĝ can be estimated up to a diagonal
matrix as the mean:

Ĝ =
1

RP

RP

∑
r=1

[

Ŵ
(r)

]∗
. (31)
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Figure 1: NMSE versus SNR for R = 2 and R = 4.

The Single-LS method requires that the following identifiability

condition be satisfied: rZ = Q, i.e. ZT is right invertible or equiva-
lently Z is full column rank. So, another advantage of this approach
is that it does not impose constraints on the number of antennas,
contrarily to the ALS algorithm and to other methods [4, 6, 7, 8, 18].

6. SIMULATION RESULTS

In this section, the proposed channel estimation algorithms are eval-
uated by means of simulations. A MIMO Wiener model of an
uplink channel of a ROF multiuser communication system [1, 6]
is considered for the simulations. The multipath wireless link is
characterized by a R×2 convolutive linear mixer, with T = 2 users
(Q = 4) and R half-wavelength spaced receive antennas. The E/O

conversion is modeled by the following polynomial c1x + c3|x|
2x,

with c1 =−0.35 and c3 = 1 [1, 22]. All the Monte Carlo simulation
results were obtained using NR = 100 independent data realizations
and the modulation of the transmitted signals is 8-PSK. The spread-
ing codes are complex exponentials with an unitary modulus and a
phase uniformly distributed over the set [−π,π].

The performance is evaluated in terms of the Normalized Mean
Squared Error (NMSE) of the estimated channel parameters, de-

fined as: NMSE = 1
NR

∑
NR

l=1
‖G−Ĝl‖

2
F

‖G‖2
F

, where Ĝl represents the

channel matrix estimated at the lth Monte Carlo simulation.
Figure 1 shows the NMSE versus Signal-to-Noise-Ratio (SNR)

provided by the ALS and Single-LS algorithms for R = 2 and 4,
with P = 3 and D = 5. From these simulation results, we can con-
clude that the performance of the proposed estimation methods is
not deteriorated in the underdetermined case (R = 2), with respect
to the overdetermined case (R = 4). Moreover, it can be viewed that
the ALS algorithm provides better performances than the Single-LS
algorithm. However, the Single-LS algorithm has a computational
cost significantly smaller. For instance, in Figure 1, for SNR = 0dB,
the ALS algorithm needs approximatively 6 iterations to converge,
with two LS estimate computations per step, while the Single-LS
algorithm computes only one LS estimate. For small SNR values
and D = 3 or 4, the ALS algorithm can take more than 50 iterations
to converge.

Figure 2 shows the NMSE versus the number of used covari-
ance delays D with the ALS and Single-LS algorithms for SNR =
10dB and SNR = 30dB, with P = 3 and R = 2. In order to provide a
performance reference, we also show the NMSE obtained with the
supervised Wiener solution, given by:

Ĥ = R̂ys̃R̂
−1
s̃s̃ , (32)

where R̂ys̃ and R̂s̃s̃ are respectively the sample estimates of Rys̃ =
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Figure 2: NMSE versus the number of covariance delays D for
SNR = 10dB and SNR = 30dB.

E
[
y(n)s̃H (n)

]
and Rs̃s̃ = E

[
s̃(n)s̃H(n)

]
= IQ, IQ being the identity

matrix of order Q. From these simulation results, we can conclude
that the accuracy of the ALS estimate does not change significantly
for D ≥ 4. Besides, the performance of the two proposed estimation
methods is better than that of the supervised Wiener solution for
SNR = 30dB. This is due to the fact that the Wiener solution does
not exploit the time correlation of the transmitted signals, while the
proposed methods do.

7. CONCLUSION

In this paper, we have proposed two new methods for identifying
MIMO Volterra communication channels using the PARAFAC de-
composition of a tensor composed of channel output covariances,
with PSK input signals. This tensor-based approach provides weak
uniqueness conditions, leading to weaker constraints on the num-
ber of antennas than those imposed by other existing estimation
methods. The proposed channel estimation algorithms have been
applied for identifying an uplink channel in a ROF multiuser com-
munication system. Some simulation results have illustrated the
performance of these algorithms, the ALS providing better perfor-
mance, at the price of a higher computational cost with respect to
the Single-LS algorithm. Both algorithms outperform the Wiener
solution for high SNR values.
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