SPEECH CLASSIFICATION FOR ENHANCING SINGLE CHANNEL BLIND
DEREVERBERATION

Steven A. Fortune and James R. Hopgood

Institute for Digital Communications, University of Edinburgh,
The King’s Buildings, Mayfield Road, Edinburgh, United Kingdom, EH9 3JL
phone: + (44) (0)131 650 5565, fax: + (44) (0)131 650 6554, email: {steven.fortune, james.hopgood} @ed.ac.uk

ABSTRACT

Several single channel dereverberation techniques exists that en-
hance the harmonic properties of voiced speech, or utilise a sig-
nal model of unvoiced speech. This paper demonstrates how ex-
isting speech dereverberation methods can be improved by classi-
fying speech into voiced, unvoiced and silent segments. Methods
that enhance the harmonic features of voiced speech can benefit
from enhancing only voiced segments, compared to using the entire
signal. Removing silent frames from the input can additionally ben-
efit dereverberation methods. Additional features that can be used
for dereverberation, signal entropy and minimising the energy of
silent periods, are introduced and show good performance. How-
ever, speech classification is more difficult for reverberant speech
than clean speech. The performance of a number of different clas-
sification measures are compared in a reverberant environment. It
is shown how performance degrades with increasing reverberation,
but some classifiers do hold their performance better than others.
The accuracy of the estimation of a dereverberation filter parame-
ter using various signal features are compared. In addition, several
signal features can be combined into one cost function. This shows
promise in giving improved overall estimation accuracy, by looking
at and enhancing a richer set of speech features.

1. INTRODUCTION

Reverberation occurs when an audio source and receiver are sepa-
rated in an enclosed space. Reverberation can reduce speech intel-
ligibility, or reduce the accuracy of speech or speaker recognition
techniques [1]. A multi-channel approach using multiple micro-
phones can assist this problem, but is not always practical, for ex-
ample in a hearing aid application. A method for single-channel
dereverberation is thus desirable. The solution to this problem is
intractable without the addition of prior information, such as the
statistics of the source or the channel, or enhancing a known feature
of speech signals degraded by reverberation.

One way to add this prior information is to devise a model for
the source and the channel, and attempt to fit the observed data to
the models. A solution may be found if the channel is stationary and
the source varies sufficiently [2]. This allows separation of channel
and source, and thus equalisation of the channel [3]. However, this
method is sensitive to errors in the channel estimate when it comes
to inverse filtering. It also does not take account of the rich har-
monic information available in voiced speech as the speech model
assumes unvoiced speech.

An alternative approach is to measure and enhance a certain
feature of the speech that is degraded by reverberation. This feature
can then be used to drive an adaptive filter maximising the feature
in the estimated speech as shown in Fig. 1. Possible features used
for dereverberation include harmonicity of voiced speech [4] and
kurtosis of the linear prediction (LP) residual [5]. This feature based
approach can also be extended into a probabilistic framework [6]
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Figure 1: Feature extraction method for speech dereverberation

using statistical source models [7]. This approach would allow the
filter to adapt to a slowly varying channel.

By using the feature extraction framework in Fig. 1, differ-
ent signal features can be compared directly, something that has not
been performed before. In addition, multiple features could be com-
bined into a single cost function. This could deliver improved accu-
racy as more information can be included from the signal. However,
a combined cost function is likely to require a computationally ex-
pensive optimisation routine. Using a single feature it is often pos-
sible to derive a faster filter adaption method using the gradient [5].

The basis behind any feature extraction technique is that speech
has a certain structure, be it harmonicity or a certain pdf, and that
this structure is reduced by reverberation. If a measure of this struc-
ture can be made, the measured feature could potentially be max-
imised to remove the effect of the dereverberation. Many blind
dereverberation techniques treat all speech the same. However, the
structure of speech changes rapidly, with each sound having differ-
ent possible excitations, white noise, glottal pulse or none, giving
rise to unvoiced speech, voiced speech and silence respectively. It
is of the authors opinion that the structure of these three classifica-
tions of speech are different enough that they should be treated dif-
ferently by a feature extraction method. For example, by enhancing
the harmonicity of voiced speech only, not the entire signal, or by
removing silent frames from the estimation input.

In this paper, it is proposed that a stage of speech classification,
into voiced speech, unvoiced speech and silence, is performed as
part of the feature extraction. Performing this classification is more
difficult in a reverberant environment. The performance of differ-
ent methods of classification on a reverberant signal is examined in
section 2.3. Speech classification enables the measurement of ex-
tra features indicating the level of reverberation in the signal, and
improved use of other features as discussed in Section 3. The per-
formance of these features in estimating the inverse filter is tested
in Section 4.

2. SPEECH CLASSIFICATION

2.1 Speech Model

Speech sounds can be divided into three broad classes depending
on this mode of excitation [8, 9]. Voiced sounds such as aah are
produced by vibrating vocal cords producing a periodic series of
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Figure 2: Spectrogram of original speech segment and reverberated
speech segment with reverberation time of 0.25s.

glottal pulses. The sound is quasi-periodic with a spectrum of rich
harmonics at multiples of the fundamental or pitch frequency fy as
shown in Fig. 2. Unvoiced sounds do not have a vibrating source.
They are produced by turbulent flow, leading to a wide-band noise
source. Plosive sounds, with an impulsive source, also exist. They
are generally of very short duration, making them less important,
and can be adequately described the the unvoiced model. In the
course of speech it is also normal to have periods of silence, when
no excitation is present.

2.2 Speech Classification

A speech/silence classifier is often referred to as a voice activity
detector (VAD) and can be combined with a voiced/unvoiced clas-
sifier. A number of different classification methods are examined in
Section 2.2.1, and compared in a reverberant environment in Sec-
tion 2.3.

2.2.1 Classification Parameters

Speech is generally divided into short (10-30ms) frames either ad-
jacent, or overlapping. A parameter is extracted from each frame,
and a decision on classification made based on the parameter value.
A large number of different parameters can be used for speech clas-
sification. A brief overview follows.

e Energy of a frame can be a basic measure of whether speech
is present. A simple fixed threshold can be used, or preferably

an adaptive threshold, which measures an adapts to a changing
noise floor [10, 11].

e Zero Crossing Rate or ZCR can give an indication of the spec-
tral properties of a signal [9]. Rabiner and Sambur [10] showed
the ZCR combined with a short term energy measurement can
be used for VAD. Furthermore, the distribution of ZCR is dif-
ferent between voiced (5-20 per 10ms) and unvoiced (30-70 per
10ms) speech [9]. This indicates ZCR could be used to discrim-
inate between different classes of speech.

e Periodicity A way to discriminate between voiced and unvoiced
sounds is the proportion of the signal which is periodic. A least-
squares periodicity estimator (LSPE) using the time domain sig-
nal s[n] forn=1,---, N, varies the estimated pitch period, £, to
maximise the periodicity given by [11]
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where Ko = (N —n)/Py + 1. The periodicity measure [12, 11]
gives an indication of the proportion of periodic component in
the signal. A fixed threshold can be used to detect voiced frames
[11].

e Harmonic Frequency Domain Analysis Based on a Sinu-
soidal Speech Model
The spectrogram of a voiced signal (Fig. 2) shows a peak not
only at the pitch frequency fy = 1/P, but also at the harmon-
ics, 2fp, 3fo---. A more robust technique would look for these
harmonic peaks in the spectrum. This can be performed in the
frequency domain [8]. First the pitch can be estimated by fitting
a harmonic set of sinusoids to the input data [8, 13]. The vocal
tract envelope, V (f), can be estimated using the Spectral Enve-
lope Estimation Vocoder (SEEVOC) [14]. The degree to which
the data fits the harmonic model can be used to determine the
degree of voicing in the signal [13].

2.3 Performance on reverberant speech

In this section, the performance of different parameters described
in Section 2.2.1, when combined with an energy measurement, are
evaluated. A section of speech was classified manually and the ac-
curacy of different classification techniques compared to this. The
performance was evaluated on the original speech signal, then the
signal filtered by a synthetic channel of increasing reverberation
times. The channel response was generated using white Gaussian
noise with a negative exponential envelope following a method by
Habets [15]. Thus the channel impulse response A[t] is given by

bltle™™ >0
hm:{oue 1<0

where blt] is zero mean white Gaussian noise and oc = 31og(10)/7;
and 7; is the reverberation time. The speech segment used was 10s
long, with 14% silence, 59% voiced speech, 23% unvoiced speech,
2% plosives and 2% unknown.

The results are shown in Fig. 3. With no reverberation, a peri-
odicity classifier performs better than one using the ZCR. However
the ZCR is affected less by reverberation and outperforms periodic-
ity with moderate levels of reverberation. This could be explained
by examining the periodicity values measured throughout the sig-
nal. For voiced speech, reverberation reduced the periodicity, but
for unvoiced speech, the periodicity measure increased. This is
caused by any reverberant peaks in the channel, plus any harmonic
components time-shifted into those frames. The change in ZCR
levels due to reverberation was less significant. The harmonic si-
nusoidal model method produced the best results, and shows the
highest resistance to reverberation. This is likely due to the mea-
sure requiring regular harmonic peaks, an unlikely scenario for a
reverberant channel or smeared and shifted peaks.
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Figure 3: Percentage accuracy of classification methods compared
to manually classified data. Measurements are combined with en-
ergy measurement and performed on 10s speech segment. Speech
segment is filtered with synthetic room response of increasing rever-
beration time.

A number of alternate methods are available for VAD and clas-
sification. These results show that not all techniques work equally
well on reverberant speech, so it is useful to have a more thorough
examination of speech classification in a reverberant environment.

3. FEATURES USED FOR DEREVERBERATION

This section describes how speech classification can be used to aid
dereverberation. Once the reverberant speech is classified, each
speech frame can be measured with an appropriate feature or dere-
verberation method. Each classification will be dealt with sepa-
rately below. However, using the model shown in Fig. 1 it is possi-
ble to combine several reverberant measures into a single cost func-
tion that could be used to optimise the inverse filter estimate as dis-
cussed in Section 3.5.

3.1 Silence

A feature of clean speech is that it contains periods of silence in
between individual utterances. In a reverberant environment, these
silence are filled in or smeared, as shown in Fig. 2. Thus it may
be possible to estimate the dereverberation filter by minimising the
energy in these silent periods. It was found that signal variance
worked better than energy, due to any dc bias of individual frames.
The measure Cg;;, was calculated as the variance of the concatena-
tion of all silent frames.

Another use of detecting periods of silence is that silent frames
would give erroneous results in some dereverberation methods
which assume excitation is present. By removing these frames from
the estimation process an improvement may be obtained. This idea
was tested using the model Bayesian approach by Hopgood et. al.
[3]. A 72-order all pole channel model was used, with a 10s speech
segment as input. The channel was estimated with this speech, then
repeated with any silent periods removed from the input. Results
are shown in Fig. 4. Removing the frames deemed as silent (13%
of signal), reduced the mean squared error of the channel magnitude
estimate by 10%.

3.2 Voiced Speech

Voiced speech is quasi-periodic, with a spectrum of rich harmonics
at multiples of the fundamental frequency. Reverberation smears
these harmonics, reducing the periodicity or harmonicity of the
speech. By measuring, and maximising this harmonic structure,

it is possible to estimate the dereverberation filter providing clean
speech. Several measures of this harmonic structure are possible, as
discussed below.

3.2.1 LP Residual Kurtosis

Linear prediction (LP) residuals of voiced speech have strong peaks
corresponding to glottal pulses. A measure of amplitude spread of
LP residuals, such as kurtosis, can serve as a reverberation metric
[5]. To make this measurement, the signal is broken into 30 ms
frames s,,[n] and a 12-th order linear prediction estimate of the sig-
nal made. The kurtosis of the LP residual, or error in the estimate, is
measured. Clean speech has a higher LP kurtosis than reverberated
speech, so maximising the measure Crpg can be used to estimate
the dereverberation filter.

3.2.2  Periodicity

Periodicity (1) measures how strong the periodic component in a
frame is. Reverberation reduces the periodicity of voiced speech,
and increases periodicity of unvoiced speech. The dereverbera-
tion filter is estimated by maximising the measure Cpgr which is
the mean of the periodicity measurement of voiced frames only.
Another measure tested was the variance of the periodicity of all
speech frames Cy pgg.

3.2.3 Harmonic Energy

In HERB [4], an adaptive harmonic filter is applied to the signal.
This extracts frequency component corresponding to multiples of
the given fundamental frequency fy. To fit within the feature en-
hancement framework, we will make a crude measurement of har-
monicity, corresponding to a measure of the energy of the signal
harmonics. This is calculated by zero padding the signal frame
sm[n], taking the Fourier transform giving S,,,[f] and summing the
magnitude of the spectrum at the first K harmonics, where K is fixed
to fit within the signal bandwidth, using

1 K
Cu [m} = E k; S [ka]

The index of the fundamental frequency bin fj is chosen to max-
imise this energy measure for each individual frame. The total
harmonic measure Cy is then the mean of Cg[m] over all voiced
frames.

3.3 Unvoiced Speech

Unvoiced speech can be modelled as white noise filtered by a time
varying AR process, representing the vocal tract [9]. The rever-
berant channel may be modelled as an all-pole filter with the same
structure as an AR process [3]. Thus there is no special feature of
the speech that could be extracted from a single frame to aid dere-
verberation except for statistical differences between source and
channel filters. If one considers that the source filter changes rapidly
(between phonemes) and the channel filter varies slowly, this can
be used to separate the source and channel models. This has been
demonstrated for a stationary channel [3] and a restricted time vary-
ing channel [16].

Figure 4 shows the results of this Bayesian channel estimation
for a stationary channel. A reasonable channel estimate was ob-
tained for unvoiced frames only, even though they consisted of only
23% of the input speech segment.

3.4 Entropy

A technique used to correct for unknown phase distortions in astro-
nomical and Synthetic Aperture Radar images is image sharpening
[17]. This is a similar approach to feature extraction, where signal
sharpness is maximised for a clean signal, and reduced by reverber-
ation. A good measure of image (or signal) sharpness is negative
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Figure 4: Estimated frequency response of stationary channel us-
ing Bayesian method [3]. Input included all speech frames, silent
frames removed, voiced frames only and unvoiced frames only.
The mean squared error of magnitude estimate is 0.0031, 0.0028,
0.0035 and 0.0081 respectively. Speech segment consisted of 13%
silence, 58% voiced speech, 23% unvoiced speech.

entropy. In information theory, entropy can quantify the informa-
tion contained in a signal. This information is reduced by rever-
beration. Thus maximising the entropy in a signal may remove the
reverberation in speech. The entropy measure Cgyt of signal s[n]
is estimated using

Cent = — Y |s[n]|log|s[n]|.

3.5 Combined Cost

A combined cost function is calculated, which is a combination of
several signal features. In this case, entropy, silence energy, LP
residual kurtosis of voiced signal, mean periodicity of voiced signal
and harmonic energy of voiced signal. Each measure was scaled to
the interval [0, 1] over the parameter range measured, then summed.
If an optimisation method is used, correct scaling would need to be
determined prior to the test.

4. DEREVERBERATION ACCURACY

In this section, the accuracy of estimating a dereverberation filter
using the various features discussed in Section 3 are analysed. The
reverberant channel is modelled using a 300-th order all-pole IIR
filter b, for p € {1,---,300}. The corresponding dereverberation
inverse filter is thus a FIR filter of the same order. The classification
was performed once, on the initial reverberant speech. This was to
save time, as these trials take a long time to compute. Repeating
the classification every step may alter results, but we do not believe
significantly so.

4.1 Single parameter tests

A single parameter of the dereverberation filter was varied, and the
various features measured using the estimated signal. The parame-
ter value that maximises each feature is determined. This is repeated
for a number of different parameters and parameter values. The pa-
rameter estimates can be compared to the known channel parameter
values b, to determine the accuracy of the estimation technique.
This test was performed repeatedly on a single 10s speech segment
for each of the 300 filter parameters (p € {1,--,300}), then for 100
varied values of a single parameter by € {—0.5,—0.49,---,0.5}.
The mean squared error between estimated and known parameters
was calculated over all tests. The results are shown in Table 1.

[ [ ENT [ SIL | LPK [ MPer | VPer | HAR [ Com ]

Voiced 7.2 1.6 17 0.11 6.2 36 0.22
All 442 642 568 68

Table 1: Mean squared error in filter parameter estimates, all
x 1074, Features used for parameter estimation are described in
text and include; entropy, silence energy, LP residual kurtosis, mean
periodicity, variance of periodicity, harmonic energy and a com-
bined measure respectively. Voiced speech measures (LPK, MPer,
VPer and HAR) were measured both for all speech frames and
voiced frames only.

There is a clear performance gain in measuring the voiced fea-
tures (LPK, periodicity and HAR) for voiced only segments, com-
pared to all segments. This shows the classification step can in-
crease the performance of dereverberation techniques that use these
measures.

The new measures tested, namely entropy and silence energy,
show they can successfully estimate the individual filter parameters
in the tests performed. They in fact have better performance than
using LPK and HAR and are easier to calculate. The mean value
of periodicity of voiced frames gives the most accurate of the esti-
mated tested, significantly more so than the variance of periodicity.

The combined measure has a performance slightly worse than
the best performing measure. Alternate ways of combining mea-
sures requires more investigation.

4.2 Multiple parameter tests

To test the feasibility of optimising multiple filter parameters, signal
features were mapped as two separate dereverberation filter param-
eters are altered. Two results, for periodicity and LP residual kurto-
sis are shown in Fig. 5. All other reverberation measures discussed
were tested in a similar manner, and display similar properties to
those shown.

These representative plots show a single, smooth peak, close
to the correct parameter, indicating optimisation methods should
find the maximum value. The LPK contours are close to circular
in shape, indicating low levels of dependence between the filter pa-
rameters. The periodicity contours show a diagonal shape indicat-
ing higher dependence. This means single parameter optimisation
methods would need to iterate multiple times to find a higher dimen-
sional peak, or a true multi-dimensional optimisation is required. A
combined measure has a higher danger of being multi-modal, caus-
ing an optimisation method to find a local minimum.

4.3 Discussion

Ideally a full multi-dimensional parameter estimation would be per-
formed. The estimated signal could then be compared to the original
in both an estimation error and aural sense. However the amount of
computation required would be prohibitive at this stage.

This test does provide a direct comparison between different
features used for dereverberation, and a comparison between us-
ing full signals and those classified into appropriate segments. This
tests whether speech classification is a useful tool for dereverbera-
tion and secondly which features (or combinations thereof) can be
used to estimate the dereverberation filter.

The method the measures are combined over multiple frames
also needs to be considered. Currently the mean is taken. An im-
proved method which weights frames according to the energy of
the frame may be a better method. This would reduce the dif-
ference between harmonic measurement over all frames and just
voiced frames, as voiced frames typically contain the most energy.

5. CONCLUSION

This paper considered the framework of measuring a feature of a
speech signal to determine the level of reverberation, and using this
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measurement to estimate an inverse filter for dereverberation of the
signal. One way to measure signal features is to classify segments of
the speech into voiced, unvoiced and silence. This requires a speech
classification method that works on reverberated speech, a subject
on which little information could be found. Tests were performed,
showing that classification performance degrades with increasing
reverberation levels, but that some methods outperform others. Pe-
riodicity performs poorly at high reverberation levels, whereas ZCR
performance drops at a slower rate. Outperforming both of these
was a harmonic analysis based on a sinusoidal speech model.

Classification of silent periods allows the measurement of si-
lence energy, which can be minimised to estimate a clean speech
signal. Tests show this measure can give a good filter parameter es-
timate. Another new signal feature tested was signal entropy, which
also gave a good parameter estimate. Entropy is very simple to cal-
culate, with no classification step required.

Features which measure the harmonicity of voiced speech, in-
cluding LP residual kurtosis, periodicity and harmonic energy, were
also tested. The mean periodicity of voiced segments gave the most
accurate estimate of measures tested, but required an accurate clas-
sification to work well. All these measures performed significantly
worse when used over the entire signal rather than just voiced seg-
ments. This showed that a classification step can improve the per-
formance of dereverberation methods which enhance these features.
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