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ABSTRACT

In this paper, we present a new space-time spreading-multiplexing
model for Multiple-Input Multiple-Output (MIMO) wireless
communication systems relying on a tensor modeling of the
transmitted and received signals. At the transmitter, we exploit
the core of a PARATUCK-2 tensor decomposition composed of a
precoding matrix and two allocation matrices that allow to control
the spreading-multiplexing of the data streams across the space
dimension (transmit antennas) and time-dimension (time-slots).
Consequently, different MIMO schemes combining space-time
multiplexing and diversity can be derived from the proposed model.
The algebraic structure of the PARATUCK-2 tensor model is then
exploited at the receiver for a joint blind channel estimation and
symbol detection. The bit-error-rate performance of different
transmit schemes derived from the proposed model is evaluated by
means of computer simulations.

1. INTRODUCTION

It is well known for some time that Multiple-Input Multiple-Output
(MIMO) wireless communication systems employing multiple
antennas at both the transmitter and receiver provide multiplexing
gains [1] and/or diversity gains [2] to increase the data rate (i.e.
higher spectral efficiencies) and/or the reliability of the transmission
(i.e. lower error rates) without additional bandwidth. In order to
provide multiple-accessing capabilities to MIMO systems, several
approaches make use of Code-Division Multiple-Access (CDMA)
technology by associating multiple transmit antennas and multiple
user signals to orthogonal spreading transforms in different manners
[3]– [4]. Optionally, when current channel state is known in
advance at the transmitter, some form of precoding can also be used
to improve system performance (see [5] and references therein).

The use of tensor decompositions for modeling
multiple-antenna transmissions with blind receiver signal
processing has been addressed in several recent works [6]– [7].
The approach of [6] relies on a PARAllel FACtor (PARAFAC)
decomposition [8] of the third-order received signal tensor.
Despite the variable diversity-multiplexing offered by the precoder
structure, this multiple-antenna scheme relies on temporal-only
spreading of each data stream. In other words, each symbol of
a data stream is transmitted during multiple channel uses. The
approach of [9] uses a different tensor model but is still limited to
pure spatial multiplexing with temporal-only spreading. The model
of [10] adds some transmission flexibility by allowing spatial
spreading of the transmitted data streams in addition to temporal
spreading (i.e. space-time spreading). This is achieved by means of
a constrained tensor model which is exploited at the receiver for a
joint blind detection and channel estimation.

More general space-time spreading structures were recently
proposed relying on a third-order CONstrained FACtor (CONFAC)
decomposition [7,11]. The approach of [11] exploits two constraint
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matrices with variable 1’s and 0’s structure (therein referred to
as stream and code “allocation matrices”, respectively) to design
transmit schemes with different spatial multiplexing/diversity and
code multiplexing degrees for the data streams. [7] further
generalizes [11] by including a third allocation matrix that defines
the mapping of the precoded signals to the transmit antennas. In
this case, the constrained structure of the CONFAC model is fully
exploited at both the transmitter (to design sets of transmission
schemes) and the receiver (for blind signal processing).

In this work, we present a novel tensor-based space-time
spreading-multiplexing model. At the transmitter, we exploit
the core of a PARATUCK-2 tensor decomposition to design
different precoder structures combining space-time multiplexing
and diversity. At the receiver, the multilinear algebraic structure of
the resulting PARATUCK-2 model is used for a joint blind detection
and channel estimation. Differently to the CONFAC-based model
of [7,11], two allocation matrices of the PARATUCK-2 core tensor
jointly control the temporal coding/spreading of each data stream
with respect to each transmit antenna. In this case, by varying the
1’s and 0’s of these matrices, the temporal allocation of data streams
to transmit antennas is also varied, which provides the flexibility to
accommodate/load data streams to time-slots in a different number
of ways. Moreover, the number of channel uses associated with
the transmission of each data stream may be different from one
data stream to another, which is not possible with the existing
tensor-based space-time transmission models.

The PARATUCK-2 decomposition can be viewed as a
generalization of the PARAFAC one. It mixes the properties of
both PARAFAC [8] and TUCKER-2 [12] decompositions. This
decomposition has been studied in the psychometrics literature
[13] and subsequently exploited in [14] to solve special data
analysis problems in chemometrics. The first application of
PARATUCK-2 in signal processing was proposed in [15] for the
blind joint identification and equalization of Wiener-Hammerstein
communication channels. The present paper shows that this
decomposition is also useful to model transmitter and receiver
signal processing in MIMO wireless systems.

The organization of the paper is as follows. Section 2 briefly
presents the PARATUCK-2 decomposition of a third-order tensor.
In Section 3, the proposed space-time multiplexing-spreading
structure is presented and the associated tensor signal model is
formulated. Section 4 discusses the identifiability issue and its link
with the space-time multiplexing-spreading structure. In Section 5,
we present a blind PARATUCK-2 based receiver for joint channel
estimation and symbol detection. Some simulation results are
presented in Section 6 and the paper is concluded in Section 7.
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Figure 1: Proposed space-time spreading-multiplexing model as a cascade of 3 blocks: i) stream-to-slot allocation, ii) precoding, and iii)
slot-to-antenna allocation.

2. PARATUCK-2 TENSOR DECOMPOSITION

The PARATUCK-2 decomposition of a third-order tensor X ∈
C

I1×I2×I3 is given, in scalar form, by the following expression:

xi1,i2,i3 =

R1∑

r1=1

R2∑

r2=1

ai1,r1
bi2,r2

gr1,r2
c
A
i3,r1

c
B
i3,r2

, (1)

where xi1,i2,i3 is the (i1, i2, i3)-th entry of tensor X , ai1,r1
=

[A]i1,r1
, bi2,r2

= [B]i2,r2
, cAi3,r1

= [CA]i3,r1
, cBi3,r2

=

[CB]i3,r2
, and gr1,r2

= [G]r1,r2
are the entries of matrices

A ∈ C
I1×R1 , B ∈ C

I2×R2 , C
A ∈ C

I3×R1 , C
B ∈ C

I3×R2

and G ∈ C
R1×R2 , respectively. The matrices A and B are the

factor matrices of the decomposition. They are associated with the

first and second dimensions of the tensor X ∈ C
I1×I2×I3 . The

matrices C
A and C

B are called interaction matrices. They define
the linear combination profile between theR1 columns of A and the
R2 columns of B along the third dimension of the tensor X . The
matrix G is the core matrix of the PARATUCK-2 decomposition.
The element gr1,r2

of G defines the magnitude of the interaction
between the r1-th column of A and the r2-th column of B.

Let us define the matrix-slices X· · i3 ∈ C
I1×I2 , i3 =

1, · · · , I3, obtained by “slicing” the tensor along its third
dimension:

[X· · i3 ]i1,i2 = xi1,i2,i3 .

This matrix-slice can be written as:

X· · i3 = ADi3(C
A)GDi3 (CB)BT

, i3 = 1, · · · , I3. (2)

where Di3(CA) ∈ C
R1×R1 and Di3 (CB) ∈ C

R2×R2 represent

diagonal matrices that hold, respectively, the i3-th row of C
A and

C
B on the main diagonal.

Constrained PARATUCK-2: We are interested in a special

PARATUCK-2 decomposition, where C
A and C

B are constrained

to have only 1’s and 0’s entries. For instance, cAi3,r1
= cBi3,r2

= 1
means that the r1-th column of A interacts with the r2-th column of
B in the generation of the i3-th matrix-slice X· · i3 , the magnitude
of this interaction being determined by the entry gr1,r2

of the core

matrix G. Otherwise if cAi3,r1
= cBi3,r2

= 0, it means that there
is no interaction between the corresponding columns of A and
B. This work exploits this concept to design different space-time
spreading-multiplexing schemes for MIMO antenna systems.

3. PROPOSED SPACE-TIME
SPREADING-MULTIPLEXING MODEL

Let us consider a MIMO wireless communication system with M
transmit antennas and K receive antennas. At the transmitter, the

serial input stream is parsed into R data streams composed of N
symbols each. The proposed space-time spreading-multiplexing
model consists in jointly multiplexing/allocating theR data streams
across space and time dimensions, i.e. across M transmit antennas
and P time-slots. Each time-slot corresponds to one channel use
(N symbol periods) for transmitting R data streams. Figure 1
illustrates the proposed space-time spreading-multiplexing model.
The stream-to-slot allocation block determines the mapping of
the R data streams across the P time-slots. Likewise, the
slot-to-antenna allocation block determines the mapping of the P
time-slots to the M transmit antennas. We call attention to the
fact that the same data stream and antenna can be allocated to (i.e.
repeated over) more than one time-slot.

Define µp ∈ [1, R] and γp ∈ [1,M ] as the number of
data streams and transmit antennas allocated to the p-th time-slot,
respectively, p = 1, . . . , P . The spatial precoder combines
the µp data streams to generate γp precoded streams which are
then transmitted by a subset of γp transmit antennas at the p-th
time-slot. After precoding over P time-slots, the resulting data
streams are properly organized at each transmit antenna and then
parallel-to-serial converted before being transmitted. The wireless
channel is characterized by rich-scattering Rayleigh flat-fading
propagation and is assumed constant during N symbol periods.
The data streams are transmitted with equal powers and the
total transmitted power is normalized at any channel use and is
independent on the number of data streams and transmit antennas.

3.1 Allocation structure

Let us define a stream-to-slot allocation matrix Ψ ∈ C
P×R

and a slot-to-antenna allocation matrix Φ ∈ C
P×M , which are

composed uniquely of 1’s and 0’s. These matrices are known to
both the transmitter and receiver, and are the core of the space-time
precoder. Letψp,r and φp,m be the entries of Ψ and Φ, respectively.
We have:

µp =

R∑

r=1

ψp,r = Ψp ·(Ψp ·)
T
,

γp =
M∑

m=1

φp,m = Φp ·(Φp ·)
T
. (3)

The p-th row Ψp · ∈ C
1×R of Ψ determines which µp data streams

are allocated to the p-th slot. Likewise, the p-th row Φp · ∈ C
1×M

of Φ determines which γp transmit antennas are allocated to the
p-th slot. For example, suppose that µp = 2 and γp = 3 with
Ψp · = [1 1 0] and Φp · = [1 0 1 1]. This means that the first and
the second streams will be transmitted by the first, third and fourth
transmit antennas at the p-th time-slot. Since each time-slot has
is own stream-to-antenna allocation, different levels of space-time



multiplexing and diversity are possible by varying the pattern of 1’s
and 0’s of Ψ and Φ.

Note that R data streams pass through the channel during P
time-slots of duration N symbol periods. Therefore, the rate of the
space-time transmission is given by:

Rate =

(
R

P

)
log2(ν) bits per channel use,

where ν is the modulation cardinality.

3.2 Tensor modeling of the received signal

Let us define S ∈ C
N×R as a symbol matrix collecting the N

symbols of the R data streams, where sn,r = [S]n,r denotes
the n-th transmitted symbol of the r-th data-stream. The MIMO

channel is defined by H ∈ C
K×M , where hk,m = [H]k,m

is the complex coefficient of the channel associating the m-th
transmit antenna with the k-th receive antenna. Define also a spatial

precoding matrix W ∈ C
M×R that combines R data streams with

M transmit antennas. The structure of W will be discussed later.
The transmitted space-time signal is given by:

um,n,p =
R∑

r=1

wm,rsn,rφp,mψp,r, (4)

where um,n,p is the signal transmitted by them-th transmit antenna
at the n-th symbol period of the p-th time-slot, i.e. the (m, p, n)-th

element of the tensor U ∈ C
M×N×P . In absence of noise, the

discrete-time baseband version of the received signal tensor is given
by:

xk,n,p =

M∑

m=1

hk,mum,n,p

=
M∑

m=1

R∑

r=1

hk,msn,rwm,rφp,mψp,r, (5)

where xk,n,p is the received signal associated with the k-th receive
antenna, n-th symbol period and p-th time-slot. It is the (k, n, p)-th

element of the tensor X ∈ C
K×N×P . Note that (5) follows a

PARATUCK-2 decomposition, and the correspondences between
(1) and (5) are:

(I1, I2, I3, R1, R2) → (K,N,P,M,R)

(A,B,G,CA
,C

B) → (H,S,W,Φ,Ψ). (6)

Let us define X· · p ∈ C
K×N as the p-th matrix “slice” obtained

by slicing X ∈ C
K×N×P along its third dimension. This matrix

can be factored as:

X· · p = HDp(Φ)WDp(Ψ)ST

= HF· · pS
T
, (7)

where
F· · p = Dp(Φ)WDp(Ψ) ∈ C

M×R
(8)

is the p-th slice of the overall space-time precoder tensor F ∈
C

M×R×P . This slice associates the R data streams to the M
transmit antennas at the p-th time-slot. Figure 2 illustrates the
factorization of the p-th slice X· · p of the received signal tensor
as a function of the system parameters.

Define X1 =
[
vec(X· · 1), . . . , vec(X· · P )

]
∈ C

KN×P

collecting the received signal over the P time-slots. From (7) and
(8), it can be shown that X1 admits the following factorization:

X1 = (S ⊗ H)
[
vec(F· · 1), . . . , vec(F· ·P )

]

= (S ⊗ H)F1, (9)

= HK
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Figure 2: Visualization of the PARATUCK-2 decomposition of the
p-th slice of the received signal tensor.

where

F1 =
[
vec(F· · 1), . . . , vec(F· · P )

]
∈ C

MR×P
, (10)

and ⊗ denotes the Kronecker product.
The matrix X1 defined in (9) can be viewed as a matrix

“unfolding” of the received signal tensor X ∈ C
K×N×P stacking

column-wise its first and second dimensions (K and N ), each
column being associated with a given time-slot. We can also define

two other unfoldings X2 ∈ C
PK×N and X3 ∈ C

PN×K from the
set of slices {X· · 1, . . . ,X· · P }, in the following manner:

X2 =




X· · 1

..

.
X· ·P



 =




HF· · 1

..

.
HF· · P



 S
T

= (IP ⊗ H)F2S
T
, (11)

and

X3 =




X

T
· · 1

...

X
T
· ·P



 =




SF

T
· · 1

...

SF
T
· ·P



 H
T

= (IP ⊗ S)F3H
T
, (12)

where

F2 =




F· · 1

...
F· · P



 ∈ C
PM×R

, F3 =




F

T
· · 1

...

F
T
· ·P



 ∈ C
PR×M

,

are the two corresponding unfoldings of the overall precoder tensor
constructed from the set of precoder slices {F· · 1, . . . ,F· ·P }.

4. IDENTIFIABILITY ISSUE: DESIGN OF Ψ AND Φ

The identifiability of the underlying PARATUCK-2 model for the
received signal is important since we are interested in a blind joint
estimation of the channel and the symbols. Identifiability of H and
S in the Least Squares (LS) sense is not only linked to the relation
between the three dimensions K, N and P of the received signal
tensor (c.f. Section 5) but also depends on the joint structure of the
allocation matrices Ψ and Φ. We begin with two assumptions that
are satisfied by the allocation matrices:

(A1) Both Ψ and Φ have no all-zero row; each time-slot transmits
at least one data stream and uses at least one transmit antenna;

(A2) Both Ψ and Φ have no all-zero column; every data stream and
transmit antenna is allocated at least once during the P time-slots.

Theorem 1: Supposing that S and H are nonsingular matrices, their
identifiability in the LS sense requires that:

P ≥ max

(⌈
R

M

⌉
,

⌈
M

R

⌉
, 2

)
. (13)



Proof: Let us rewrite the two expressions (11) and (12) as X2 =
Z2S

T and X3 = Z3H
T , where Z2 = (IP ⊗ H)F2 ∈ C

PK×R

and Z3 = (IP ⊗ S)F3 ∈ C
PN×M . Identifiability of S and

H in the LS sense requires that Z2 and Z3 be full column-rank
to be left-invertible. Note that (IP ⊗ H) and (IP ⊗ S) are
also nonsingular since S and H are assumed to be nonsingular.
Consequently, rank(Z2)=rank(F2) and rank(Z3)=rank(F3), which

means that F2 ∈ C
PM×R and F3 ∈ C

PR×M must be full
column-rank to ensure the identifiability of S and H. Therefore,

we must have PM ≥ R and PR ≥M or, equivalently, P ≥
⌈

R
M

⌉

and P ≥
⌈

M
R

⌉
. It is also necessary to have P ≥ 2 in order that

X be a third-order tensor. Since these three conditions must be
simultaneously satisfied, we arrive at (13). �

Theorem 1 is useful when we are interested in quickly
eliminating the space-time spreading-multiplexing configurations
that lead to a nonidentifiable model. However, this condition is not
sufficient for identifiability of S and H. Note that rank(F2) and
rank(F3) depend on the joint structure of the allocation matrices

Ψ ∈ C
P×R and Φ ∈ C

P×M and, more specifically, on their
pattern of 1’s and 0’s.

Theorem 2: Suppose that W ∈ C
M×R is nonsingular and has

no zero elements and that Ψ ∈ C
P×R and Φ ∈ C

P×M satisfy

assumptions (A1)-(A2) with µp = Ψp ·(Ψp ·)
T ∈ [1, R] and γp =

Φp ·(Φp ·)
T ∈ [1,M ], p = 1, . . . , P . If

R ≤
P∑

p=1

γp and M ≤
P∑

p=1

µp, (14)

then S and H are identifiable from (11) and (12). The proof of this
theorem is not provided here due to a lack of space. It consists in
studying the rank of F2 and F3 by rewriting these matrices in terms
of the slices {F· · p}, p = 1, . . . , P , and by taking the factorization
(8) into account.

Essential uniqueness: Identifiability in the LS sense is linked to
the identifiability of the subspaces of S and H from X2 and X3,
respectively. This means that the estimated symbol and channel

matrices, denoted by Ŝ and Ĥ, are related to the true matrices S and

H by Ŝ = STs and Ĥ = HTh, where Ts ∈ C
R×R and Th ∈

C
M×M are two arbitrary nonsingular transformation matrices.

Therefore, apart from ensuring model identifiability, it is also
necessary to fix Ts and/or Th for ensuring the essential uniqueness
of S and/or H (up to scaling and permutation ambiguities). In order
to ensure the essential uniqueness, additional constraints must be
imposed on Ψ and Φ. It can be shown that S is essentially unique
if Ψ has orthogonal columns (which requiresR ≤ P ). Likewise, H
is essentially unique if Φ has orthogonal columns (which requires
M ≤ P ). We are mostly interested in blindly estimating the
transmitted symbols rather than estimating the channel, therefore
the essential uniqueness of H is not relevant.

Design examples: We present some design examples for
the allocation matrices Ψ and Φ in order to show that
the proposed space-time spreading-multiplexing model has the
flexibility of covering different multiple-antenna signaling schemes
with multiplexing-spreading tradeoffs.

Example 1 (R = 2,M = 3, P = 2): Consider the transmission of
2 data streams using 3 antennas and 2 time-slots with the following
allocation structure:

Ψ = I2, Φ =

[
1 0 1
0 1 1

]
.

The first data stream is allocated to the first and third transmit
antennas at the first time-slot, while the second data stream is
allocated to the second and third transmit antennas at the second
time-slot. Note that only two transmit antennas are used at each
time-slot. While antennas 1 and 3 share the first time-slot, antennas

2 and 3 share the second one. Both data streams have a spatial
transmit diversity gain of order two. In this case, uniqueness of H

is not guaranteed since Φ is not column-wise orthogonal.

Example 2 (R = 2,M = 2, P = 3): Consider the transmission of
2 data streams using 2 antennas and 3 time-slots with the following
allocation structure:

Ψ =

[
1 0
1 0
0 1

]

, Φ =

[
1 0
0 1
1 0

]

.

In this case, each time-slot is allocated to only one transmit antenna.
The first data stream is transmitted at the first and second time-slots
using antennas 1 and 2, respectively. The second data stream is
allocated to the third time-slot and transmitted by antenna 1. Note
that the first data stream has some spatial transmit diversity gain
since it is spread across two transmit antennas, which is not the
case for the second data stream.

Structure of W: The role of W is to combine/multiplex the R
data streams across the M transmit antennas. We choose W as the
following Vandermonde matrix:

[W]m,r
.
= e

j2π(r−1)(m−1)/M
. (15)

With this choice, we ensure that W is full-rank and has no zeros,
as required for the identifiability of the proposed PARATUCK-2
model under the conditions previously described. It is to be noted,
however, that this choice is not necessarily optimal. When using
closed-loop transmission based on a priori channel knowledge at
the transmitter, different choices for W exist depending on the
chosen design criterion. The optimized design of W is not the focus
of this work and will be addressed in a future contribution.

5. BLIND RECEIVER

We propose a blind receiver for a joint channel estimation and
symbol detection based on the Alternating Least Squares (ALS)
algorithm [14]. The ALS algorithm exploits the PARATUCK-2
tensor structure of the received signal by means of the two matrix
factorizations (11) and (12). The algorithm consists in alternating
between the estimation of the channel and symbol matrices in the

LS sense. Define X̃i = Xi + Vi, i = 2, 3, as the noisy versions of
Xi, where Vi is an additive complex-valued white gaussian noise
matrix. Recall that F2 and F3 are known. The receiver algorithm
consists of the following steps:

Initialization: Set i = 0; Randomly initialize Ĥ(i=0);

Alternating LS updates:

(1) i = i+ 1;

(2) From X̃2 and using Ĥ(i−1), calculate an LS estimate of S:

Ŝ
T
(i) =

[
(IP ⊗ Ĥ(i−1))F2

]†
X̃2;

(3) From X̃3 and using Ŝ(i), calculate an LS estimate of H:

Ĥ
T
(i) =

[
(IP ⊗ Ŝ(i))F3

]†
X̃3;

(4) Repeat steps (1)-(3) until convergence.

The operator (·)† denotes the matrix pseudo-inverse. We decide
the convergence of the algorithm at the i-th iteration when the
error between the received signal tensor and its reconstructed
version from the estimated channel and symbol matrices does not
significantly change between iterations i and i+ 1.
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6. SIMULATION RESULTS

We present some simulation results for evaluating the
Bit-Error-Rate (BER) performance of a MIMO system using
the proposed space-time spreading-multiplexing model along with
the ALS-based blind detection. Each BER curve is an average
of one thousand Monte Carlo runs. Each run represents one
realization of the flat-fading channel the coefficients of which are
drawn from an i.i.d. complex-valued Gaussian generator. At each
run, the transmitted symbols are drawn from a QPSK sequence.
The BER curves represent the performance averaged on the R = 2
data streams. In all cases, we consider a very short data stream
of N=5 symbols, which is a challenging assumption for a blind
receiver. We simulate the two space-time schemes of Examples 1
and 2 of Section 4 (Schemes 1 and 2, respectively). The results are
depicted in Fig. 3 for K=2 and K=3. Solid lines are associated
with the Scheme 1 and dashed lines with the Scheme 2. We
can observe that the second scheme outperforms the first one at
low-to-medium SNR values. Such a gain comes from the fact that
Scheme 1 has no temporal coding gain for the data streams which
are only spread in the spatial domain and not repeated over multiple
time-slots. Scheme 2 has some temporal coding gain for the first
data stream in addition to spatial transmit diversity. Note, however,
that Scheme 1 tends to be better for higher SNRs due to the higher
spatial diversity gain (both data streams are spatially-spread). In
a second experiment, we compare the proposed receiver with a
Zero Forcing (ZF) receiver that assumes perfect knowledge of the
channel matrix, for Scheme 2 and K=2. Both receivers present
the same BER vs. SNR slope. The performance degradation when
using the ALS-based blind receiver is around 5dB for a BER=10−3.

7. CONCLUSION AND PERSPECTIVES

We have proposed a new tensor modeling approach to space-time
spreading-multiplexing for MIMO antenna systems with joint
blind channel estimation and detection. The core of the
proposed PARATUCK-2 model is composed of a precoding matrix
and two allocation matrices Ψ and Φ that allow to control
the spreading-multiplexing of the data symbols across multiple
transmit antennas and time-slots. The PARATUCK-2 space-time
transmission structure has the flexibility to accommodate data
streams to time-slots in a different number of ways. Identifiability
has been discussed and linked to the design of the allocation
matrices. We have also derived a blind ALS receiver based on
the PARATUCK-2 tensor structure. Perspectives of this work
include an extension of the PARATUCK-2 modeling approach to
multicarrier systems with space-time-frequency transmission.
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