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ABSTRACT 

In this paper we study a sparse signal representation ap-

proach for the classification of impact acoustic signals ob-

tained from empty and full hazelnuts. In particular, two cus-

tom dictionaries are designed for each class with a vector 

quantization algorithm by using the training data for each. 

In the following step each individual dictionary or their 

combination is used for representing the test acoustic sig-

nals with the belief that the representation will be biased. 

Two different subset selection (SS) techniques, matching 

pursuit (MP) and a bounded error subset selection algo-

rithm (BESS) were investigated to approximate given signals 

by using the code vectors in these biased dictionaries. The 

approximation error and the number of code vectors se-

lected from dictionaries were used as input features for the 

final classification step. We observe that this biased diction-

ary design allows one to distinguish between classes while 

representing them with a small number of codevectors. In 

particular the classification performance of the BESS algo-

rithm by using the codevectors constructed from empty ha-

zelnut acoustics was the best and outperforms that of using 

the MP algorithm. The combination of BESS algorithm, the 

dictionary derived from empty hazelnut acoustics and a de-

cision tree yields classification accuracies of 94.8% and 

100% for empty and full hazelnuts respectively. Our results 

indicate that subset selection from biased dictionaries can 

be used as a new approach for classification. 

1. GENERAL INFORMATION 

In the last few decades there is a growing interest in the use 

of adaptive signal representation techniques for compression 

and communication [1, 2 and 3]. The main idea behind this 

trend is, for a given signal b of length N, one wants to repre-

sent the signal within a tolerable error limit, thε , by using a 

small number of coefficients k, where k<<N. Recent re-

search has shown that this goal can be achieved in a more 

effective manner when redundant dictionaries are preferred 

to complete bases such as Fourier and Cosine [1, 2, 3 and 4]. 

In this scheme wavelet and cosine packets are very effective 

examples [1, 2 and 3]. Both WP and CP first represent the 

signal using an overcomplete dictionary over a pyramidal 

tree structure. Within this pyramid structured dictionary, a 

mother node covers a space which is the union of its chil-

dren. For a sparse and complete representation, this relation 

ship allows one to prune the tree from bottom to top by so 

called best basis algorithm which implements a cost function 

minimization procedure, such as entropy over the expansion 

coefficients in the nodes of the pyramidal tree [1]. The rich-

ness and structural relationship in the dictionary design and 

the selection of signal adapted bases from this dictionary 

resulted in better compression rates. Although the structural 

relationship in dictionary design allows fast algorithms to be 

implemented for subset selection, it is more desirable to use 

more sophisticated and flexible dictionaries to represent the 

signal without any geometrical limitation. However, finding 

the optimal approximation to the signal b, in an overcomplete 

dictionary represented by N dimensional vectors spanning 

the column space of the matrix D is NP hard. (D ∈ ℜ
(NxM)

, 

and M>>N) [2, 4 and 5].  

In order to tackle this problem, so called matching pursuit 

(MP), an iterative subset selection procedure, was proposed 

in [2, 4]. The MP uses a greedy search strategy to represent 

the signal b, using an overcomplete dictionary by minimiz-

ing the approximation error e in each step. Although the 

solution is not optimal, MP provides satisfactory results 

most of the time. Several other strategies including the basis 

pursuit and the orthogonal MP were proposed with an addi-

tional cost. The reader is referred to [2, 4 and 5] for further 

information. The recent progress in sparse representation 

algorithms shows that the subset selection procedure and 

dictionary design are key elements in signal approximation 

[5, 6, 7 and 8]. 

In this paper we use the achievements in this area for classi-

fication purposes. In particular, we use the flexibility in dic-

tionary design and efficiency in subset selection for the rec-

ognition of impact acoustic waveforms obtained from full 

and empty hazelnuts. As a first step, we design custom dic-

tionaries with a vector quantization algorithm where each 

dictionary is specifically generated from the available acous-

tic training data in each class. In the following step, we use a 

subset selection algorithm to approximate the acoustic sig-

nals by forcing the algorithms to use the codevectors in 

these biased dictionaries. The subset selection module re-

turns an approximation error and the number of codevectors 

used to achieve that error selected from a partial dictionary. 

To evaluate the efficiency of subset selection module here 

we consider matching pursuit and bounded error subset se-

lection algorithms. As a last step, we feed these features to a 

classifier module for the final decision. The classifiers con-
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Fig.1. The block diagram of the proposed system. 

sidered in this work are a linear discriminant analysis and a 

decision tree. A schematic diagram of the proposed approach 

is presented in Fig.1. In the rest of this paper we will inves-

tigate the effect of: 

• Dictionary design in final accuracy. 

• Subset selection approach in final accuracy. 

• Different classifiers such as linear discriminant and a 

decision tree. 

This paper is organized as follows. In the next section we 

explain the dictionary design and the BESS procedure in 

detail. In section 3 we describe the acoustic data acquisition 

system and provide sample waveforms. In section 4 we pro-

vide experimental results. We conclude with discussion and 

future work in section 5. 

2. DICTIONARY DESIGN AND SUBSET 

SELECTION 

As described above we are interested in developing a signal 

representation approach that is dictionary biased. In this 

scheme using the deterministic dictionaries constructed from 

such as sine, cosine or Gabor functions are not suitable. For 

this reason, we utilize the LBG- vector quantization algo-

rithm of [9] for dictionary generation. Here, we organize our 

dictionary D in such a way that the selection of the codevec-

tors, iψ , will be biased within D. In particular, two sub-

dictionaries DEmpty for empty and DFull for full hazelnut 

classes were constructed by using half of the available data-

set. These dictionaries were estimated from the acoustic data 

with the LBG-Vector Quantization algorithm [6]. In the next 

step they are used by the subset selection algorithms for the 

representation of the impact acoustic signal of empty and full 

hazelnuts. In addition we also investigate the use of a com-

bined dictionary DCombined computed by merging empty and 

full sub dictionaries,  

Combined Empty Full
D D D= ∪   (1) 

Then, a given test signal that is not used in the dictionary 

generation, is approximated by one of the subset selection 

algorithms which will be described in the following section. 

 

2.1 Matching Pursuit for Subset Selection 
In our solution strategy, selection of codevectors from the 

biased dictionaries in a sparse manner is expected to empha-

size the differences between classes. In this respect we evalu-

ate two different subset selection procedures to observe their 

effect in classification. It is known that the subset selection 

problem is NP-hard [2, 4]. Sparseness is imposed explicitly 

by minimizing the number of non-zero coefficients in the 

solution vector. One of the solutions to the problem is the 

Matching Pursuit algorithm that uses a greedy search strategy 

[4]. We will use the MP as a subset selection approach. The 

pseudo code of MP is summarized in Box-1. Here f is the 

residual, iψ  is the i
th
 column vector (code vector) of D, and 

ix  is the inner product between the input signal and iψ .The 

signal is iteratively decorrelated from the basis vector which 

has maximum correlation ( kx ) with the residual. This greedy 

approximation strategy offers a solution in a polynomial time 

in the presence of an overcomplete dictionary.  

As an alternative method we also considered the bounded 

error subset selection (BESS) algorithm of [6, 7], which has 

higher computational complexity but provides a more opti-

mal solution. 

 

2.2 Bounded Error Subset Selection (BESS) 
The BESS algorithm has been introduced by the authors of 

[6, 7] as a reformulation of the classical subset selection 

problem. It has been shown that by introducing a perturba-

tion vector ε
r
 to the signal b under investigation, one can 

obtain a maximally sparse representation of the signal from 

the over complete dictionary D, such that thDx b ε− ≤ . 

The solution for the BESS problem can be achieved via ex-

haustive enumeration procedure with an exponential com-

plexity. By utilizing a trimming procedure the authors have 

reduced the computational complexity to polynomial time. 

Furthermore, by utilizing a stack decoding algorithm, the 

memory requirements of the algorithm is reduced.  In BESS, 

the sparseness is achieved by keeping other alternative ap-

proximations to the signal in a tree based search structure. In 

particular the algorithm keeps most promising approxima-

tions in each step and removes remaining ones for memory 

savings and to decrease the computational cost. Further-

more, BESS uses the Gramm-Schmidt orthogonalization 

procedure in each step to decorrelate the codevectors in the 

Box-1: MP Algorithm 

 

start with f b=  

repeat  

for i=1 to N 

                     ,
i i
x fψ= .   

end 

( ) argmax
i

k x=  
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       until 
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e ε≤ then     

       return e     
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Box:2- Pseudo Code of BESS 

 

Step-1: Set the number of alternative approximations, k. 

Step-2: Compute the inner product of the signal with all code-

vectors in the dictionary  

Step-3: Select the codevector from D with maximum absolute 

correlation. 

Step-4: Remove that index from the dictionary D and find the 

second alternative codevector with max coefficient. Go 

to Step-2 until desired number of alternatives found. 

Step-5: For each alternative generate new dictionaries by or-

thogonalizing the codevectors with respect to the se-

lected codevector. 

Step-6: For each alternative codevector compute the residual 

and approximate it with the rest of the codevectors in 

the dictionary. 

Step-7: List, Li, all subsets of dictionary vectors to produce 

approximations. Keep the best k subsets that provide 

lower approximation error. 

Step-8: Goto Step-2, add new codevectors until the approxima-

tion error is below a given threshold. 

Step-9: Return the best subset from Li and the corresponding 

approximation. 

Table 1. Classification accuracies (%) obtained with DEmpty dic-

tionary which is constructed from the impact acoustic signals of 

empty hazelnuts. The columns E and F stand for the classification 

accuracies of empty and full hazelnuts respectively. 

LDA MP BESS 

εεεεth E F Avg. E F Avg. 

0.1 97.2 91.1 94.1 97.8 88.3 93 

0.05 95.5 98.3 96.9 98.2 90.2 94.2 

0.01 97 96.5 96.7 94.6 99 96.8 

 

DT MP BESS 

εεεεth E F Avg. E F Avg. 

0.1 92.4 98.9 95.7 94.8 100 97.4 

0.05 92.2 98.9 95.6 94.8 99.8 97.3 

0.01 92 99.6 95.8 94.1 99.1 96.6 
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Fig.2. Empty (a) and full (b) hazelnut acoustics. 

dictionary with respect to the selected index. Therefore the 

BESS can be seen as an extended version of orthogonal least 

squares (OLS) solution [10]. We also note that the combina-

tion of trimming and stack decoding algorithms have an 

interesting connection to tree based A* (A star) and branch-

bound search algorithms which are widely used in artificial 

intelligence since the 1960’s [11, 12]. To be more specific 

the search strategy of BESS can be seen as a special case of 

memory bounded A* search. A pseudo code of BESS is 

given in Box 2. Now let us describe the hazelnut acoustic 

signals we recorded to test our algorithm. 

3. HAZELNUT IMPACT ACOUSTIC 

RECORDINGS 

Hazelnuts are widely used in the chocolate and flavoured 

coffee industries. Empty hazelnuts and hazelnuts containing 

undeveloped kernels are one of the main causes reducing the 

quality attribute. Moreover, empty hazelnuts and the ones 

containing undeveloped kernels may also contain the mould, 

“Asperguillus flavus” that produces aflatoxin, a cancer caus-

ing material [13]. Therefore, separation of empty and unde-

veloped hazelnuts from developed ones carries significance 

for food quality and human health. Currently, empty hazel-

nuts are separated by pneumatic devices that use weight dif-

ferences with an airleg. However, the false positive rate of 

these devices is high. There remains a need for more ad-

vanced systems to improve the classification accuracies.  

Recently in another area, a high-throughput, low cost acous-

tical system has been developed to separate pistachio nuts 

with closed shells from those with open shells [14]. In this 

system, pistachio nuts were dropped onto a steel plate and the 

sound of the impact is analyzed in real time. Pistachio nuts 

with closed shells produce a different sound than those with 

cracked shells, as expected. The classification accuracy of 

this system is approximately 97%, with a throughput rate of 

approximately 20-40 nuts/second. 

In this study
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elnuts which are recorded by dropping nut ker-

teel plate. The impact plate was a polished block 

teel with dimensions 7.5 x 15 cm and a depth of 

rophone, that is sensitive to frequencies up to 20 

ed to capture the impact sounds. The sound card 

personal computer was used to digitize acoustic 

 44.1 kHz. For each type of hazelnut, 230 re-

re obtained. Figure 2 shows two representative 

 the available dataset. 

4. RESULTS 

rimental studies, we used 2 times 2 fold cross 

 estimate the classification error. Half of the 
sed to calculate 32 code-vectors for each sub-

ia LBG-VQ [9] algorithm for each class. All im-

s records were 256 samples long. For the BESS 

e keep 3 alternative code vectors in each step 

tudy the effect of the dictionary on final classifi-

mploy three different strategies. We separately 

idual dictionaries and their combination to be 

 subset selection algorithm. For each dictionary 

 we use the MP and BESS for subset selection. 

gnal the subset selection procedures returned 

ximation error and ,i jV the number of codevec-

 from each dictionary where i keeps the index of 

coustics and j keeps the index of the dictionary. 



Table 3. Classification accuracies obtained with combined dic-

tionary. 

LDA MP BESS 

εεεεth E F Avg E F Avg 

0.1 97.8 84.6 91.2 95.2 96.5 95.8 

0.05 97.2 86.8 92 94.8 98.7 96.7 

0.01 87.9 92.9 90.4 95.3 99 97.1 

 

DT MP BESS 

εεεεth E F Avg E F Avg 

0.1 93.1 98.9 96 89.3 100 94.6 

0.05 93.5 97.4 95.4 89.3 100 94.6 

0.01 82.4 95 88.7 93.7 100 96.8 

50 100 150 200
0

2

4

6

8

10

12

Recording Index

N
u

m
b

er
 o

f 
C

o
d

e 
V

ec
to

rs

Empty Full 

   
50 100 150 200

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Recording Index

lo
g

1
0
(e

)

Empty Full 

 
(a) (b) 

Fig.3. The number of code vectors selected from the dictionary 

DEmpty by the BESS algorithm for empty and full hazelnuts is 

given in (a). The approximation error, achieved with these code 

vectors is given in (b). Note that although a higher number of 

codevectors are selected for full hazelnuts their corresponding 

approximation error is higher than empty ones.  

Table 2. Classification accuracies (%) obtained with DFull diction-

ary which is constructed from the impact acoustic signals of full 

hazelnuts. The columns E and F stand for the classification accura-

cies of empty and full hazelnuts respectively. 

LDA MP BESS 

εεεεth E F Avg. E F Avg. 

0.1 75.3 48.1 61.7 71.4 87 79.2 
0.05 50.5 48.7 49.6 79.6 77.4 78.5 
0.01 63.5 43.3 53.4 52.9 88.3 70.6 

 

DT MP BESS 

εεεεth E F Avg. E F Avg. 

0.1 69.9 47.9 58.1 64.6 69.1 66.8 
0.05 67.6 49.3 58.5 65.7 74 69.8 
0.01 66.8 54.6 60.7 55.2 71 63.0 

 

On the last step ie and ,i jV were used as input features to a 

linear discriminant analysis and decision tree for final classi-

fication. We also study the effect of the approximation 

threshold, { }0.1, 0.05, 0.01thε ∈ .  

During our initial studies we observed that when the number 

of codevectors to approximate the target signal is limited, 

then the classification accuracies were better than the unlim-

ited case. This indicates that the approximation with the ini-

tially selected codevectors is more important for discrimina-

tion. Therefore the maximum number of codevectors that can 

be selected from the dictionary is limited to nine such that the 

bias is emphasized in signal approximation.  

Table 1, 2 and 3 show the classification accuracies obtained 

with the proposed system for different thε , and sub-module 

designs. 

We observed that the best classification accuracy is obtained 

from DEmpty, BESS and decision tree combination for 

0.1
th
ε =  as shown in Table 1. The individual classification 

accuracies for empty and full hazelnuts in this setup are 

94.8% and 100%, respectively. Fig. 3 shows the number of 

codevectors by BESS from the dictionary DEmpty for each 

class and related approximation error. When the subset selec-

tion module is replaced with the MP algorithm, the individual 

classification accuracies drop to 92% and 99.6% with 

0.01
th
ε = , respectively. Moreover, when the classifier is 

replaced with an LDA, interestingly the average classifica-

tion accuracy drops to 96.8% for BESS and increases to 

96.9% for MP setups. For the MP algorithm the best classifi-

cation accuracy is obtained at 0.05
th
ε =  level, whereas it is 

at 0.01
th
ε =  level for the BESS algorithm. 

When the dictionary is replaced with DFull, the average clas-

sification accuracies drop radically for all designs (See Table 

2). The best result with this dictionary is 79.2% with BESS 

and LDA setup using an error threshold of 0.1
th
ε =  among 

all designs.  

For combined dictionary, the classification accuracies are 

comparable to those obtained with DEmpty as shown in Table 

3. Once again, the best result is achieved when BESS is used 

as the subset selection algorithm. In particular, the BESS and 

LDA combination achieved an average classification accu-

racy of 97.1% at 0.01
th
ε =  level. For the MP, the average 

classification accuracy at this level is 90.4%. 

In order to assess the overall efficiency of the proposed ap-

proach, we compare it to a baseline design. In particular, we 

extract time and frequency domain features and use them for 

classification. The used features are the absolute values of the 

discrete Fourier transform of the entire signal, the maximum 

and minimum values and the standard deviation of the raw 

data. The classification accuracies with these features and 

LDA combination were 98.5% and 83.1% for empty and full 

hazelnuts respectively. Our proposed approach not only out-

performed in average classification accuracy but also pro-

vided higher true positive rates for full hazelnuts. 

5. CONCLUSION 

In this paper we proposed a subset selection approach from 

class dependent dictionaries for impact acoustic classifica-

tion. In this scheme, two different subset selection methods 

such as MP and BESS are evaluated. Furthermore, we in-

spected the performance of the proposed system for different 

classifiers and approximation error thresholds. We noticed 

that the BESS, and the dictionary constructed from the 

acoustic waveforms of empty hazelnuts, and a decision tree 

provided the best average classification accuracy of 97.4% 

with only two features. Interestingly, the results obtained 

with the dictionary constructed from full hazelnut acoustic 
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waveforms were radically poor. When two sub dictionaries 

are combined comparable results were obtained at expense of 

higher computational complexity.  

During our experiments we observed that the signals from 

both classes were fairly represented by the codevectors in 

DFull dictionary. However when we use DEmpty dictionary we 

note that the full hazelnut acoustics could not be represented 

efficiently by neither MP nor BESS algorithms (See Fig. 

3(b)). We observed that not only the dictionary design but 

also the subset selection procedure has an important role on 

the final classification accuracy. As we expected the sparsest 

selection produced better classification accuracy which is 

validated by the results with the BESS algorithm. We believe 

the reason for this is that the BESS algorithm emphasizes the 

bias in dictionaries even more while implementing a compu-

tationally complex search within the dictionary. However one 

should note that the BESS procedure has much higher com-

putational complexity with respect to MP and may provide 

slower rate processing speed in real-time applications. 

We utilized a vector quantization algorithm for dictionary 

design. This approach is different from the general approach 

where the dictionaries are fixed in advance. A similar ap-

proach where the initial dictionary is iteratively updated us-

ing training signals was developed in the K-SVD.algorithm, 

[8]. Currently, the authors are investigating such custom dic-

tionary designs and their effects on the classification per-

formance. 
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