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ABSTRACT

This paper presents and discusses an alternative notion of
sparsity. This notion derives from a theoretical result in bi-
nary hypothesis testing and slightly differs from the standard
notion of sparsity introduced by Donoho and Johnstone. As
an application of this alternative notion of sparsity and as
an extension of the detection threshold recently proposed,
level-dependent detection thresholds are introduced. The
performance of level-dependent detection thresholds is illus-
trated in the context of non-parametric estimation by soft
thresholding in the wavelet domain. Experimental results
show that the resulting approach performs well in compari-
son with one of the best up-to-date parametric method. In
connection with some results concerning the statistical prop-
erties of wavelet coefficients associated with strictly station-
ary random processes, prospects are suggested for estimating
unknown signals in non-necessarily white or Gaussian noise.

1. INTRODUCTION

Sparsity has gained much interest in the signal processing
community since Donoho and Johnstone’s seminal work in
1994 [1]. The reason is the existence of transforms that are
sparse in the following sense: a sparse transform makes it
possible to represent many signals by coefficients that have
small or null amplitudes, except a few ones whose amplitudes
are large. In this sense, the orthonormal discrete wavelet
transform (DWT) is sparse for smooth and piecewise regu-
lar signals. Following [1], sparsity is often introduced from
an estimation point of view and used to estimate or recon-
struct a signal on the basis of its noisy samples. In con-
tinuation of [2], the purpose of this paper is to define and
discuss another notion of sparsity. This notion of sparsity
is based on [3, Theorem VIIL.1], a result concerning binary
hypothesis testing and, more specifically, the detection in
additive white Gaussian noise (AWGN) of a random signal
with unknown distribution and prior. This alternative no-
tion of sparsity is presented in section 2. In section 3, two
applications of this notion are presented. Both concern the
non-parametric estimation of an unknown deterministic sig-
nal, when the non-parametric estimation is performed by
soft thresholding of the wavelet coefficients associated with
a noisy observation of the signal. Soft thresholding requires
to choose a threshold for selecting the coefficients that con-
tain information about the signal to recover. In section 3.2,
the detection threshold, originally introduced in [2] as an al-
ternative to the standard universal and minimax thresholds,
is presented as a consequence of the new notion of sparsity.
The second application, treated in section 3.3, is an exten-
sion of the detection threshold. In fact, level-dependent de-
tection thresholds are proposed in section 3.3 for the estima-
tion of signals by soft thresholding. The resulting approach

has performance measurements close to those obtained with
BLS-GSM [4], a reference amongst the best up-to-date para-
metric techniques. Section 4 relates the notion of sparsity
proposed in this paper to estimators of the noise standard
deviation, especially for situations where too many large co-
efficients for the signal are present among the detail wavelet
coefficients. Section 5 concludes this paper by propounding
several extensions for the estimation of signals in possibly
coloured and/or non-Gaussian noise.

2. SPARSITY FOR DETECTING SIGNALS
WITH UNKNOWN DISTRIBUTIONS AND
PRIORS IN AWGN

We begin by recalling a result, namely proposition 1, es-
tablished in [2]. The discussion that follows this statement
concerns the notion of sparsity that proposition 1 suggests.
As mentioned in [2], if the random variables considered in
proposition 1 below are replaced by n-dimensional real ran-
dom vectors and the absolute values by the standard Eu-
clidean norm in R", the statement thus obtained still holds
true and is an easy extension of [3, Theorem VIL.1]. Hence-
forth, V(p, p) stands for the function defined for every non-
negative real number p and every 0 < p < 1 by

Vip:p) = p[F (p+&(p,p)) = F(p— f(p,p))]
+2(1-p)[1-F((p.p))]. (1)

where F is the cumulative distribution function of the stan-
dard normal distribution N(0,1) and

1—p P2 —p?
1np+ln<1+ 1fme >:|
(2)

As usual, if a property P holds true almost surely, we write P
(a~s). The thresholding test 7;, with threshold height h > 0
is the measurable map of R into R defined for every real
number y by

£(p,p) =

N

1
+7
p

_J 1 ifly[=h
Tn(y) = { 0 otherwise.

Proposition 1 Consider the following binary hypothesis
testing problem
Ho: Y ~N(0,0%)

M - Y:®+X,®7é0(a—s),{ 01> 2 >0 (as),

X ~ N(0,0?),

where Y, ©, X are real random variables such that © and
X are independent and o is some positive real value.
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If the a priori probability of occurrence of hypothesis Hi is
less than or equal to some value p* < 1/2, then V(a/o,p*)
is a sharp upper bound for the probabilities of error of the
Bayes test L with the least probability of error among all pos-
sible tests and the thresholding test Toe (/o p=) with threshold
height o&(a/o,p*). The bound V(a/o,p*) is sharp because
attained by both L and Toeayop=) if |©] = a (a-s), with
P[© =a] =P[O = —a] =1/2 and the probability of occur-
rence of hypothesis Hi is p*.

Basically, the assumptions made about the signal © in
the statement above are aimed at bounding our lack of prior
knowledge: we assume that the signal is less present than
absent since the probability of occurrence of the alternative
hypothesis H1 is assumed to be less than or equal to one
half; the signal is assumed to be relatively big in the sense
that its amplitude is above or equal to a.

We now consider the following model. Denoting the set
of natural numbers by N, suppose that {Y; }icn is a sequence
of real random variables such that, for each ¢ € N, Y; obeys
the following binary hypothesis model:

{ Ho,i :
Hii:
where {X;}ien is a sequence of independent, centred and
identically Gaussian distributed random variables with stan-
dard deviation o > 0 and {O;}:ien is a sequence of random
variables that are not necessarily independent or identically
distributed. The sequence {O;};en can be regarded as the
coefficients associated with some signal of interest, the se-
quence {X;}ien represents some AWGN and {Y;}ien is a
noisy observation of the signal coefficients. In addition, we
make the following assumptions. These assumptions are of
the same type as those of proposition 1. In association with
the binary hypothesis model of Eq. (3), they define the no-
tion of sparsity considered in the sequel.

(A) [Amplitude] There exists a > 0 such that |©;] > a (a-s)
for every ¢ € N.

1/7; :Xi7
Y =0; + Xy, (3)

(O) [Occurrence] For each i € N, ©; and X; are indepen-
dent and the probability of occurrence of the alternative
hypothesis H1,; is less than or equal to p* < 1/2.

Assumption (A) specifies the existence of a minimum
amplitude a for the signal coefficients whereas assumption
(O) sets a maximum value p* for the probabilities of occur-
rence of the alternative hypotheses Hi,;. Therefore, when
a is large and p* is small, it follows from assumptions (A)
and (O) that large coefficients are few in number, which
corresponds to the standard notion of sparsity. In contrast
to the standard notion of sparsity, the new one, defined by
assumptions (A) and (O), does not require a to be large
and the number of large signal coefficients to be small. This
notion of sparsity involves the case where the signal coeffi-
cients are random variables. Above all, proposition 1 pro-
vides us with the thresholding test 7;¢(s/0,p+) With threshold
c&(a/o,p”) to distinguish the coefficients containing signif-
icant information about the signal from those due to noise
alone. In addition, under assumptions (A) and (O), this
test has the same upper-bound V' (a/o,p*) for the probabil-
ity of error than the Bayes test. The next section describes
how the notion of sparsity defined by assumptions (A) and
(O) and the threshold introduced just above can be used in
non-parametric estimation by soft thresholding.

3. DETECTION THRESHOLDS FOR
NON-PARAMETRIC ESTIMATION BY SOFT
THRESHOLDING

The notion of sparsity specified by assumptions (A) and (O)
can be applied in two ways to non-parametric estimation by

soft thresholding. First, as described in [2], it can be used to
tune the soft thresholding function with a different threshold
from those usually proposed; this will be recalled in section
3.2. Second, and this is the topic of section 3.3, it makes it
possible to introduce a level-dependent approach where soft
thresholding is adjusted at each decomposition level with a
dedicated detection threshold. As a preamble, some basics
about non-parametric estimation by sparse transform and
soft thresholding are recalled.

3.1 Background

Let us consider the samples of some signal corrupted by in-
dependent AWGN with standard deviation o > 0. The non-
parametric estimation of a signal proposed in [1] is performed
along the following lines. First, a linear orthonormal trans-
form W is applied to the data. This transform is sparse in
the sense that it represents the signal by a relatively small
number of coefficients whose amplitudes are large in com-
parison to those resulting from noise. The second step is a
non-linear filtering of the coefficients returned by W. The
purpose of this filtering is to eliminate the noise components
by forcing them to zero and, possibly, to denoise the signal
components. This filtering is performed by a thresholding
function dx(-) that depends on a threshold A whose main
role is to distinguish the noisy signal components from those
due to noise alone. Basically, a coefficient whose absolute
value exceeds A is regarded as a component of the noisy sig-
nal; a coefficient with absolute value below A is considered as
noise. The last step reconstructs the estimate of the signal on
the basis of the filtered coefficients. The performance of this
method is evaluated through a cost or risk function, which
is generally the Mean Square Error (MSE) of the estimate.

The computation of the estimate thus requires to choose
W, the thresholding function dx () and the threshold value \.
For the sparse transform, it is customary to use the DWT.
Regarding the thresholding function, the soft thresholding
function is a good choice for its properties of smoothness
and adaptation (see [5]). This function is defined for every
real value = by

x — sgn(x)A

Sx(x) = {O

where sgn(z) =1 (resp. -1) if z > 0 (resp. « < 0). Let Y; and
©:,1=1,2,..., N, be the noisy wavelet coefficients and the
signal wavelet coefficients, respectively. Then, the MSE as-
sociated with d5(-) is MSE = (1/N) YN E(©; — 6\ (Y7))>.
As far as the threshold is concerned, the literature on the
topic usually distinguishes between the universal and the
minimax thresholds introduced in [1]. The universal thresh-
old A\, (N) is an estimate of the maximum of the amplitude
that can be attained by the noise components. We have
A (N) =0v2In N where N is the sample size. The expres-
sion of the minimax threshold is useless in the sequel. Sev-
eral authors have suggested that the universal and minimax
thresholds are actually too large for many practical applica-
tions (see [6, 7] among others). By considering the notion
of sparsity of section 2, another threshold is proposed in [2]
and this threshold, called the detection threshold, yields bet-
ter performance measurements than standard ones. This is
briefly recalled in the next section before presenting a level-
dependent extension.

if |z| = A,
elsewhere,

(4)

3.2 Soft thresholding by detection threshold

The following summary of [2] is useful for a better under-
standing of the next section and is a first application of the
new notion of sparsity introduced in section 2. Let us assume
that the coefficients {Y; }1<i<n returned by the transform W
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satisfy Eq. (3) with assumptions (A) and (O). Since the uni-
versal threshold A\, (N) can be regarded as the maximum am-
plitude of the noise coefficients when N is large enough, the
minimum amplitude in Eq. (3) is assumed to be a = Ay (N)
in this section. As far as the maximum probability of occur-
rence p” is concerned, we consider the leat favourable case
p* = 1/2. This model is acceptable to describe the statistical
behaviour of the wavelet coefficients for smooth or piecewise
regular signals ([1, 8]). Since the threshold of the thresh-
olding function is aimed at distinguishing small from large
coefficients, section 2 leads to choose this threshold equal to
the so-called detection threshold

0{(Au(N) /o)
= o/InN/2 + oln (1 +/I- 1/N2)/\/21nN.

This threshold accepts or rejects the null hypothesis with a
probability of error less than or equal to V(v2InN,1/2),
which is a decreasing function of N. For small values of
N, the threshold A\¢(N) is close to the minimax threshold,;
for large values of N (above or equal to 2048), the value
of A\g(NNV) is about Ay (NN)/2 and smaller than the minimax
threshold. Note the following. In the model above, the coef-
ficients returned for the signal are not necessarily determinis-
tic but can be random variables. However, the experimental
results given in [2] and below are obtained by considering
the case where the coefficients ©; are deterministic because
they derive from the application of W to the samples f(¢;),
t=1,...,N, of some deterministic function. In [2], an up-
per bound for the risk of the soft thresholding estimation
is computed when the detection threshold is used. For a
wide class of signals, and when the number of observations
is large, this upper bound is proved to be from about twice
to four times smaller than the standard upper bounds given
for the universal and the minimax thresholds. This result
is experimentally verified: for a large class of synthetic sig-
nals and standard images, the detection threshold actually
achieves smaller risks for the estimation by soft thresholding
than the universal and the minimax thresholds.

Summarizing the theoretical and experimental results of
[2], the minimax and universal thresholds are suitable for re-
covering smooth signals; the detection threshold is suitable
for estimating less smooth signals, including piecewise regu-
lar signals, which are known to be over-smoothed when using
the minimax or the universal threshold. In fact, smooth sig-
nals yield very sparse wavelet representations in the sense
given by [1]: for such signals, large coefficients are indeed
very few in number. In contrast, wavelet representations
of natural images, which are piecewise regular rather than
smooth, fail to be sparse enough since large coefficients are
not very few. Assumption (O) then makes it possible to de-
rive thresholds adapted to less smooth signals. Some other
results are given below since the soft thresholding with level-
dependent detection thresholds presented hereafter is com-
pared to soft thresholding with detection threshold.

Aa(N)

3.3 Soft Thresholding with level-dependent detec-
tion thresholds

The idea developed in this section is another application of
the notion of sparsity presented in section 2. We still assume
that the coefficients returned by the sparse transform obey
the model of Eq. (3) with assumptions (A) and (O). How-
ever, we now modify assumption (A) as follows. In fact, it
is known that the amplitudes of the signal detail coefficients
tend to decrease when the decomposition level increases (see
[9, Theorem 9.7, p. 389], for instance). Therefore, we intro-
duce the following model for the minimum amplitudes of the
wavelet coefficients. Since A, (V) is considered as the max-
imum amplitude of the noise coefficients, we still consider

that the minimum amplitude of the detail coefficients that
carry significant information about the signals is a1 = Ay (N)
at the first decomposition level j = 1. On the other hand,
[9, Theorem 9.7, p. 389] suggests assuming that the mini-
mum amplitude of the coefficients associated with the signal
at decomposition level j is a; = ajfl/\/é for j = 2,...,J.
Therefore, we have a; = ovV2In N/v2i-1. As far as (O)
is concerned, we consider the least favourable case again by
setting p* = 1/2, even though, for smooth or piecewise regu-
lar signals, the proportion of significant coefficients is known
to increase with the decomposition level [7, Section 10.2.4,
p. 460]. The possibility to relate the probability of occur-
rence of H1,; to the decomposition level is postponed to a
forthcoming work. The foregoing and the results of section
2 lead us to adjust the soft thresholding function at each
decomposition level j = 1,2,...,J, J < log,(N) — 1, with
the level-dependent detection threshold

In(141-1/N?
Aa(j,N)=0/InN /27 + 0o ( NV )

This threshold value straightforwardly derives from Eq. (2)
by setting p = a; and p = 1/2. By so proceeding, the soft
thresholding function becomes level-dependent.

We conclude this section by experimental results ded-
icated to image denoising. We consider the Stationary
Wavelet Transform (SWT), particularly suitable for denois-
ing because it is translation invariant and redundant [10, 7].
The SWT is performed with the Symlet wavelet of order 8
(‘sym8& in the Matlab Wavelet toolbox). The decomposi-
tion levels are j = 1,2,...,J with J = 4. We denoise the
512 x 512 ‘Lena’ image additively corrupted by independent
WGN with standard deviation o = 9, 18,27, 36. We measure
the performance of the denoising by calculating the PSNR
before and after denoising. We recall that the PSNR is de-
fined by PSNR = 10log,, (255°/MSE) . For instance, for
compression applications, the quality of a compressed image
is considered to be good if the PSNR exceeds 30 dB.

Table 1 presents the PSNR values obtained over 10
trials for each standard deviation tested. In this table,
PSNR[BLS-GSM] stands for the PSNR obtained with the
BLS-GSM method described in [4] and which is regarded as
a reference amongst parametric methods; PSNR[A(NNV)] is the
PSNR obtained by soft thresholding with threshold height X,
A being either the detection threshold Aq(IN), the universal
threshold A, (N) or the minimax threshold A, (N).

As mentioned in section 3.2, the detection threshold per-
forms better than the universal and minimax thresholds.
But, above all, the PSNRs obtained by soft thresholding
with level-dependent detection thresholds are larger than
those yielded by the other non-parametric methods and sig-
nificantly approach those achieved by BLS-GSM. Figure 1
displays some examples of denoised images yielded by the
several methods considered in this section.

)

4. SPARSITY AND ESTIMATION OF THE
NOISE STANDARD DEVIATION.

In section 2 and its applications above, the value of the noise
standard deviation is assumed to be known. When this value
is unknown, it is generally estimated via the MAD estimator
[1]. The MAD estimator is rather natural when the trans-
form is sparse in the sense of [1] for the following reason.
If the signal is smooth, the signal wavelet coefficients are
very few among the detail coefficients at the first decompo-
sition level. In this case, the MAD estimator applied to the
detail coefficients of the first decomposition level is robust
and yields a good estimate of the noise standard deviation
([1]). However, as already highlighted, wavelet representa-
tions of natural images, which are piecewise regular rather
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Figure 1: Noisy ‘Lena’ image and denoised versions. Noise is white and Gaussian with standard deviation o = 36.

Table 1: PSNRs for different values of o when the standard
‘Lena’ image is corrupted by independent AWGN with stan-
dard deviation o. The Initial PSNR is the PSNR of the noisy
image.

o 9 | 18 | 27 | 36

Tnitial PSNR 29.0 | 23.0 | 19.5 | 17.0
PSNR[\, (V)] 293 | 26.6 | 25.3 | 24.5
PSNR[\,,, (V)] 30.6 | 27.8 | 26.3 | 254
PSNR[ N (V)] 321 | 29.1 | 275 | 26.5
PSNR[Xa(7, N)] 33.6 | 31.0 | 20.5 | 284
PSNR[BLS-GSM] || 35.7 | 32.7 | 30.9 | 30.1

than smooth, fail to be sparse enough. This is the reason why
assumption (O) is not very constraining by merely assuming
that the alternative hypotheses occur with probabilities less
than or equal to p* < 1/2. When the proportion of signal
coefficients is large among the wavelet detail coefficients (for
instance, when decomposing piecewise regular signals), the
MAD estimator is no longer robust. An alternative to the
MAD estimator could be derived from sparsity assumptions
such as (A) and (O). Indeed, with sparsity assumptions
that embrace (A) and (O), the noise standard deviation is
proved in [11] to be the only positive real number satisfying
a specific convergence criterion when the sample size and
the minimum amplitude of the signals tend to infinity and
the observations are independent. This convergence involves
neither the probability distributions nor the probabilities of

occurrence of the alternative hypotheses. Estimators of the
noise standard deviation, derived from this theoretical result,
are proposed in [11] and [12]. They have been tested in ap-
plications different from those considered in the present pa-
per. Therefore, the performance of these estimators should
be studied and compared to that of the MAD estimator for
non-parametric estimation. According to the theoretical and
experimental results presented in [11] and [12], these estima-
tors can be expected to perform well even when many signal
coefficients are present among the detail wavelet coefficients.

5. CONCLUSION

We have introduced a notion of sparsity that derives from a
result established for binary hypothesis testing. This notion
of sparsity is similar to that propsoed by Donoho and John-
stone in [1]. The differences have been discussed and these
differences are exploited in two applications of this notion of
sparsity to non-parametric estimation. The use of this notion
of sparsity for the estimation of the noise standard deviation
in comparison with the standard MAD estimator has also
been suggested as an introduction to forthcoming work on
the topic. In future work, a theoretical upper-bound on the
MSE should be derived for comparison with the upper-bound
established for the detection threshold ([2]) and the upper-
bounds given for the universal and minimax thresholds ([1]),
in the context of soft thresholding estimation in the wavelet
domain.

We also would like to highlight how the contents of this
paper connect to results concerning the statistical properties
of the wavelet coefficients associated with strictly stationary
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random processes. More specifically, consider some signal in
additive and independent strictly stationary noise. Do not
assume that noise is either Gaussian or white. According to
results such as those given in [13], [14] and [15], the sequences
of coefficients returned by the wavelet, wavelet packet and
M-band wavelet packet transforms of the input noise tend
to be white and Gaussian in a distributional sense specified
in [14] and [15]. The tendency to whiteness and Gaussianity
is obtained when the decomposition level and the regularity
of the decomposition filters are large enough. It is worth em-
phasizing that, for most paths of the decomposition tree, the
regularity of the filters must be chosen large enough with re-
spect to an already large enough decomposition level. How-
ever, experimental results given in the aforementioned pa-
pers suggest that the tendency to Gaussianity and whiteness
is obtained for a large class of random processes of practi-
cal interest and for reasonable values for the regularity and
the decomposition level. Therefore, it is reasonable to con-
sider that the sequence of the signal wavelet coefficients is
additively corrupted by independent white Gaussian noise.
Under sparsity assumptions, the noise standard deviation, if
unknown, can be estimated. Then, if we assume that (A)
and (O) are satisfied, the non-parametric estimation of the
signal can be carried out as proposed in this paper. We plan
to study such an approach in connection to results - such
as those stated in [16, 17], among others - about sparsity
and Besov spaces. To complete this concluding prospects,
note also that the soft thresholding function can successfully
be replaced by the smooth shrinkage function proposed in
[18]. This shrinkage function is not only continuous but also
avoids the over-smoothing and important estimation bias in-
curred by using the soft thresholding function [19]. In a
forthcoming paper, we will propose an approach that com-
bines this shrinkage function with level-dependent detection
thresholds such as those introduced in section 3.3.
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