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ABSTRACT
In this paper, the consistency of sample robust Capon
beamforming (RCB) solutions that are constructed under
signature-mismatch constraints from a set of received array
observations is revised and improved. Particular emphasis
is given to the class of robust �lters heuristically model-
ing the adverse effects of practical �nite sample-size con-
ditions as due to an imperfect knowledge of the effective
spatial signature. In contrast, and as in practice, a small
sample-size relative to the array dimension is identi�ed in
this paper as the actual source of �lter estimation errors un-
der unknown second-order statistics. Accordingly, a new
alternative random matrix theory based approach to RCB
is proposed in this work that explicitly addresses both the
signature-mismatch problem and the limitations due to a
�nite sample-size. An improved performance is demon-
strated via numerical simulations in the context of source
power estimation in sensor array signal processing.

1. INTRODUCTION

The Capon method has been widely applied in the litera-
ture to the problem of identifying the direction of arrival
(DoA) and received power of a given number of radiating
sources by using an array of passive sensors [1]. In sensor
array signal processing, the power and the DoA of the sig-
nals impinging on the antenna array are obtained from the
evaluation of the estimated angular power spectrum, which
is calculated based on the knowledge of the array manifold
and the second-order statistics of the observed samples.
Under perfect knowledge of the source spatial signature

and assuming a large enough number of snapshots is avail-
able so that the true array covariance matrix can be perfectly
estimated, the Capon solution is known to offer better res-
olution than existing data-independent methods. However,
these two assumptions are quickly violated in realistic sce-
narios and, consequently, the �lter performance is known to
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suffer from a severe degradation in practical implementa-
tions [2]. Regarding the �rst type of mismatch, the assump-
tion of perfect knowledge of the source of interest (SOI)
steering vector is usually not satis�ed due to e.g. inaccura-
cies in the pointing information, mutual coupling and small
calibration errors. In this situations, a considerable risk of
SOI power underestimation is faced. Therefore, signi�cant
effort has been devoted during the past years to the problem
of improving the performance of the conventional Capon
solution under an imprecise knowledge of the steering sig-
nature vector. In order to speci�cally cope with the detri-
mental effects due to this problem, different robust designs
particularly involving a diagonal loading factor [3] and es-
sentially based on the mathematical theory of optimization
have been recently presented in the literature (see [4]).
As for the second source of error, it is well-known that

an insuf�cient sample-support may cause a considerable
mismatch between the true and the sample covariance ma-
trix (SCM). In order to consider the negative consequences
of having a limited number of available samples, the main
stream of proposed methods heuristically model the small-
sample constraint as also due to spatial signature errors.
However, the practical implementation of the optimal ro-
bust solution relies on the sample estimate of the unknown
second-order statistics. The SCM represents a suitable ap-
proximation of the actual array covariance matrix under the
assumption of a suf�ciently large ratio between sample size
and dimension. Hence, in practice, the major source of er-
rors in the statistical estimation of �ltering solutions can be
actually identi�ed with a low sample-size relative to the di-
mension of the array observation.
In this paper, we follow a similar approach as in [5] to

the estimation of the optimal diagonal loading factor (see
also [4, Chapter 4]) and propose a new alternative RCB de-
sign that explicitly addresses both the signature-mismatch
problem and the sample-size limitations. In particular, by
resorting to random matrix theory (RMT), we provide a
generalization of the conventional the RCB implementation
that is consistent under more practical conditions, given by
a limited number of samples per observation dimension.
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2. ROBUST CAPON SPATIAL FILTERING

Consider a collection of N multivariate observations ob-
tained by sampling across an antenna array withM sensors.
Under the assumption of narrowband signals and linear an-
tenna elements, the array observation can be additively de-
composed as

y (n) = x (n) s+ n (n) , (1)

where x (n) 2 C models the signal waveform (or fading
channel coef�cient) associated with a given signal of in-
terest at the nth discrete-time instant and s 2 CM is its
spatial signature vector (also steering vector or array trans-
fer vector). A number of K different sources are assumed
to impinge on the antenna array from different directions.
Accordingly, n (n) 2 CM can be modeled as the addi-
tive contribution of the interfering sources and background
noise, which can be additively decomposed as n (n) =PK�1

k=1 xk (n) sk + v (n), where, for k = 1; : : : ;K � 1,
xk (n) 2 C and sk 2 CM are, respectively, the interfer-
ing signal processes and associated steering signatures, and
v (n) 2 CM is the system noise and out-of-system inter-
ference. Conventionally, the signals and the noise are as-
sumed to be independent and jointly distributed wide-sense
stationary random processes, with SOI power and noise co-
variance given, respectively, by E [x� (n)x (m)] = �2x�m;n
and E

�
n (m)nH (n)

�
= Rn�m;n.

Consider the problem of estimating the signal waveform
of a given source of interest via a linear transformation of
the received observations, i.e., x̂ (n) = wHy (n). Then,
from (1) and E

h
jx̂ (n)j2

i
= wHRw , we have

�2CAPON = min
w2CM

wHRw s:t: wHs = 1, (2)

whereR is the theoretical covariance matrix of the observed
samples, i.e.,

R = �2xss
H +Rn. (3)

The solution to (2) can be readily seen to deliver a SOI
power approximant given by

�2CAPON =
1

sHR�1s
. (4)

The Capon SOI power estimate in (4) is well-known
to signi�cantly outperform solutions obtained from classi-
cal data-independent (phased array) beamforming methods,
provided that the actual SOI spatial signature is precisely
known. However, in the case that only an inaccurate version
of the SOI steering vector is available, as it usually happens
in practice, a relatively signi�cant performance degradation
is to be expected. In order to alleviate this problem, a num-
ber of robust adaptive beamforming techniques has been
proposed in the literature that provide a generalization of the

original Capon beamformer under an imprecise knowledge
of the SOI spatial signature. In particular, different robust
solutions have been published that extend the diagonal load-
ing approach by providing an optimum loading level based
on pressumed information about the uncertainty of the array
steering vector [6, 7, 8, 9, 10, 11]. More speci�cally, the im-
perfectly known spatial signature is most often assumed to
belong to an uncertainty ellipsoidal set, according to which
the corresponding amount of diagonal loading is explicitely
calculated.
As in [12], we are interested in the problem of estimat-

ing the power of the SOI as in (4) robustly against a mis-
match in the spatial signature. Building upon a contrained-
covariance-�tting direct derivation of the Capon SOI power
estimate provided in [12], a robust Capon estimate is pro-
posed in [6] that uniquely relies on the available imperfect
knowledge about the steering vector and the pressumed un-
certainty level. In particular, assuming that the steering vec-
tor is contained in an ellipsod described by a given positive
de�nite matrixC 2 CM�M and centered at a nominal steer-
ing vector ~s 2 CM , the solution is given by the expression
in (4), with the unknown steering vector being replaced by
an optimized signature so 2 CM obtained as

arg min
s2CM

sHR�1s s:t: (s�~s)H C�1 (s�~s) � 1. (5)

In [6], the solution of the optimization problem in (5) is
found for an uncertainty set C = �IM , yielding as a con-
straint the sphere ks�~sk � �, with � 2 R+ being a given
user parameter. Thus, the optimum robust steering vector is
obtained as

so =
�
IM � (IM + �oR)

�1
�
~s, (6)

where the parameter �o is found as the real positive solution
of the following equation in �, namely,

g (�) = �, (7)

where we have de�ned

g (�) = ~sH (IM + �R)
�2
~s.

Note that g (�) is a monotonically decreasing function of
� for � > 0 (see [6] for further details). Hence, using the
available erroneous version of the true steering vector in (6),
the robust estimate of the SOI power is given by

�2CAPON =
1

sHo R
�1so

. (8)

In practice, the array observation covariance matrix is
not available, and so the implementation of the RCB power
estimate must necessarily rely on the SCM, i.e.,

R̂ =
1

N

NX
n=1

y (n)yH (n) . (9)
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Since the SCM is a consistent estimator of the theoretical
covariance matrix, such an approximation based on directly
replacingR with its sample estimate will yield accurate re-
sults provided the number of samples available for compu-
tating the SCM is signi�cantly larger than the size of the
array. If these conditions hold, large sample-size statistical
tools may help in characterizing the actual estimation per-
formance. However, such an assumption hardly matches
realistic operation conditions given in a practical setting
where both the sample size and dimension are comparable
in magnitude.
In order to further improve the power estimation perfor-

mance under more realisitc �nite sample-size conditions,
we derive an estimator of the RCB solution in (8) that as-
ymptotically approximates the true power estimate as both
the sample and array sizes increase without boud at the same
rate. Accordingly, the proposed estimator generalizes con-
ventional implementations by proving to be consistent for
an arbitrarily large observation dimension.

3. IMPROVED CONSISTENT RCB ESTIMATION

In this section, we present our generalized consistent esti-
mator of the RCB power estimate in (8). To that effect,
we make use of the Stieltjes transform from RMT, which
allows us to characterize the asymptotic distribution of the
eigenvalues of R̂ in terms of the limiting spectral distribu-
tion ofR. Our approach is rooted in Girko's general statisti-
cal analysis (GSA) of large-dimensional observations [13].
Speci�cally, we derive an estimator of the optimum parame-
ter � as well as the class of spectral functions of R de�ned
by (8) that is consistent in the asymptotic regime described
by M;N ! 1, with M=N ! c < +1. We will refer
to this estimators asM;N -consistent as a generalization of
traditional N -consistent estimators.
First, observe that from (1) and the statistical assump-

tions in Section II, we can statistically model the observed
samples as y (n) = R1=2u (n), where u (n) 2 CM , n =
1; : : : ; N , is a collection of i.i.d. random vectors, whose en-
tries have zero mean real and imaginary parts with variance
1=2 and bounded higher moments. Thus, the SCM in (9)
will be modeled in the subsequent derivations as

R̂ =
1

N
R1=2UUHR1=2, (10)

where the matrix U 2 CM�N is constructed using as its
columns the vectors u (n) ; n = 1; : : : ; N . In the sequel,
given two quantities a; b, a � bwill denote the fact that both
quantities are asymptotic equivalents, i.e., ja� bj a:s:! 0,
with a:s: denoting almost sure convergence. The follow-
ing two propositions provide asymptotic equivalents of the
optimum parameter de�ning the robust steering vector in (6)
and the SOI power estimate in (8), respectively, as a func-
tion of only the SCM.

Proposition 1 Let �, ~s, R, �o and R̂ be de�ned as above.
Under the previous statistical assumptions, as M;N !
+1, withM=N ! c < +1, we have that �o � ��, where

�� =
��

g2 (��)
, (11)

and �� is the unique solution to the following equation in �,
namely, �g (�) = �, where �g (�) is equal to

�2
�
g2 (�)~s

H
�
R̂� �IM

��2
~s� g1 (�)~sH

�
R̂� �IM

��1
~s

�
g2 (�) + �g1 (�)

,

(12)
where

g1 (�) =
1

N
Tr

�
R̂
�
R̂� �IM

��2�
,

g2 (�) = 1� c

M
Tr

�
R̂
�
R̂� �IM

��1�
,

and such that
1 � � g1 (�)

g2 (�)
.

Proof. The result follows from the asymptotic charac-
terization of the eigenvalues and eigenvectors of SCM-
type matrices via the Stieltjes transform. In particular,
under the assumptions of the proposition, as M;N !
1, with M=N ! c < +1, for all z 2 C+ =
fz 2 C : Im fzg > 0g [14]

1

M
Tr

��
R̂� zIM

��1�
� 1

M
Tr
h
(w (z)R� zIM )�1

i
,

wherew (z) = 1�c�czm (z) andm = m (z) is the unique
solution in the set fm 2 C : � (1� c) =z + cm 2 C+g to
the following equation inm, namely,

m =
1

M

MX
m=1

�m (R)

�m (R) (1� c� czm)� z
.

Furthermore, for two M dimensional deterministic vectors
a1;a2 with uniformly bounded Euclidean norm for all M
[15, Theorem 1.5]

aH1

�
R̂� zIM

��1
a2 � aH1 (w (z)R� zIM )

�1
a2.

Equivalently, if we consider f (z) = z=w (z), we have
w (z) � ŵ (z), and f (z) � f̂ (z), where

ŵ (z) = 1� c

M

MX
m=1

�m

�
R̂
�

�m

�
R̂
�
� z

,
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and
f̂ (z) =

z

ŵ (z)
, (13)

respectively. On the other hand, let f (z) = � 1
� and write

(7) as
f (z)

2
~sH (R� f (z) IM )�2~s = �. (14)

Furthermore, note that the identity in (14) can be written as

f (z)
2

f 0 (z)

@

@z

n
~sH (R� f (z) IM )�1~s

o
= �. (15)

Moreover, the LHS of (15) can be (asymptotically) equiva-
lently expressed as

f (z)
2

f 0 (z)

@

@z

n
~sH (R� f (z) IM )�1~s

o
� f̂ (z)

2

f̂ 0 (z)

@

@z

�
ŵ (z)~sH

�
R̂� zIM

��1
~s

�
.

The RHS of the expression above depends only on the SCM
and de�nes an asymptotically equivalent equation (7) that
can be expressed, after some analysis and de�ning z = �,
as �g (�) = �, with �g (�) being given by (12). Thus, the
M;N -consistent estimator of the optimum parameter can
be obtained by �rst solving for the value of � satisfying
�g (�) = �, denoted by ��, and then �nding an asymptotic
equivalent of � 1

f(��) (see [15] for further details).
Note that the function �g (�) is also monotonically de-

creasing for � smaller than the minimum eigenvalue of R̂.
Moreover, regarding the robust SOI power estimate, we
have

Proposition 2 Under the assumptions and de�nitions
above, asM;N ! +1, withM=N ! c < +1, we have
that �2CAPON � ��

2
CAPON, where

��2CAPON =

1

����

�
g1 (��)

�o
� 1
�

~sH
�
R̂� ��IM

��1
R̂
�
R̂� ��IM

��1
~s
, (16)

where �� is given as in Proposition 1 and �� is the solution to
the following equation in �, namely,

� = � 1
��
g2 (�) .

Proof. Observe that we can write sHo R�1so as

~sH (R� f (z) IM )�1R (R� f (z) IM )�1~s, (17)

where we have �xed f (z) = � 1
�o
. Now, an asymptotic

equivalent of the RHS of (17) can be found as

~sH (R� f (z) IM )�1R (R� f (z) IM )�1~s

� 1

f̂ 0 (z)
~sH
�
R̂� zIM

��1
R̂
�
R̂� zIM

��1
~s.
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Fig. 1. Distribution of estimators of �o.

Then, using this asymptotic equivalence, along with �o � ��
and the derivative of (13), namely,

f̂ 0 (z) =
1� f̂ (z) ŵ0 (z)

ŵ (z)
,

where

ŵ0 (z) =
1

N
Tr

�
R̂
�
R̂� zIM

��2�
,

we obtain the result in the proposition (see [15] for further
details).
From Proposition 2, note that the random quantity

��2CAPON in (16) is a strongly consistent estimator of �̂
2
CAPON.

4. NUMERICAL EVALUATIONS

In the following, we consider a typical array processing ap-
plication concerning the estimation of the SOI power. In-
stead of relying on the availability of an accurately known
SOI spatial signature, we assume that an erroneous mea-
surement or estimate of the steering vector is available
and allow for a certain degree of uncertainty level in its
knowledge. In particular, we numerically compare the per-
formance of both the conventional (based on the direct
substitution of R with R̂) and our proposed implementa-
tions of the robust Capon power estimate in (8). Speci�-
cally, we consider a scenario consisting of K = 5 sources
impinging on an array with M = 30 sensor elements
from angles (degrees) f0; 20; 30; 50; 60g and powers (dB)
f10; 5; 30; 10; 25g over the noise level �2n = 1. Moreover,
a number of observed samples equal to N = 20 is assumed
to be available for SCM computation. Note that, although
N < M , interestingly enough, the power estimate (involv-
ing the inverse of the covariance matrix) can be realized
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by using the matrix inversion lemma as in (17). Finally,
the constant scalar de�ning the uncertainty level is �xed to
� = 1.
Figure 1 shows the simulations results for the estima-

tion of the optimum parameter �o. In particular, the em-
pirical probability density function (PDF) of both conven-
tional and proposed estimators is depicted versus the theo-
retical value of � obtained by solving equation (7) using the
true covariance matrix. Observe that, even in the considered
adverse (undersampled) estimation conditions, an apparent
nearly unbiased behavior and a lower variance can be em-
pirically appreciated for the proposed estimator against a
highly biased and variant performance of the conventional
implementation.
On the other hand, in Figure 2 the normalized his-

tograms of the robust SOI power estimate obtained via the
conventional as well as the proposed methods are depicted.
The actual SOI power value is also shown. As before, the
conventional estimator is characterized by an empirically
observed unbiased behavior against the conventional imple-
mentation.

5. CONCLUSIONS

In this paper, an alternative construction of the robust Capon
power estimate has been proposed that provides an im-
proved estimation performance under comparatively large
sample size and dimension. Our approach explicitly ad-
dresses both the signature-mismatch problem and the lim-
itations due to a �nite sample-size. For our purposes, we
resorted to RMT in order to derive a generalized consis-
tent RCB estimator for arbitrarily high dimensional ob-
servations. Finally, regarding the algorithmic complex-
ity, the leading computational constraint representing the
bulk of the computation of the proposed generalizedM;N -

consistent estimator essentially involves implementing the
EVD of the SCM. Thus, the number of required arithmetic
operations is of the same order of magnitude as that corre-
sponding to the original N -consistent RCB solution.
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