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ABSTRACT
We study the denoising of signals from clipped noisy observations,
such as digital images of an under- or over-exposed scene. From
a precise mathematical formulation of the problem, we derive a
set of homomorphic transformations that enable the use of exist-
ing denoising algorithms for non-clipped data (including arbitrary
denoising Þlters for additive i.i.d. Gaussian noise). Our results have
general applicability and can be �plugged� into current Þltering im-
plementations, to enable a more accurate and better processing of
clipped data. Experiments with synthetic images and with real raw
data from CCD sensor show the feasibility and accuracy of the ap-
proach.

1. INTRODUCTION

We consider the problem of recovering a signal from its noisy ob-
servations that have been clipped, i.e. observations whose range
is limited by a lower and by an upper bound. A prominent exam-
ple are images acquired with under- or over-exposed areas and par-
ticularly the raw-data images acquired by a digital imaging sensor
(e.g., a CCD or CMOS imager). As a continuation of our previous
work [6] on modeling and automatic noise parameter estimation for
clipped images corrupted by Poissonian-Gaussian noise, in this pa-
per we provide a complete methodology for the accurate denoising
of such images. The goal of this paper is general and pragmatic:
rather than developing a novel denoising algorithm specially de-
signed for clipped noisy images, we derive a set of homomorphic
transformations that enable the use of existing denoising algorithms
for non-clipped data (including arbitrary denoising Þlters for addi-
tive i.i.d. Gaussian noise). Thus, our results can be �plugged� into
current Þltering implementations, allowing a more accurate and bet-
ter processing of clipped data.

An interesting and important feature of clipped noisy signals
is that they carry usable information about the signals� values out-
side the acquisition range. By properly processing and denoising
these signals, it is possible to extract this information and then pro-
duce images with a dynamic range that exceeds that of the clipped
signal. Thus, we can partly overcome the problem of saturation of
the imaging device when a scene is captured with overexposed re-
gions. Furthermore, our procedure can be utilized for the accurate
linearization of the sensor�s output with respect to the expectation
of its input. Hence, we provide a practical solution which has di-
rect application for a number of image processing problems, includ-
ing deblurring/deconvolution, high dynamic range (HDR) imaging,
sensor characterization, digital forensics, to name a few.

The paper is organized as follows. In the next section we in-
troduce the general observation models for images corrupted by
signal-dependent noise; the models are given for the observations
both before and after the clipping. Next, we recall the relations and
transformations which exist between the expectations and standard
deviations of the clipped and the non-clipped random variables. The
core of our contributions is given in Section 3, where we consider
the denoising of a clipped signal using generic Þlters. In particular,
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we discuss the use of conventional Þlters designed for additive i.i.d.
Gaussian noise and derive speciÞc homomorphic transformations
to stabilize the variance of the clipped observations, to compensate
the bias due to the clipped distribution in the variance-stabilized do-
main, and Þnally to compensate the estimation bias between the de-
noised clipped variables and the non-clipped true variables. Exper-
iments with synthetic as well as with real raw data from a commer-
cial CCD camera are presented in Section 4, showing the feasibility
and accuracy of the developed approach. Relevant conclusions are
given in the last section.

2. PRELIMINARIES

2.1 Signal-dependent noise model

Let z(x), x ∈ X ⊂ Z2, be noisy observations with the expectations
E{z(x)} = y(x) ∈ Y ⊆ R, where the errors (noise) η(x) = z(x)−
y(x) are random independent and the standard deviation of these
observations is modeled by std{η(x)} = σ(y(x)), σ :R→R+ being
a deterministic function of y. Equivalently, we consider the generic
signal-dependent noise observation model of the form

z(x)= y(x)+σ(y(x))ξ(x) , x ∈ X, (1)
where ξ : X→R is zero-mean independent random noise with stan-
dard deviation equal to 1. Clearly, η(x) = σ(y(x))ξ(x). Although
std{ξ(x)} = 1 for all x ∈ X , the probability distribution of ξ can
be different at different samples (i.e. ξ(x1) ¿ ξ(x2) if x1 *= x2).
However, to allow a simple mathematical formulation, we approxi-
mate ξ as a standard normal random variable, ξ ∼N(0,1), which is
formally equivalent to considering a heteroskedastic Gaussian noise
η(x) ∼N!0,σ2(y(x))" having signal-dependent variance. As dis-
cussed in [6], this can be a suitable approximation when dealing
with the noise in the raw data from digital imaging sensors, for
which the typical form of the function σ is σ2(y(x)) = ay(x)+b,
with the constants a ∈R+ and b ∈R depending on the sensor�s spe-
ciÞc characteristics and on the particular acquisition settings (e.g.,
analog gain or ISO value, temperature, pedestal, etc.). Obviously,
the trivial i.i.d. (signal-independent and homoskedastic) additive
Gaussian noise case, where std{η(x)} ≡√b, is obtained for a = 0.

2.2 Clipping

In practice, the range of the acquisition system is always limited.
Without loss of generality, we consider data given on the range
Ỹ = [0,1], where the extremes correspond to the maximum and
minimum pixel values for the considered noisy image (e.g., raw
data) format. Values above or below these bounds are replaced by
the bounds themselves. This corresponds to the behavior of digital
imaging sensors in the case of over- or under-exposure. Thus, we
deÞne the clipped observations z̃ as

z̃(x)=max{0,min{z(x),1}} , x ∈ X, (2)
where z is given by the (non clipped) signal-dependent noise model
(1). In what follows, we use the tilde to denote variables directly
related to clipped observations. The corresponding noise model for
the clipped observations (2) is then

z̃(x)= ỹ(x)+ σ̃(ỹ(x)) ξ̃(x) , (3)
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Figure 1: Left and center: expectation E {ν̃} and standard deviation std{ν̃} of the clipped ν̃ =max(0,ν) as functions Em and Sm of µ, where
µ= E {ν} and ν ∼N (µ,1). Right: the function Er = µ

E{ν̃} of ρ = E{ν̃}
std{ν̃} . The small italic numbers indicate the corresponding value of µ.

where ỹ(x) = E{z̃(x)}, the function σ̃ : [0,1]→ R+ is deÞned as
σ̃(ỹ(x))= std{z̃(x)}, and E#ξ̃(x)$= 0, var#ξ̃(x)$= 1. Because of
clipping, in general, we have that

ỹ(x)= E{z̃(x)} *= E{z(x)} = y(x) , (4)
σ̃(ỹ(x))= std{z̃(x)} *= std{z(x)} = σ(y(x)) .

Thus, rewriting (3) as z̃(x)= y(x)+ %ỹ(x)− y (x)+ σ̃(ỹ(x)) ξ̃(x)&,
we can see that, with respect to the true signal y, the clipped ob-
servations z̃ are corrupted by an error (the term in square brack-
ets) which has non-zero mean. Observe also that, even though
var
#
ξ̃(x)

$
=var{ξ(x)}=1, the distributions of ξ and ξ̃ are different.

In particular, assuming ξ (x)∼N(0,1), we have that ξ̃ (x) follows a
censored normal distribution from above and from below [2].

2.3 Expectations and standard deviations of clipped variables
and their transformations

A crucial point when working with clipped noisy signals is to un-
derstand how the variables and functions of the observation model
(1) relate to those of the clipped observations� model (3). In partic-
ular, it is important to compute the functions ỹ and σ̃ given σ and
y, and vice versa.

As in [6], to simplify the calculations, we assume that the two
clippings, the one from below (z < 0, z̃ = 0) and the one from
above (z > 1, z̃ = 1), are not mixed by the randomness of the
noise. In practice, this assumption is always veriÞed, except for
those extreme situations where the noise is dramatically strong (e.g.,
σ / 0.2 with respect to the range Ỹ = [0,1]).

Let ν∼N (µ,1) be a normally distributed random variable with
mean E{ν} = µ and unitary variance, and let ν̃ =max(0,ν). It can
be shown (see, e.g., [8], or [7], Chapter 20) that the expectation
E{ν̃} and the variance var{ν̃} of the clipped (from below) ν̃ are
E{ν̃} = Em (µ)=-(µ)µ+φ(µ), (5)
var{ν̃} = S2m (µ)=-(µ)+Em (µ)µ−E2m (µ)= (6)

= -(µ)+φ(µ)µ−φ2(µ)+-(µ)µ(µ−-(µ)µ−2φ(µ)) ,
where φ and - are the probability density and cumulative distrib-
ution functions (p.d.f. and c.d.f.) of the standard normal N (0,1).
The plots of the expectation E {ν̃} = Em (µ) and of the standard de-
viation std{ν̃} = Sm (µ) are shown, as functions of µ, in Figure 1.

Exploiting these functions and omitting the spatial coordinate x
from notation, the direct and inverse transformations which link σ
and y to ỹ and σ̃ can be expressed as follows [6].

2.3.1 Direct transformation (ỹ and σ̃ from y and σ )

Provided that y = E {z} and σ (y) = std{z} from the basic model
(1) are known, the expectation ỹ = E {z̃} and the standard deviation
σ̃ (ỹ)= std{z̃} from the observation model (3) are obtained as

ỹ =A(y,σ(y))= σ(y)Em
'
y

σ(y)

(
− y+1−σ(y)Em

'
1−y
σ(y)

(
, (7)

σ̃(ỹ)= B(y,σ(y))= σ(y)Sm
'
y

σ(y)

(
Sm
'
1−y
σ(y)

(
. (8)

In particular, (7) and (8) deÞne transformations that bring the stan-
dard deviation curve (y,σ (y)) to its clipped counterpart (ỹ, σ̃ (ỹ)).

2.3.2 Inverse transformation (y from σ̃ and ỹ)
The non-clipped y from the model (1) can be calculated from the
clipped ỹ and σ̃ (ỹ) as

y = C(ỹ, σ̃(ỹ))= ỹEr
'
ỹ

σ̃ (ỹ)

(
− ỹ+1− (1− ỹ)Er

'
1−ỹ
σ̃ ( ỹ)

(
, (9)

where Er is deÞned implicitly as function of ρ = Em(µ)
Sm(µ) =

E{ν̃}
std{ν̃} by

Er(ρ)= µ
Em(µ) . Figure 1 shows the plot of Er as function of ρ.

3. DENOISING CLIPPED SIGNALS

A generic denoising algorithm can be modeled as an operator whose
output is an estimate of the expectation of the noisy input. Formally,
let D: R|X | →R|X | be the denoising operator, then

D(z̃)= )E{z̃} ≈ E{z̃} = ỹ. (10)
It means that when we denoise z̃, as output we do not get an estimate
of y, but rather an estimate of ỹ. Analogously, we may say that
D(z̃) is a biased estimator of y, in the sense that E{D(z̃)} ≈ ỹ *= y;
in such a case, the bias error can be expressed as ỹ− y.

For the sake of simpliÞcation, we may even assume that D is
an ideal operator that can always accurately recover the expectation
of a given (non clipped) input image corrupted by additive i.i.d.
Gaussian noise. This is an appealing assumption, but there remain
a number of important issues that need to be considered when we
apply D for the denoising of clipped data.

Mainly, the clipping noise is signal-dependent and as such it
requires special care: Þrst, when the unknown noise parameters are
estimated from the image; and second, when we aim at suppressing
the noise. Furthermore, the noise samples follow essentially non-
Gaussian and asymmetrical distributions. Finally, the estimation
bias y− ỹ caused by the clipping needs to be compensated.
3.1 Noise estimation
In [6], we proposed an algorithm for the automatic estimation of the
parameters of clipped signal-dependent noise models from a single
noisy image. The algorithm utilizes a one-level wavelet decom-
position of the noisy image and the transformations of Section 2.3
for the maximum-likelihood estimation of the noise parameters and
hence of the curves σ̃ and σ . We use this algorithm as the Þrst step
in the processing of clipped noisy images1.

3.2 Noise removal
In general, when dealing with signal-dependent noise, we can either
use Þlters speciÞcally designed for such heteroskedastic noise (e.g.,
[5], [4]), or we can exploit a variance-stabilizing homomorphic
transformation (e.g., [1], [11]) and then apply practically any Þl-
ter for homoskedastic noise on the transformed noisy signal. Here,
we discuss both alternative approaches and concentrate our atten-
tion on transform-domain Þlters designed for either heteroskedastic
or homoskedastic Gaussian noise, as these are in practice the most
powerful and most widely used ones (see, e.g., [10] and references

1To simplify notation, here we use the symbols σ and σ̃ for the true as
well as for the estimated curves. In [6] the latter are denoted by σ̂Þt and ˆ̃σÞt.
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Figure 2: Normalized histograms of an i.i.d. clipped noise Þeld ν̃, ν̃(·)=max(0,ν(·)) (where ν(·)∼N (0,1)) and of each coefÞcient of its
2-D DCT transforms of size n×n, n=2,3,4. The dashed lines show the probability distribution functions ofN (nEm(0),Sm(0)) (DC terms)
and N (0,Sm(0)) (AC terms). As the size of the transform increases, the distribution of the coefÞcients converges very quickly to these
Gaussian bells. The histograms have equispaced bins of width 0.05 and are computed from 2 ·107 independent realizations of ν̃(·).

therein). In what follows, we refer to the two approaches as het-
eroskedastic Þltering and homoskedastic Þltering, respectively, and
denote the corresponding denoising Þlters as Dhe and Dho . Due
to the essential non-Gaussianity of the clipped noise, the latter ap-
proach requires additional care.

3.2.1 Heteroskedastic Þltering
Here, we assume that the denoising ÞlterDhe can handle the signal-
dependent standard deviation σ̃ . However, the noise distributions
of different samples are all different and non-Gaussian. Fortu-
nately, this does not constitute a serious problem for transform-
based algorithms because, in practice, the transform coefÞcients of
clipped data have distributions which are nearly Gaussians. In par-
ticular, let us consider a clipped noise Þeld ν̃ = max(0,ν), where
ν(·) ∼N(µ,1). For any basis element ψ of an orthonormal trans-
form, the distribution of the transform coefÞcient 5ψ,ν̃6 can be ap-
proximated by N!* j ψ( j)Em(µ),Sm(µ)

"
. Figure 2 illustrates this

approximation when µ = 0 in the case of the 2-D discrete cosine
transform DCT transform of size n×n, n=2,3,4. As can be seen in
the Þgure, the Gaussianization of the AC coefÞcients is faster. This
is due to the positive and negative signs in the samples of the cor-
responding basis elements. The magnitude of the impulse at 0 (vis-
ible in some the histograms of smaller size DCT) decays exponen-
tially with the number K of non-zero samples of the basis element,
-(−µ)K [6]. For example, the nine basis elements #ψ i, j$i, j=1,2,3
of the 3×3 DCT have K(i, j)=[3 2 3]T [3 2 3] non-zero samples,
respectively, and for µ=0 we have -(−µ)=12 ; it means that the
magnitude of the impulse at 0 in the histogram for i = j = 2 (K=4)
is approximately 26−4=4 times larger than those for i + j = 3,5
(K=6), 29−4=32 times larger than those for i, j ∈ {1,3} (K=9),
and 24−1=8 times smaller than the impulse in the histogram of ν̃
(K=1). Each basis element of the 4×4 DCT has K=16 non-zero
samples, hence the magnitude of the impulse in their histograms is
216−1=32768 times smaller than the impulse in the histogram of ν̃
and thus practically negligible.

Of course, because of the central-limit theorem, one always gets
some sort of �Gaussianization�, regardless of the distribution of the
original samples. However, in the case of clipped normal samples,
the convergence is remarkably fast, as can be seen in the Þgure.

We should also remark that, in the transform domain, the
clipped noise is no longer independent and that instead some cor-
relation exists in the noise of different coefÞcients. Nevertheless, it
is well known that such correlation is in practice a secondary issue
which is always encountered whenever the transform is redundant
or overcomplete.

Therefore, we conclude that a transform-domain Þlter Dhe can
be applied successfully on clipped data and that the approximation
(10) holds.

3.2.2 Homoskedastic Þltering
A. Variance-stabilizing transformation. A speciÞcally designed
homomorphic transformation f : [0,1]→R can be utilized in order
to stabilize the signal-dependent standard deviation of the clipped
observations z̃ to a desired constant c ∈ R+ and thus apply a de-
noising algorithmDho for homoskedastic noise on f (z̃). Following
the simple approach which appears in many works (e.g., [11]), we
use a Þrst-order Taylor expansion for a monotonically increasing f ,
from which follows std{ f (z̃)} ≈ f 7(E{z̃})std{z̃} = f 7(ỹ) σ̃(ỹ), and
then solve for std{ f (z̃)} ≡ c. Up to an arbitrary additive constant,
this yields

f (t)=
+ t
t0

c
σ̃ (s)

ds, t, t0 ∈ [0,1] , (11)

i.e. the c-stabilizing homomorphic transformation is the indeÞnite
integral of c

σ̃(ỹ), with the integration with respect to the argument ỹ.
B. Boundedness of the transformation. Let us now discuss the
convergence of the integral (11) (and thus the boundedness of f )
when σ̃(s)→ 0. Without loss of generality, we restrict to the case
of clipping from below, for which (7) and (8) reduce to

ỹ = σ(y)Em
'
y
σ(y)

(
, σ̃(ỹ)= σ(y)Sm

'
y
σ(y)

(
. (12)

Let µ= y
σ(y) ; we have

σ̃(ỹ)= σ(y)
,
-(µ)+Em(µ)µ−E2m(µ). (13)

We give proofs of divergence and convergence for the two main
cases which are of practical interest. Case 1. Let σ(y)−→

y→0 0

and assume that µ = y
σ(y) → 0. Then, from (12)-(13) and (5)-(6),

ỹ 8 σ(y)φ(0) and σ̃(ỹ)8 σ (y)√-(0)−φ2(0), which implies that
σ̃(ỹ) 8 ỹ√-(0)−φ2(0)/φ(0) and hence that (11) diverges loga-
rithmically at 0. For example, σ(y) =√y leads to such situation.
Case 2. Let σ̃(ỹ)−→

ỹ→0
0 and assume that exists some ε > 0 such that

σ(y) ≥ ε. This implies that µ→−∞ and hence that y→−∞.
From (13), we obtain

σ̃(ỹ)= σ(y)
-
Em(µ)

'
-(µ)
Em(µ) +µ−Em(µ)

(
=

= σ(y)
.
Em(µ)

/'
-(µ)µ+φ(µ)

-(µ)

(−1+µ−Em(µ)0=
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Figure 3: Noisy z̃ (3), and denoised and debiased ŷ (15) for the Testpat andMan test images of size 1024×1024.

= σ(y)
-
Em(µ)

'1!
µ+ R−1 (−µ)"−1+µ2−Em(µ)(,

where R is the Mill�s ratio, R(µ) = 1−-(µ)
φ(µ) . Exploiting a classi-

cal asymptotic expansion [9], R(µ)= 1
µ − 1

µ3
+ 1·3
µ5
− 1·3·5

µ7
+ . . . ,

we can approximate the term in the square brackets above as
− 2µ + O

! 1
µ3
"
. Moreover, Em(µ) −→

µ→−∞0 at exponential rate and,

in particular, much faster than
!− 2µ "2. It means that − 2µ +O! 1µ3 "

is much larger than
√Em(µ). Hence, for large enough−µ, we have

σ̃(ỹ)= σ(y)
-
Em
'
y
σ(y)

('
− 2µ +O

!
µ−3

"(
>

> σ(y)

.
Em
'
y
σ(y)

(-
Em
'
y
σ(y)

(
= σ 14 (y) ỹ 34 ≥ ε 14 ỹ 34 .

This proves our result, because in a neighborhood of 0 the integrand
in (11) is bounded from above by cε− 14 ỹ− 34 , which has itself a
convergent indeÞnite integral at 0.

For obvious reasons of numerical stability, it is preferable and
recommended to deal with bounded functions; therefore, in prac-
tice, for those cases (e.g., Case 1) where (11) is divergent, we shall
use f (t)=3 tt0=0 c

max{σ̃(s),ε}ds,where ε > 0 is a small regularization
constant. This also ensures that f is Lipschitz. In what follows, we
will always assume that f is a bounded, strictly increasing (hence
invertible) function, and that t0=0, f (0)=0.
C. Transform-domain Þltering. In the light of the previous Þrst-
order approximation, f (z̃) can be treated as a clipped normal ran-
dom variable, with clipping from below at f (0)= 0 and from above
at f (1), and variance (after clipping) equal to c2. Thus, qualita-
tively, the rapid Gaussianization discussed in Section 3.2.1 holds
also after the variance stabilization, enabling the effectiveness of
the homoskedastic denoising Þlter. Hence, in this case, the approx-
imation (10) has the form Dho( f (z̃))≈ E{ f (z̃)}.
D. Debiasing and inverse transformation. Because of the non-
linearity of f , the Þrst-order approximation is never exact. While
minor approximation errors on the variance are typically accept-
able, the errors on the expectations are not, because they result
in a systematic estimation bias. More precisely, we have that
E{ f (z̃)} *= f (E{z̃}); this discrepancy must be compensated before
the inversion of f .

First, let us observe that the p.d.f. of z̃ (2) is ℘z̃(ζ ) =
-
' −y
σ(y)

(
δ0(ζ ) + 1

σ(y)φ
'
ζ−y
σ(y)

(
χ [0,1] +

'
1−-

'
1−y
σ(y)

((
δ0(1−ζ ),

where χ [0,1] denotes the characteristic function of the inter-
val [0,1] and δ0 is the Dirac delta impulse at 0. Clearly,
f (E{z̃}) = f

!3 1
0 ζ℘z̃(ζ )dζ

"
and E{ f (z̃)} = 3 10 f (ζ )℘z̃(ζ )dζ =3 1

0 f (ζ )
1
σ(y)φ

'
ζ−y
σ(y)

(
dζ+ f (1)

'
1−-

'
1−y
σ(y)

((
(note that f (0)= 0).

Let now h :
%
0, f (1)

&→ %
0, f (1)

&
be the function deÞned (im-

plicitly varying y) by f (E{z̃}) ;−→ h( f (E{z̃})) = E{ f (z̃)}. The
invertibility of h follows easily from the monotonicity of f . Thus,
we have that h−1

!
Dho( f (z̃))

"≈ f (E{z̃}) and hence that

Figure 4: Estimated standard-deviation functions σ and σ̃ for the
Testpat and Man test images and for the raw-data image acquired
by the CCD sensor of a FujiÞlm FinePix S9600 camera. The true
curves corresponding to the two test images are drawn (in a different
color) beneath the respective estimated lines.

f −1
!
h−1

!
Dho( f (z̃))

""≈ E{z̃} , (14)

which is the Þnal form of the approximation (10) for the case of
homoskedastic Þltering. Due to (14), we can deÞne a denoising
Þlter ùDhe for heteroskedastic noise as ùDhe = f ◦Dho◦h−1 ◦ f −1.
3.3 Output debiasing
As shown in Section 3.2, using either Dhe or ùDhe (from now on
denoted collectively as D), we can get an estimate of E{z̃} = ỹ.
However, our goal is to estimate the non-clipped y. Its estimate can
be obtained exploiting the inverse transformation (9) as

ŷ = C(D(z̃), σ̃(D(z̃))) . (15)
As can be intuited from Figure 1 and by the very deÞnition of Er ,
the range of ŷ can in principle be the whole (−∞,∞). Never-
theless, because Er has unbounded derivative and because of Þnite
precision, the actual range that can be obtained is rather limited.
Firstly, with double-precision ßoats (as, e.g., in Matlab) the limit is
set at about 8σ beyond the 0 and 1 bounds, which roughly means
that the range can be extended up to (16σ+1) times (note that-(µ)
approaches the relative spacing between adjacent double-precision
ßoats at µ=−8.1). However, in practice, the achievable range can
be much smaller, because of estimation errors. In this sense, it is
important to emphasize that the inverse C (9) does not consider the
estimation errors in the estimation of y or σ(y), i.e. it is not an op-
timal inverse (such as a MMSE or ML inverse). The fact that the
extended range increases with σ follows directly from the form of
(7)-(9). It means that by denoising we can �take advantage of the
noise� to obtain an image with a wider range, since the range of z̃
and ỹ is always smaller than that of y. Qualitatively, the estimation
accuracy of ŷ depends on the smoothness (e.g., bandwidth) of y.

4. EXPERIMENTAL RESULTS
Due to length limitation, we show experiments for the homoskedas-
tic Þltering only, as this is the approach that has more general
applicability. As denoising Þlter Dho , we use the BM3D algo-
rithm [3]. Similar to [6], for all experiments we follow the signal-
dependent noise models (1)-(3), with the noise term in (1) com-
posed of two mutually independent parts, a Poissonian signal-
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Figure 7: Noisy raw-data image z̃ (3) (FujiÞlm FinePix S9600 camera), denoisedD(z̃) (14), and denoised and debiased ŷ (15).

Figure 5: Variance-stabilizing homomorphic transformation f (11)
for the three standard-deviation functions shown in Figure 4. The
curves are plotted with respect to a normalized vertical scale [0, f(1)].

Figure 6: Cross-sections of the original y (1), noisy z̃ (3), denoised
D(z̃) (14), and of the denoised and debiased ŷ (15), for the 171th
line of the Testpat image (the line is indicated by the black triangle
next to z̃ in Figure 3).

dependent component ηp and a Gaussian signal-independent com-
ponent ηg: σ (y (x))ξ (x) = ηp (y (x)) + ηg (x). In particular,!
y (x)+ηp (y (x))

"
χ ∼P (χ y (x)), where χ > 0 and P denotes the

Poisson distribution, and ηg (x) ∼ N (0,b). Thus, as discussed in
Section 2.1, σ 2(y(x))= ay(x)+b, with a = χ−1.

First, we show results for two 1024×1024 test images [12] with
simulated noise: Testpat (a=0, b=0.22) and Man (χ=30, b=0.12).
The noisy images are shown in Figure 3. The standard-deviation
functions σ and σ̃ estimated with the algorithm [6] are shown in
Figure 4. The estimated curves match with the respective true
curves. Figure 5 presents the computed variance-stabilizing trans-
formations (11)2. The Þnal debiased and denoised estimates ŷ (15)
are shown in Figure 3. The PSNR (dB) of z̃, D(z̃) (14), and ŷ for
Testpat are 4.85, 26.49, and 29.35, respectively. The correspond-
ing numbers for Man are 7.61, 27.69, and 27.96. These numbers
demonstrate the substantial improvement obtained by compensat-
ing the bias due to the clipped noise. This improvement is well
illustrated by the cross-sections of Testpat shown in Figure 6.

We also show results of processing a real raw-data 1224×922
image (green subcomponent) from the CCD sensor of a FujiÞlm
FinePix S9600 camera at ISO 1600. Figure 7 shows the raw-data z̃,
D(z̃), and ŷ. The latter image has an extended range [−0.03,1.33]

2The integral (11) converges and f is bounded for any a≥0 and b>0, as
proved in Case 2 of Section 3.2.2.B. Thus,we can set t0=0 and have f (0)=0.

and it is thus shown after scaling to [0,1]. The extension of the range
is clearly visible in the overexposed highlights of the scene.

5. CONCLUSIONS
We identiÞed conditions and derived transformations for the rigor-
ous processing of clipped noisy signals using generic Þlters. Ex-
periments demonstrate the success of the proposed approach. The
shown techniques can also be used for the accurate linearization
of the sensor response, including the correct pedestal (black) level
measurement. They are thus relevant for high dynamic range
(HDR) imaging applications, where a number of differently ex-
posed images, all of which present substantial over- or under-
exposed regions, are composed to yield one image where all regions
are visible, and for all Þelds where accuracy in the estimation of the
sensor response is crucial, such as inverse imaging (allowing to use
of linear deconvolution for deblurring over-exposed raw-data), dig-
ital forensics (sensor identiÞcation), etc. Related Matlab software
is provided online at www.cs.tut.fi/~foi/sensornoise.html
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