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ABSTRACT

In the field of adaptive filtering, it is well known that affine pro-
jection (AP) algorithms lead to a good tradeoff between conver-
gence speed and computational load. For multichannel sound con-
trol, some computationally efficient AP (fast AP) algorithms have
been recently proposed. This paper analyzes the steady-state mean
square error of two efficient affine projection algorithms (repre-
sentative of the different approaches) for multichannel active noise
control (ANC) applications based on a different filtering-x scheme:
the modified filtered-x affine projection (MFXAP) algorithm (with
the modified filtered-x structure embedded) and the filtered-x affine
projection (FXAP) algorithm (based on the conventional filtered-x
structure). This study depends on energy conservation arguments
and does not require a specific signal distribution. The theoretical
models derived allow to accurately predict the steady-state perfor-
mance of the algorithms considered. Simulation results obtained
in practical single-channel and multichannel ANC systems validate
the analysis and the derived expressions.

1. INTRODUCTION

In adaptive signal applications, the LMS family is a widely used
adaptive algorithms type due to its simplicity and computational
effort [1]. However, in recent years, the affine projection (AP) al-
gorithms and their efficient approaches proposed with the main pur-
pose of speeding the convergence speed of the LMS type algorithms
as well as to reduce the computational load have become a mean-
ingful alternative to other adaptive algorithms developed to address
the slow convergence speed of the LMS algorithms as the recursive
least square (RLS) type algorithms [2]. Therefore, AP algorithms
exhibit good convergence properties and robustness in practical im-
plementations with moderate computational effort. In multichannel
sound control applications, most of the AP algorithms, including
their computationally efficient versions, are used with the modi-
fied filtered-x structure [3], see Fig. 1(a). However, the AP algo-
rithms can also be based on the conventional filtered-x structure
(see Fig. 1(b)) (FXAP algorithm) [4] that is less demanding from a
computational cost point of view than the approaches based on the
modified filtered-x scheme, named MFXAP algorithms, especially
for multichannel systems.

In this paper, following an approach similar to [5] and adapting
it to multichannel filtered-x AP algorithms for ANC, the steady-
state mean square error of the MFXAP and the FXAP algorithms
for multichannel active noise controllers is analyzed and some the-
oretical models are developed in order to predict the algorithms
performance. Section II reports a brief description of the single
channel and multichannel AP algorithms considered. In Section III
the theoretical models for the MSE of the FXAP and the MFXAP
(previously analyzed in [6]), are derived. Section IV provides some
simulation results of an ANC system that validate the analytical pre-
dictions. Conclusions are included in Section V.
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2. FILTERED-X AFFINE PROJECTION ALGORITHMS
2.1 Single-channel filtered-x AP algorithms

The update equation of the AP adaptive filter coefficients in the
single-channel case reads as:

wi(n) =wr(n—1)—u VT (0)[V()VT (n)+ 61 tey(n), (1)

where § is a regularization parameter, I is a N x N identity matrix,
U is a convergence parameter and ey (n) is called the error vector.
Moreover, wy,(n) is a vector comprised of the L adaptive filter co-
efficients at the nth time instant. Matrix V (n) of dimensions N x L
contains the filtered reference signal values as follows:

VT(n)z[v(n),v(nf1),..,,v(an+1)], )

where v(n) is a vector with the more recent L samples of the refer-

ence signal x(n) filtered through a version h of the secondary path,
and N is called the AP order [2]. The objective is to estimate the
L-dimensional optimal coefficient vector w{, such that the desired
signal vector was given by dy(n) = —V (n)w{. However, this re-
sult is not achieved in practice and it is more realistic to use,

dy(n) = =V(n)wi +ry(n) 3)

being ry(n) a N x 1 Gaussian noise vector of zero mean and o7
variance, uncorrelated with data signal.

In case of the modified filtered-x affine projection (MFXAP)
algorithm based on the modified filtered-x scheme (see Fig. 1(a)),
the error vector is obtained as ey(n) = dy(n) + V(n)wr(n—1).
However, the FXAP algorithm, based on the conventional filtered-x
structure (see Fig. 1(b)), builds the error vector with past samples
of the error signal e(n), ey(n) =~ [e(n),e(n—1),...,e(n —N+1)]7.
This error vector approximation is accurate in most cases. In such
a case, both algorithms, the MFXAP and the FXAP can exhibit a
similar performance (see [4] for more details regarding efficient AP
algorithms description).

2.2 Multichannel filtered-x AP algorithms

Whereas a single-channel controller uses only one reference sensor,
one secondary source and one error sensor, a multichannel system is
comprised of I reference signals, J secondary sources and K error
sensors. Therefore, the multichannel extension of AP algorithms
involves expanding the matrices and vectors considered in (1) that
becomes,

w(n)=w(n—1)—pVn)[V (n)V(n)+81 e(n), @

being now I a KN x KN identity matrix and w(n) a IJL vector with
the coefficients of the /J adaptive filters arranged as follows,

w(n) = [WlTJ (")7~~-W1T,1(”)7W2T,1 (”)7~~~7WJT,1(”)]T )]

where w ; ;(n) is a vector with the L coefficients of the adaptive filter
that connects the ith primary signal with the jth secondary source.
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Figure 1: Block diagram of an adaptive system using: (a) the modi-
fied filtered-x structure and (b) the conventional filtered-x structure.

e(n) is the KN error vector with the last N samples of each er-
ror sensor, e(n) = [e1(n),...,e;(n—=N+1),...,ex(n),...,ex(n—
N+ 1D]T.  Finally, the (IJL x KN) matrix V(n) is given by
[Vi(n)...Vk(n)], where the matrices V(n) of (I/L x N) dimen-
sions are comprised of the reference signal samples in the following
way,

vi1k(n) viik(n—N+1)

viik(n) .. viign—=N+1)
Vi(n) = : . (6
vig(n) Vigi(n—N+1)

v k(n) vik(n—=N+1)
where v; ; ¢ (n) is the filtered-x vector of L length obtained by filter-
ing, sample by sample, the ith reference signal x;(n) with the sec-
ondary path estimation between the jth secondary source and the
kth error sensor: vi’j‘k(n) = [v,-J,k(n), v[_jﬁk(n —1),... ,vi7j7k(n —L+
DT

On the other hand, the multichannel error is defined as

[di(n) + Vi) w(n—1)] (7

M=

K
em(n) =3 ex(n) =
k=1

k=1

where e (n) and dy(n) are the error signal and the reference signal,
respectively, at the kth error sensor. Moreover, vy (n) is the IJL x 1

data vector

T]T‘

(®)
By introducing the N x NK matrix Dyg = [1,1,...,1], which

consists of K identity matrices of N x N size, we can define the

multichannel error vector as,

ey(n) = Dyge(n) 9)

that will be used for the algorithm analysis, being the multichannel
error ep(n) the first element of ey (n).

vie(n) = [V’ ovi vk v (n)

2.2.1 Multichannel MFXAP

In case we consider the multichannel MFXAP, based on the modi-
fied filtered-x structure illustrated in Fig.1(a), the error vector e(n)
for the multichannel MFXAP is defined as

e(n)=d(n)+ VT (n)w(n—1) (10)

where d(n) is a NK column vector comprised of the last N samples
of the desired signal at each error sensor,

d(n) =[di(n),...,di(n—N+1),...,dg(n),...,dg(n—N+1)]".
(11

From (9), we can rewrite (10) as
ey(n)=dy(n)+ V() w(n—1) (12)

where dy(n) is a vector of N length built as the addition of K vec-
tors comprised of the last N samples of the reference signals. The
1JL x N matrix V (n) = V(n)D% is the addition of the K matrices
V.(n) defined in (6).

The objective of the multichannel adaptive algorithm is analo-
gous to that of the single channel case described in [4]. That is, to
estimate the optimal coefficient vector w’ of IJL length given by

d(n) = —=VT (n)w® +r(n) (13)

being r(n) a KN x 1 Gaussian noise vector uncorrelated with data
signals and comprised of the biases at each error sensor, r(n) =

[ef (n),x3 (n),.....xg ()"
By premultiplying both sides of (13) by Dy it follows that

dy(n) =~V ()W’ +ry(n) (14)

being ry(n) the addition of the K vectors ry(n).

If we take into account ey(n) and V(n) defined in (12), an
approximate version of the multichannel MFXAP [6] can be derived
from (4)

w(n)=w(n—1)— yV(n)[vT(n)V(n) +81 'ey(n) (15)

where now, I is an N x N identity matrix. Note that the derived
equation (15) can be understood as if the multichannel system con-
siders only an error sensor equivalent to the contribution of the K
error sensors in the multichannel system. Then, the coefficient error
vector of IJL length is given by

w(n) =w’—w(n), (16)
and from (15) it holds
Wn) =W(n—1)+u V)V 0)V(n)+81 Ley(n). (17)
From (16), we can define the multichannel a priori and a posteriori
error vectors

e“(n) =V (n)w(n—1) (18)

and
e’(n) =V (n)w(n). (19



2.2.2 Multichannel FXAP

The recently proposed filtered-x affine projection (FXAP) algorithm
for multichannel ANC [4] is based on the conventional filtered-x
scheme. Following, only the main differences with the multichannel
MEFXAP algorithm description are remarked. The error vector is
now defined as

7TVT(n)1W’(7 - 1)2
v (n— ).W (n—2) ’ 0)
Y(n—N+1)w'(n—N)

that according to (14) allow to define the new a priori error vector

etl (n)
efr(n) v (m)yw(n—1)
e, (n—1) T (n—1)w(n-2)
ey (n—N+1) VT(n—N—i—.l)va(n—N)
@n
K
being v(n) = z ). Note that as in [7] we get
ey(n) = fejl\; (n)+ry(n). (22)

3. STEADY-STATE ANALYSIS

Our objective is to evaluate the steady-state mean square error per-
formance of the multichannel MFXAP and multichannel FXAP al-
gorithms. Then, we estimate the MSE as the limit for n — oo of the
mean square multichannel error,

MSE = lim E{Jey (n)[*}, 23)

or equivalently, the excess mean square multichannel error (EMSE)
which is defined by

EMSE = lim E{|e4,(n)[*} (24)
n—aoo

where ¢4, (n) =T (n)w(n—1).

Note that the definition of the MSE in (23) refers to the mean
square of the sum of the K error signals (see (7)) instead of the
sum of the mean square errors. This definition provides a first ap-
proximation to the accurate MSE and differs from it by a quantity
dependent on the cross products of the different error signals. Then,
the estimated MSE provides a lower bound of the exact MSE.

Regarding the FXAP, from (9) and (22) it holds the relation
between the MSE and the EMSE,

MSE = EMSE + K62, (25)

being ¢ the noise variance at each error sensor.

Following the approach shown in [5], a recursion for ||w(n)||?
based on the energy conservation relation can be derived, where ||- ||
denotes the Euclidean norm. Then, suitably manipulating and tak-
ing energies at both sides of (15), the energy conservation relation
is obtained,

ISe0) P %) [V () V ()]t () = 26)

W (n—1)|2 4+ (m) [V (m)V ()] ' eP ().
Note that the energies of the coefficient error vectors at differ-
ent iterations are related to the weighted energies of the a priori
and a posteriori error vectors, just as the relation provided in [5].
Applying the expectation operator E{-} at both sides of (26) and

the steady-state conditions (E{||w(n)||?} = E{||w(n — 1)||*} as
n — o0), it becomes

HE{eﬁ‘\;(”)T‘I’M(")eE’V: ()} + RE{xf (n) @y (n)ry(n)} @7
= 2E{ej’v(n)T<I>M(n)e”(n)}.

For this purpose, we have considered (18), (19) and (22), and the
following N x N data function matrices have been defined

Pm(n) =[V (H)YTH) +o1)7!
Wni(n) = Snm(n)V' (n)V(n) @ (n).

In the analysis of FXAP and MFXAP, we introduce some
approximations due to statistical independence considerations be-
tween different vectors and matrices. Concretely we assume data
function matrices be independent from w(n) and the other involved
vectors. Moreover, we neglect the dependency between the a priori
error vector and the noise error vector.

By manipulating (27) and considering the equality for two col-

umn vectors of length N, a’ b = Tr(abT), it yields

(28)

a

uTrlE{ef (n)ef (n)” }E{‘I’M( )}]
+uTr[E{ey(n)ry () YE{ @y (n)}] 29)
_2Tr[E{eN(n)e (n)TYE{ @y (n)}].

Next, some simplifications and assumptions are applied to the
different terms in (29). Concretely, in steady-state, when n — oo, it
is found that E{|e§,(n)|*} = E{|e4,(n—1)|*} = ... = E{|e$,(n —
N +1)|?}. Moreover, off-diagonal terms of the E{ej‘\; (n)efv/ n)"}
matrix are neglected following [5]. Then, the first term on the left
hand side of (29) becomes

uTrlE{e% (n)e% (n)T YE{®y(n)}]
— WE{] ¢y (n) [} TrE (@ ()} G0

being e§,(n) the top element of the particular a priori error vector

efv/(n) (see (21)).

The second term, related with the noise vector, simplifies to
(mTYE{®y(n)}] = uKGrzTr[E{‘I’M(n)}](-Sl)

Finally, the term on the right hand side of (29) can be simplified
by means of similar considerations. Upon substituting (18), (19)
and (22) into (17) when § is small, we get that

uTrlE{ry(n)ry

e’ (n) = e"(n) + ey (n) — pury(n). (32)

Moreover, under the assumption that ry(n) is independent with
eﬁ;(n), the following relations can be derived,

E{F (mw(n—1D)v" (n)w(n—1)} = E{|ej;(n)|*},

EFT(n—Dwmn-2)¥ (n—1Dwn—1)}
= (1—w)E{|efy(n—1)1*},
. (33)
E{v n—N+1D)wh—-Nv (n—N+ 1w (n—l}
=[1-(N-1ulE{| e} (n— N+1) [},
that it leads to,
E{efy(n)e (n)"} ~ E{| efy(n) [*}D1, (34)

where the N x N diagonal matrix D is given by

_H)ﬂ(]_2.‘1)7'“7[1_(1\,_1)”]}7 (35)

being diag{...} the diagonal matrix of the entries {...}.

= diag{1, (1



Finally, equation (29) becomes

HE{| efy(n) PYTrE{®p(n)}] + uKop TrE{®y(n)}]
=2E{| &y (n) [} Tr[E{D1 ®u(n)}],
(36)
and the MSE of the multichannel FXAP is therefore given by

K2 Tr[E{yy(n))]

T ED By ()]~ I E(T )] O

MSE = Kc? +

This expression can be simplified when the regularization parameter
6 is small enough. Then, we get,

uTrE{®y(n)}]

_ 2
MSE =Ko; |1+ TrDLE{ ()} |

(3%)

being I the N x N identity matrix and D; a diagonal matrix given
by

D = diag{(2— ), (2= 3u)..s 2= N =D}, (39)

Moreover, another two simplifications can be carried out de-
pending on u values:

e If u is small, D, ~ 2I and (38) reduces to,

MSE = Ko [1+%}, (40)

e If u ~ 1, then,

MSE = Ko? {1+HMM("%}, 41)

Tr[D3E{\I'M(n

where

Note that this expression for the MSE could provide non coher-
ent results due to negative entries in matrix D3. This agrees well
with instabilities found in simulation results for large p values.
If we take into account the previous expressions and with sim-
ilar hypothesis to that of the MSE for single-channel MFXAP and
FXAP [7], the MSE of the multichannel MFXAP can be derived,

HK o Tr(E{¥m(n)})
2Tr[E{Dy @y (n)}] — puTr{E{D4¥ny(n)}]

MSE = K6 + , (43)

being

Dy = diag{1,(1—p)*, (1= p)*, -, (1= )PV} (44

The corresponding estimated MSE for the single-channel algo-
rithms was introduced in [7] and can be derived from the previous
expressions with/ =J =K = 1.

4. SIMULATION RESULTS

In this section, we show several experimental results that compare
the theoretical predicted values of the steady-state MSE with val-
ues obtained from simulations. We provide results both for a single
channel and for a multichannel 1:2:2 ANC system. In the mul-
tichannel case, two loudspeakers were used as secondary sources
and a third loudspeaker produced a colored Gaussian noise gen-
erated by filtering white Gaussian noise (of zero mean and unit
variance) with a first order autoregressive filter of transfer func-
tion /1 —a2/(1 —az~') being a = 0.9, as primary signal. The de-
sired signal vector dy(n) generated by following the model in (3)
or (14), depending on system dimensions, with Gaussian noise of
62 =0.001 and an optimal coefficient vector w¢ of 16 coefficients.
The secondary path was perfectly model with an 8§ coefficients filter,
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Figure 2: Comparison between the estimated MSE by (38) (dashed
line) and the simulated MSE (solid line), as a function of u for
N=2,4 and 6.

and the adaptive filter has the same length as the unknown channel
(16 coefficients).

The experimental results of MSE were obtained by averaging
over 10 independent runs of 800.000 samples (necessary to arrive
at steady-state) with § = 107>, In addition, different step size p
and AP orders were applied.

In the first experiment we consider a single-channel ANC sys-
tem. Fig. 2 diagrams the MSE for the FXAP obtained from simu-
lations or estimated with (38) at different values of the step size u
and for the AP orders N=2,4, and 6. The estimated curves lie close
to the simulated ones, closer for low u values and for AP orders
of moderate value. Moreover, the MSE worsens when p increases
and higher AP orders speed up this effect for increasing u. Fig-
ure 3(a) illustrates the evolution of the residual error of the FXAP
for N = 3,7 and u = 0.02 for the first samples. Each sample of the
diagram has been estimated by an exponential window of 100 sam-
ples of the residual error power averaged over 10 runs, and only the
transient period at the beginning of the adaptation process is shown.
It can be observed the good convergence speed the FXAP exhibits,
much faster as N increases and very similar to the convergence per-
formance of the MFXAP [4]. In the figure there are also shown the
asymptotic values (dotted line) of the residual error (MSE).

The second experiment considers the multichannel ANC sys-
tem described above. Figure 3(b) shows the multichannel residual
errors obtained for both algorithms, the FXAP (solid line) and the
MFXAP (dashed line) for N = 3 and p = 0.02 for the first 5000
samples. In both cases, the residual errors lead to the estimated
MSE (almost identical for both algorithms) and the convergence
speeds are very similar. Fig. 4 diagrams the simulated and the esti-
mated MSE for AP orders N = 2,3 and 4, for the step size ranging
from 1073 to 0.04. The range of u values has been chosen in or-
der to guarantee stability of the multichannel FXAP algorithm, un-
like higher values would be allowed for the multichannel MFXAP.
However, the increase in convergence speed is not worth the com-
putational load requirements for the MFXAP [4]. The comparison
between the estimated MSE by (37) and the values obtained by sim-
ulation for the FXAP is illustrated in Fig. 4(a). The estimated curves
lie closer to the simulated ones for low u values and N =2, 3. More-
over, these theoretical curves are very similar between them because
for low u values the estimated MSE seems not to be dependent on
N, see (40). Similar considerations can be applied to Fig. 4(b) that
shows the estimated MSE by (43) or the simulation values for the
multichannel MFXAP. Moreover, in this case, the estimated curves
for low AP orders fall close to the corresponding simulation values
with a weaker dependency from u values. However, in Fig. 4(a)
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Figure 3: Evolution of residual error compared with the theoretical
MSE value (dotted line) for: (a) the FXAP with N = 3 (dashed line)
and N = 7 (solid line), and (b) the multichannel algorithms MFXAP
(dashed line) and FXAP (solid line) with N = 3. (u = 0.02).

and (b), the theoretical predictions of MSE are not very accurate
for high AP orders especially for the FXAP algorithm. Therefore,
these results are coherent with [5], [6] where low AP orders were
only considered.

5. CONCLUSIONS

In this paper, an analysis of the steady-state MSE performance of
the multichannel FXAP and MEXAP algorithms for ANC has been
proposed. The methodology applied is based on energy conserva-
tion relations avoiding other more restrictive assumptions. It has
been shown the estimated MSEs derived are a good prediction of the
performance of both algorithms. The estimated steady-state behav-
ior of both algorithms has been validated by means of simulations
results provided by a single-channel and a multichannel ANC sys-
tems. Finally, the estimated means square error of the multichannel
algorithms allows to accurately adjust the configuration settings of
the practical systems.
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