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ABSTRACT

In BCI (Brain-Computer Interface) systems, brain signals
must be processed to identify distinct activities that convey
different mental states. For example, in BCIs that rely on
Steady-State Visual Evoked Potentials (SSVEP) recognize
EEG activity that reflects attention to a particular stimulus.
In this paper, we propose a new technique for the classifica-
tion of SSVEP-activity for non-invasive BCI. The proposed
method is based on a Time Delay Neural Network that in-
cludes a Fourier transform in order to switch between the
analysis of layers in the time domain to layers in the fre-
quency domain. The first step allows the creation of different
channels. The second step is dedicated to signal processing
of these channels in the frequency domain. The last step is
the classification. The presented results on offline process-
ing correspond for electroencephalographic (EEG) signals
obtained with 6 electrodes on 3 subjects. We compare our
method on two time segments with the average combination
method. These results outperform the average combination
method and are promising for online processing.

1. INTRODUCTION

Brain-computer interface (BCI) systems allow people to
communicate through direct measures of brain activity [1].
Unlike all other means of communication, BCIs require no
movement [9]. Therefore they have been used primarily to
enable communication for persons with severe disabilities
who are unable to communicate through any classical ways.
Although BCIs are mostly dedicated to persons with disabil-
ities, recent works have shown that BCIs could be efficiently
used by healthy persons on different applications like as a
combination and complement with other interfaces [7].

To classify different brain signals, the knowledge of the
stimuli drives the solution to some specific signal processing
analysis. Usually, a BCI is decomposed into four parts: the
signal acquisition, the signal processing, the output device
components and the operating protocol that links the three
previous components [1]. We focus here on the signal pro-
cessing component. This part includes two main steps: the
extraction of brain signal features and the translation of these
signals into device commands.

The actual two challenges in BClISs are:

e to reduce the latency between the user’s command and
its activation. Typically, reducing BCI latency impairs
accuracy. It’s useless to deliver a fast latency if the order
is not well interpreted, i.e., if the signals are not well ana-

lyzed. This issue depends on the application: for disabled
people, the quality of the controls must be very high for
keeping an optimal security of the subjects. The system
architect has to find the best compromise between speed
and accuracy.

e to avoid the need of an expert to set the system. The sys-
tem must be set automatically to the user. Furthermore,
it is not possible to generate a single set of parameters
for several users. The system must be set manually by
an expert or automatically online by solving local prob-
lems or offline by using some training sessions and their
feedback. In this last case, the time dedicated for the ex-
periments and the choice of representative experiments is
crucial.

The experiments in this work are made on a particular
case of BCI:

e The system is non-invasive. It does not require surgery to
implant electrodes.

o It only uses sensors with contact on the surface of the
scalp via standard electroencephalographic (EEG) elec-
trodes.

e The stimuli are only flickering lights and their responses
should correspond to Steady-State Visual Evoked Poten-
tials (SSVEP). The system must reflect the user attention
to a fast oscillating stimulus. The best response for these
signals are obtained for stimulation frequencies between
5 and 20Hz [14].

In the following sections, we propose a model combining
signal processing techniques that incorporate a priori knowl-
edge of the problem and machine learning methods to adapt
to each subject [3]. The first section presents the EEG sig-
nals from SSVEP. The main system is described in the sec-
ond section. The experiments are detailed in the third section
and the results are discussed in the last section.

2. EEG SIGNALS

The classification of EEG signals is a major challenge for
real applications [4]. Different types of classifiers have been
used for EEG problems like neural networks [2, 8] and Hid-
den Markov Model [15]. For the EEG signal acquisition, we
consider N, + 1 electrodes, where one has only a reference
and ground purpose. Let SF be the sampling frequency and
TS the time segment in second attributed to the analysis of
the signal. For SSVEP stimuli, we consider visual stimula-
tion with a flicker frequency of f Hz.
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We estimate the EEG signal measured as the voltage be-
tween a reference electrode and the electrode number i as:

k=SF
Xij= Z (aipsin(2mxk*fx j+P;x)) +B
k=1

where 0 < j < SF % TS, B corresponds to the noise. Each
sinusoid on each electrode has its own amplitude (a; ;) and
phase (®; ¢).

The nuisance signals B can have several origins:

e The environment and its effect on the subject.

e Natural physical disturbance like other brain processes,
breathing artifacts.

e The noise of each electrode on the cap.

A channel is used for a linear combination of the signals
measured by the N, electrodes. The values of a channel ¢
at a time j are defined by:

1=Nelec

Cjz Z W,'*X,',j
i=1

The information from the electrodes is contained in one
scalar at a time j. For the EEG signal processing, one first
goal is to find an optimal set w;x, 0 < i < N and k is a
finite number, as small as possible.

There exist different methods for the creation of one or
several channels:

e Average combination. For this approach, the sinusoids
signals should have equal phases and the noise should
be equally distributed across the electrodes for a low de-
pendence between electrodes. The average method fuses
each electrodes in one channel with equal weight for each
electrode.

e Native combination. Neuroscience works provide the in-
formation that the phases of the SSVEP sinusoids vary
with the location of the electrodes on the scalp [5]. In
this case, each channel represents the signal of one elec-
trode.

e Bipolar combination. The noise is present in each elec-
trode signal and the average combination may amplify
the noise instead of reducing it. The goal of the bipo-
lar approach is to obtain a better signal by canceling the
common nuisance signals [12].

e Laplacian combination. This combination is an alter-
native to the bipolar solution. One electrode has a
high weight and its neighboring electrodes has negative
weights.

e Minimum energy combination. This method allows the
combination of a fixed number of electrodes that cancel
the noise as much as possible.

e Maximum contrast combination. This method is a varia-
tion of the previous method. The SSVEP frequencies are
maximized whereas the energy in the noise is minimized
simultaneously [6].

In this paper, we propose to determine the weights of
each channel function to their discriminant power when the
channels are combined. The goal is to determine the optimal
set of weights for a finite number of channels that can help to
solve the main problem. In the following section, we propose
a solution for creating such channels.

3. SYSTEM OVERVIEW

We propose a model for the processing and classification of
EEG signals that correspond to a finite number of SSVEP
signals. The model is based on a time delay neural net-
work (TDNN), which is a special case feedforward neural
network [11]. The goal is to directly classify the raw sig-
nal and to integrate the signal processing functions within
the discriminant steps. For different aspects, it is not always
possible to clearly separate the pre-processing, the feature
extraction and the classification steps for a classification task.
The pre-processing and feature extraction usually require a
lot of signal processing methods in order to transform the
raw data in some possible discriminant data for a classifier.
That’s why we propose to combine signal processing meth-
ods and the feedback of its effect on the final output. The
framework of the system is described in the figure 1. The in-
puts are the EEG signal values from the electrodes during a
time segment, X; j, 0 <i < Njee, 0 < j < SF+TS. The out-
put is a vector of size Ny (the SSVEP frequencies). Thus,
for the classification task, there are N;q classes.

The process within the neural network can be described
as follows:
1. The signal normalization, denoising and combination.
2. The selection of the frequencies and their harmonic.
3. The classification of the signals.

Before processing the signal, data is normalized:
Xij < (Xij—X;;)/0i; where X; ; and 0; ; are respectively
the average and the standard deviation values of the electrode
i at the time j in a time segment 7'S. These data are extracted
from the whole training database.

Figure 1: System overview.
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3.1 Neural network topology

The network is composed of 4 layers. Each layer is com-
posed of one or several maps. We define a map as an layer
entity that has a specific semantic: each map of the first hid-
den layer is a channel. The first hidden layer is dedicated to
the denoising of the input data and the creation of the differ-
ent channels.

The layers:

e Layer O (Lo): the input layer. X; ; with 0 < i < Ngjee and
0<j<SF*TS. SF*TS corresponds to the number of
samples in 7'S seconds.

e Layer 1 (L): the first hidden layer. L; is composed of 10
maps. We define L1 M,,, the map number is m. Each map
of L; has the size 1*SF « TS — 4. The size of the maps in
the time dimension are inferior to the input layer because
of the border effect of the filtering in time.

e Layer I’ L}): L is the result of L; after some signal pro-
cessing. Each map of L) has the size 1*5.

e Layer 2 (Ly): the second hidden layer. L, is composed of
1 map of 100 neurons. This map is fully connected to its
corresponding map on L.

e Layer 3 (L3): the output layer. This layer has only one
map of 5 neurons, which represents the 5 classes. This
layer is fully connected to each map of L.

The learning 7 rate is defined by:

0.3
Lan(n)N,

input
where L;M, (n)n,,,, is the number of input of the neuron n in
the map m of the layer 1.

For the first layer, we have a different learning rate 7’

2
Lle (O)N

shared

where LiM,,(0)y,,,., is the number of neurons that share the
same set of input weights.

The weights of the network are initialized with a standard
distribution around +1/L;M,(n)y,

input *

3.2 Propagation

The first hidden layer is dedicated to 2 tasks:

e The automatic creation of the channels (their weights),
one for each map.

e The automatic linear filtering of the signal in time. This
step may be useful to cancel some artifacts due to differ-
ence of the phase in the signal between electrodes.

For each map of L, we apply the following algorithm:

e Convolution: The value of a neuron n of L{M,, is defined
by:

ivj:Nelec-,S

Lle(n) = f( (XSF*TS*i,j+n *Wm,i,j) + ‘/Vm,threshold)
i.j=0,0

where 0 <m < 10, 0 <i < Nyjee, 0 < j<SFxTS, 0 <
n < SF TS —4 and f is defined by:

f(o)=1.7159*tanh((2.0/3.0) x o)

where f(1) =1 and f(—1) = —1 [10]. Notice that each
neuron of the map shares the same set of weights and
it is only connected to a window of size 5 % N,j... This
window allows filtering the signal in the space and time
domain at the same time. Instead of learning one set of
weights for each neuron, dependent on the neuron’s posi-
tion, the weights are learned independent of their corre-
sponding output neuron. It is this particular feature that
qualifies the network as time delay neural network, which
is widely used in handwriting recognition [11].

e Once the channel is created, the Fourier Transform is ap-
plied on the neuron’s value to change to the frequency
domain.

1 k=SFxTS—1

—27i
= LM SFTS ¥k
SF+TS k;, 1M () 2

L”]Mm(l/l)

e We select the frequencies between 13Hz and 17Hz, the
fundamental expected frequencies. For example, if 7S =
T seconds, T > 1, the neuron of L\ M,,(n) gets the fol-
lowing new value:

1 t<T+*(n+13+1)

Llle(n) == Z

! L1 M 1)
t=T*(n+13)

e Now we can consider the layer L] and its map L\,M,,,
which have all 5 neurons.

The neuron LM, (n) corresponds to the frequency n +

13,0<n<5.

The first hidden layer can be seen as a feature extraction
level. Although it could be possible to choose directly the
maximum value for each map of L M,, as a valid output an-
swer, it misses the fact that the channels have been tailored
for performing together.

Between L’l and L3, it corresponds to a classical multi-
layer Perceptron. L, and L3 are fully connected, respectively
to L'1 and L,. The activation function each neuron of L, and

Lj is:
flo)=1/(1+e"?)

A signal X is attributed to the class C;, i < 0 < Ny; when
i = argmax,Lz(n). We note E(X), the recognized class.

3.3 Backpropagation

The backpropagation for the L3 and L; is achieved by using a
gradient descent by minimizing the least mean square error.
However we have to transform the error back in the time do-
main by using the Inverse Fourier Transform for correcting
the weights in the first hidden layer. As the errors in this layer
are complex numbers, only the real part is used for updating
the weights:

o First the frequencies between 13Hz and 17Hz are trans-
fered back to the frequencies function to the time seg-
ment analysis. The error is 0 on all the frequencies except
between 13Hz and 17Hz.

e The error § is then transfered back into a complex num-
ber as only the magnitude was propagated.

8" \My(n) = 8| My, (n/TS)e00mn)

where 0 (m,n) is the angle of L”1M,,(n)



16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP

e The Inverse Fourier Transform is applied on 8”1 M,,(n)
and we keep only the real value for the error.

k=SF+TS—1 omi
Z 5”1Mm(n)*em*"*k)
k=0

O01M,,(n) = Re(

SFxTS

4. EXPERIMENTS

EEG signals were recorded on 3 subjects. For each subject,
we have 5 different trials for each of the 5 stimuli at 13, 14,
15, 16 and 17Hz. The subjects had to focus for about 20s at
a light flickering at one of the 5 frequencies. The subjects
sat on a chair, wearing a cap with electrodes placed on the
surface of the scalp (the contact between the skin under the
hair and the electrodes on the cap is possible thanks to some
gel). The figure 2 represents the location of the electrodes (in
black) and the reference electrode (in grey) on the cap.

Figure 2: Electrodes location on the cap.

4.1 Database description

The first 2s of each trial are not considered as they contain
too much artifacts. Within the 18s remaining of the signal,
we cut the signal into different windows of size SF TS every
100ms. For each signal, the three first trials are dedicated
to the training of the system, the fourth trial is used for the
validation and the fifth is for the test. Two time segments
have been considered: 1s and 2s. The number of signals to
process for each database are presented in the table 1.

Table 1: Number of patterns for each database.

Learning | Validation | Test

Is 1260 420 420

2s 1185 395 395
5. RESULTS

We define the accuracy of the system by its recognition rate
R. The recognition rate is defined by:

_ Txeon((E(X) =G and (X £G)
YxeppX €C;

where DB is the considered database that contains the EEG
signals of length T'S.

The recognition rates obtained thanks to the average
method are given in the table 3. The table 2 presents the re-
sults obtained with the TDNN. For each subject and for the 2
time segments, the recognition rate in the learning, validation
and test is given for the epoch that gives the best recognition

R

Table 2: Results of the TDNN.
2

Subject 1
Reco. Learning
1s 90.95 | 92.62 | 93.02
2s 95.36 | 99.32 | 97.64
Reco. Validation
1s 70.71 | 59.29 | 62.86
2s 78.48 | 60.51 | 74.18
Reco. Test
1s 82.14 | 53.10 | 48.33
2s 93.67 | 61.77 | 58.99

Table 3: Results of the Average combination.

Subject 1 2 3

Reco. Learning

1s 62.53 | 50.47 | 35.95

2s 70.21 | 62.02 | 38.14
Reco. Validation

1s 56.19 | 28.09 | 40.00

2s 60.25 | 28.60 | 46.32

Reco. Test
1s 68.33 | 25.95 | 46.90
2s 76.70 | 31.89 | 47.08

Table 4: Confusion matrix for the subject 1 (test) - 1s.

13Hz | 14Hz | 15Hz | 16Hz | 17Hz
13Hz | 77 0 0 0 7
14Hz 5 65 4 3 7
15Hz 8 4 70 0 2
16Hz 0 0 0 84 0
17Hz 24 2 3 6 49

Table 5: Confusion matrix for the subject 1 (test) - 2s.

13Hz | 14Hz | 15Hz | 16Hz | 17Hz
13Hz 79 0 0 0 0
14Hz 1 74 1 2 1
15Hz 7 4 68 0 0
16Hz 0 0 0 79 0
17Hz 3 1 5 0 70
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rate on the validation base. Thus the test base is like a blind
test. The test and validation database have the same behavior
during the learning for their evaluations.

Concerning the strategy of the channel creation, our ap-
proach is good as it allows the creation of channels that com-
bine well. It is possible to classify these noisy signals thanks
to our strategy. However, for the validation and the test set,
accuracy is poor but always better than the average combina-
tion. These results validate the idea behind the method, but
also the need to adapt to the user. We can also notice that it
is hard for a subject to focus for even 20s at the same signal.
The subject can shift his gaze and produce unwanted signals.
There is thus an inevitable risk that the data used for train-
ing may have some parts that do not correspond to a SSVEP
response. Furthermore, the electrodes only represent a small
part of all physical possible features.

Subject 1 is the best and gives very good SSVEP re-
sponse. Subject 2 seems to respond well on the trials of the
learning database but fails for the validation and test base.
For subject 3, the contrary pattern is apparent. He exhibits
bad results on the learning database but succeeds better on
the two others.

The confusion matrix in tables 4 and 5 for the best subject
lets us think that it is difficult to diagnose the errors from the
ranking. A hypothesis could have been made that the errors
would be in the neighborhood frequencies of the expected
frequency. However, we do not find any evidence of this
behavior on the confusion matrix. Finally, the recognition
decrease is not linear function to the time and it is already
possible to achieve good results with a time segment of 1s; it
suggests that it is still possible to decrease the time segment
for some subjects.

6. CONCLUSION

A new model based on a Time Delay Neural Network for
the classification of SSVEP signals on BCI systems has been
presented. This method allows the automatic creation of
channels and linear time filter functions to the user and their
discriminant powers for the signal classification. The net-
work integrates the Fourier transform between 2 hidden lay-
ers, which changes the layer semantic from time to frequency
domain analysis. The obtained results are promising, as the
experimental condition and test do not exploit all the infor-
mation that may be available during the BCI application.
Further works will deal with the problem of transition be-
tween EEG signals and how to integrate in an optimal way
temporal information about the previously recognized sig-
nals to improve the recognition.
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