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ABSTRACT
In this paper we present a methodology for parameter estimation in
total variation (TV) blind deconvolution. By formulating the prob-
lem in a Bayesian framework, the unknown image, blur and the
model parameters are simultaneously estimated. The resulting al-
gorithms provide approximations to the posterior distributions of
the unknowns by utilizing variational distribution approximations.
We show that some of the current approaches towards TV-based
blind deconvolution are special cases of our formulation. Experi-
mental results are provided to demonstrate the performance of the
algorithms.

1. INTRODUCTION

Blind deconvolution refers to a class of problems when the original
unknown image is estimated from degraded observations with no
information about the degradation and noise. It is encountered in
many areas, such as astronomical imaging, photography, medical
imaging, optics, and super-resolution applications, among others.
Blind deconvolution is a very challenging problem because it is ill-
posed, and the solution is not unique.

A standard formulation of the image degradation process is
given by a linear space-invariant system, that is,

y = Hx+n, (1)

where x, y, and n represent the original image, the observed im-
age, and the noise, respectively, all in vector-form obtained by lex-
icographical ordering. The block-circulant matrix H represents the
unknown blurring matrix which is formed by the point spread func-
tion (PSF) h of the degradation system. We assume that all vectors
are of dimension N× 1 and H of dimension N×N. Note that the
PSF support is to be equal to the image support in this formulation.

Following the recently proposed approaches in [1] and [2],
which became very popular in the literature, the blind deconvolu-
tion problem can be formulated as a regularized least squares opti-
mization as

(x,h) = argmin
x,h

β

2
‖ y−Hx ‖2 +αimTV(x)+αblTV(h), (2)

where the total variation (TV) function is defined as

TV(x) = ∑
i

√
(∆1

i (x))2 +(∆2
i (x))2, (3)

with the operators ∆1
i (x) and ∆2

i (x) corresponding to the horizontal
and vertical first order differences at pixel i, respectively. The TV
function has the advantage of preserving the edge structure while
imposing smoothness on the solutions.

The choice of the regularization parameters β , αim, and αbl is
very critical in determining the convergence of the algorithms and
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the quality of the restored images. In general, it is hard to esti-
mate the optimal parameters and a long supervised tuning process
is needed. Some guidelines to choose them are presented in [1]
and several methods are proposed for other blind deconvolution al-
gorithms [2, 3, 4]. However, to our knowledge no work has been
reported on the estimation of these parameters in TV-based blind
deconvolution.

In this paper we propose a methodology for parameter estima-
tion in TV-based blind deconvolution. By formulating the problem
in Eq. (2) in the Bayesian framework, we model the unknowns x
and h, and the parameters β , αim, and αbl as stochastic quantities,
and form their prior distributions. We utilize a variational approx-
imation approach to estimate the posterior distribution and provide
approximations to the posterior distributions from which estimates
to the unknowns can be drawn. We will show that the TV-based
algorithms in [1] and [2] are special cases of our framework. Our
formulation results in two algorithms that are fully automated and
require no user input.

The rest of this paper is organized as follows. In Section 2 the
priors on the unknown in the Bayesian model are described. We
present the variational methods for the inference in Section 3 and
develop the proposed algorithms. Experimental results are shown
in Section 4 and the paper is concluded in Section 5.

2. HIERARCHICAL BAYESIAN MODELING

In Bayesian models, all unknown parameters are treated as stochas-
tic quantities, and probability distributions are assigned to them.
The unknown parameters x and h are assigned prior distributions
p(x|αim) and p(h|αbl), which model our knowledge about the na-
ture of the original image and the blur, respectively. The observa-
tion y is also a random variable with the corresponding conditional
distribution p(y|x,h,β ). Clearly, these distributions depend on the
model parameters αim, αbl, and β , which are called hyperparame-
ters.

To alleviate the ill-posed nature of the blind deconvolution
problem, prior knowledge about the unknown image and the blur
is incorporated through the use of the prior distributions. In our
case, when the hyperparameters are not assumed to be known, they
have to be estimated simultaneously with the unknown parameters.
To achieve this, we utilize a hierarchical model with two steps.

In the first stage of the Bayesian formulation, we model the
observation process, the image, and the blur. Assuming the degra-
dation noise is additive and independent zero-mean Gaussian, the
probability distribution of the observation in Eq. (1) can be ex-
pressed as

p(y|x,h,β ) ∝ β
N/2 exp

[
−β

2
‖ y−Hx ‖2

]
, (4)

where β−1 is the noise variance. We adopt the TV function for the
image prior, that is,

p(x|αim) ∝
1

Z1(αim)
exp [−αimTV(x)] , (5)
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with the partition function Z1(αim).
Simultaneous Autoregression (SAR), Conditional Autoregres-

sion (CAR), and Gaussian models are some of the commonly used
models for the unknown blur [4, 5, 6]. These models are very effi-
cient in estimating smooth PSFs, for instance, a Gaussian PSF mod-
eling long-term atmospheric turbulence. However, for PSFs with
sharp transitions, such as motion blur and out-of-focus blur, smooth
priors cannot capture the sharp transitions and tend to smooth the
estimated PSF. For such PSFs with discontinuities, the TV function
is more suitable since it does not overpenalize large gradients. We
define the prior on the blur as

p(h|αbl) ∝
1

Z2(αbl)
exp [−αblTV(h)] , (6)

with Z2(αbl) the partition function.
Calculating closed form solutions for Z1(αim) and Z2(αbl)

presents a major difficulty. Instead, quadratic approximations are
used for these partition functions (see [5]) so that the image and
blur priors can be expressed as

p(x|αim) ∝ α
N/2
im exp [−αimTV(x)] , (7)

p(h|αbl) ∝ α
M/2
bl exp [−αblTV(h)] . (8)

In the second stage of the hierarchical model, we model each
hyperparameter with a corresponding hyperprior. We utilize flat
improper hyperpriors on all hyperparameters, that is,

p(αim) ∝ const, p(αbl) ∝ const, p(β ) ∝ const. (9)

Finally, combining the first and second stages, we form the joint
probability distribution as follows

p(αim,αbl,β ,x,h,y)
= p(αim,αbl,β )p(x|αim)p(h|αbl)p(y|x,h,β ). (10)

3. VARIATIONAL INFERENCE

Let us denote the set of hyperparameters by Ω = (αim,αbl,β ), and
the set of all unknowns by Θ = (x,h,αim,αbl,β ). The Bayesian
inference is based on the posterior distribution given by

p(Θ|y) =
p(Ω)p(x|αim)p(h|αbl)p(y|x,h,β )

p(y)
. (11)

The closed form of the posterior distribution cannot be calculated
because p(y) cannot be found analytically. Therefore, we consider
instead a simpler parametric approximation q(Θ) to the posterior
p(Θ|y) which is found by minimizing the Kullback-Leibner (KL)
divergence [7], given by

CKL(q(Θ) ‖ p(Θ|y)) =
∫

q(Θ) log
(

q(Θ)
p(Θ|y)

)
dΘ

=
∫

q(Θ) log
(

q(Θ)
p(Θ,y)

)
dΘ+ const. (12)

In order to obtain a tractable approximation, the family of dis-
tributions q(Θ) are restricted by utilizing the mean field approxima-
tion so that q(Θ) = q(αim)q(αbl)q(β )q(x)q(h). The major diffi-
culty with the TV function is that it makes the KL distance difficult
to evaluate. To overcome this problem, we define two function-
als M(αim,x,w) and T(αbl,h,u) for any N−dimensional vector
w ∈ (R+)N and N−dimensional vector u ∈ (R+)N , according to

M(αim,x,w)

= c1α
N/2
im exp

[
−αim

2 ∑
i

(∆1
i (x))2 +(∆2

i (x))2 +wi√
wi

]
, (13)

T(αbl,h,u)

= c2α
N/2
bl exp

[
−αbl

2 ∑
i

(∆1
i (h))2 +(∆2

i (h))2 +ui√
ui

]
, (14)

with c1 and c2 constants. By considering the following inequality,
which states that for any a≥ 0 and b > 0

√
ab≤ a+b

2
⇒
√

a≤ a+b
2
√

b
. (15)

and comparing Eqs. (13) and (14) with Eqs. (7) and (8), respec-
tively, we obtain the following lower bounds for the priors

p(x|αim) ≥ M(αim,x,w), (16)
p(h|αbl) ≥ T(αbl,h,u). (17)

Therefore, we have the following lower bound for the joint proba-
bility distribution from Eq. (10)

p(Θ,y) ≥ p(Ω)M(αim,x,w)T(αbl,h,u)p(y|x,h,β )
= F(Θ,w,u,y). (18)

For θ ∈ {αim,αbl,β ,x,h} let us denote by Θθ the subset of
Θ with θ removed; for instance, if θ = x, Θx = (αim,αbl,β ,h).
Then, using the lower bound in (18) we can define an upper bound
for the Kullback-Leibner distance given by

CKL(q(Θ) ‖ p(Θ|y))≤CKL(q(Θ) ‖ F(Θ,w,u,y))

=
∫

q(θ)
(∫

q(Θθ ) log
(

q(θ)q(Θθ )
F(Θ,w,u,y)

)
dΘθ

)
dθ . (19)

Note that the minimization of the KL distance which is very
difficult to evaluate because of the TV functions, can be replaced by
minimization of this upper bound. We utilize an alternating mini-
mization (AM) procedure [8] to find estimates of the posterior dis-
tributions. For each unknown θ , the posterior q(θ) can be computed
by holding q(Θθ ) constant and solving

q(θ) = arg min
q(θ)

CKL(q(Θθ )q(θ) ‖ F(Θ,w,u,y)). (20)

The solution is found by differentiating the integral on the right
hand side with respect to q(θ) and setting it equal to zero, which
results in (see Eq. (2.28) in [9]),

q̂(θ) = const× exp
(

Eq(Θθ ) [ logF(Θ,w,u,y) ]
)

, (21)

where

Eq(Θθ ) [ logF(Θ,w,u,y) ] =
∫

logF(Θ,w,u,y)q(Θθ )dΘθ .

Applying this general solution to each unknown in an alternating
fashion results in the iterative procedure shown above.

We proceed by stating the solutions at each step of the algo-
rithm. It is not difficult to see from step 3 that qk(x) is an N-
dimensional Gaussian distribution, rewritten as,

qk(x) = N
(
x | Ek(x),covk(x)

)
.

The covariance and mean of this normal distribution can be calcu-
lated as

covk(x) =
[
β

kHtH+Nβ
kcovk(h)

+α
k
im(∆1)

t
W (wk)(∆1)+α

k
im(∆2)

t
W (wk)(∆2)

]−1
, (22)
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Algorithm 1
1: Given observation y, and initial estimates q1(h), Ω1

2: while Convergence criterion is not met do
3: Find

qk(x) ∝ exp
(

Eq(Θx)

[
logF(x,hk,Ωk,wk,uk,y)

])
4: Find

qk+1(h) ∝ exp
(

Eq(Θh)

[
logF(xk,h,Ωk,wk,uk,y)

])
5: Find

wk+1
∝ exp

(
Eq(Θw)

[
logF(xk,hk+1,Ωk,w,uk,y)

])
6: Find

uk+1
∝ exp

(
Eq(Θu)

[
logF(xk,hk+1,Ωk,wk+1,u,y)

])
7: Find

qk+1(Ω) ∝

exp
(

Eq(ΘΩ)

[
logF(xk,hk+1,Ω,wk+1,uk+1,y)

])

Ek(x) = covk(x)β
kHty, (23)

with (·)t denoting the transpose operator and

W (wk) = diag

 1√
wk

i

 , i = 1, . . . ,N. (24)

Similarly, qk(h) is found in the second step of the algorithm as an
N-dimensional Gaussian distribution, given by

qk+1(h) = N
(
h | Ek+1(h),covk+1(h)

)
, (25)

with parameters

covk+1(h) =
[
β

kXtX+N β
kcovk(x)

+α
k
bl(∆

1)
t
U(uk)(∆1)+α

k
bl(∆

2)
t
U(uk)(∆2)

]−1
, (26)

and
Ek+1(h) = covk+1(h)β kxty, (27)

where the matrix U(uk) is defined as

U(uk) = diag

 1√
uk

i

 . i = 1, . . . ,N (28)

In the third and fourth steps of the algorithm, we find the vectors
wk+1 and uk+1 as

wk+1
i = Eqk(x)[(∆

1
i (x))2 +(∆2

i (x))2], i = 1, . . . ,N, (29)

uk+1
i = Eqk(h)[(∆

1
i (h))2 +(∆2

i (h))2], i = 1, . . . ,N. (30)

Finally, in the last step, we find the distributions of the hyper-
parameters. It can be shown that they have Gamma distributions,
given by

qk+1(αim) ∝ α
N/2
im exp

[
−αim ∑

i

√
wk+1

i

]
,

qk+1(αbl) ∝ α
N/2
bl exp

[
−αbl ∑

i

√
uk+1

i

]
,

qk+1(β ) ∝ β
N/2 exp

[
−β

(
Eqk(x)qk+1(h)

[
‖ y−Hx ‖2]

2

)]
,

with the corresponding means

(αk+1
im )−1 =

∑i

√
wk+1

i

N/2+1
, (31)

(αk+1
bl )−1 =

∑i

√
uk+1

i

N/2+1
, (32)

(β k+1)−1 =
Eqk(x)qk+1(h)

[
‖ y−Hx ‖2]

N +2
. (33)

Note that in Algorithm 1 no assumptions were imposed on the
posterior approximations q(x) and q(h). We can, however, assume
that these distributions are degenerate, that is, qk(x) = δ (x−xk)
and qk(h) = δ (h−hk) at each iteration k. Using this assumption
we obtain Algorithm 2, which is similar to Algorithm 1 except that
the cross-terms Nβ kcovk(h) and Nβ kcovk(x) in Eqs. (22) and (26)
are set equal to zero, and the expectations with respect to x and h
are replaced by the values of x and h. Note that in Algorithm 2, if
the hyperparameters Ω are assumed to be known, the estimates of
x and h correspond to the maximum a posteriori estimates, that is,

(x̂, ĥ) = argmax
(x,h)

p(αim,αbl,β ,x,h|y), (34)

which can be shown to be equivalent to Eq. (2). Therefore, the
TV-based algorithms proposed in [1] and [2] are special cases of
Algorithm 2, with the values of the hyperparameters assumed to be
known.

Finally we would like to comment on the computational com-
plexity of the algorithms. The estimates of xk and hk are found
from Eqs. (23) and (27) (with the expectations removed in Algo-
rithm 2). The direct solutions of these equations are hard to find
due to their very high dimensionality. Therefore, we adopt a conju-
gate gradient (CG) algorithm with diagonal preconditioning to solve
these systems numerically. Note that more advanced CG precondi-
tioners [10], or other methods such as gradient descent can also be
employed.

4. EXPERIMENTAL RESULTS

A number of experiments have been performed with the proposed
algorithms. In the experiments reported below, Algorithm 1 is de-
noted by TV1 and Algorithm 2 by TV2. We present results obtained
by applying the proposed algorithms on ”Lena” and ”Satellite” im-
ages with an out-of-focus blur with radius 4, and white Gaussian
noise is added to the blurred images to obtain degraded images with
blurred-signal-to-noise ratios (BSNR) of 20 dB, 40 dB and 60 dB.
The original images as well as the degraded versions are shown in
Fig. 1.

In the experiments, we used ‖ xk−xk−1 ‖2 / ‖ xk−1 ‖2

< 10−5 (or Ek(x) instead of xk) as the convergence criterion to ter-
minate the algorithms, and a threshold of 10−5 is used to terminate
the CG iterations. The initial values for the algorithms are chosen
as follows: The observed image y is used as the initial estimate of
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Table 1: ISNR values, number of iterations and estimated noise variances for the Lena and Satellite images degraded by an out-of-focus
blur with radius 4.

Lena Satellite
BSNR Method ISNR (dB) iterations 1/β ISNR (dB) iterations 1/β

60dB TV1 5.20 25 1×10−3 14.37 27 0.5×10−3

TV2 5.25 23 2×10−3 12.72 19 1×10−3

TV1-NB 12.66 11 6×10−5 18.03 12 7×10−4

TV2-NB 12.65 11 6×10−5 18.02 12 7×10−4

40dB TV1 7.62 58 0.08 8.54 25 0.13
TV2 7.60 68 0.08 8.55 26 0.12

TV1-NB 8.90 14 0.11 8.80 16 0.18
TV2-NB 8.89 13 0.11 8.83 16 0.18

20dB TV1 2.45 31 19.03 1.98 35 22.06
TV2 2.47 29 19.00 1.93 35 22.05

TV1-NB 3.13 5 15.96 3.28 5 18.01
TV2-NB 3.12 6 15.96 3.28 5 18.00

(a) (b)

(c) (d)

(e) (f)

Figure 1: Left column: (a) Original Lena image; degraded versions
with an out-of-focus blur with radius 4 and Gaussian noise of vari-
ances (c) 2×10−3 (BSNR = 60 dB), and (e) 17.81 (BSNR = 20 dB).
Right column: (b) Original Satellite image; degraded versions with
an out-of-focus blur with radius 4 and Gaussian noise of variances
(d) 2×10−3 (BSNR = 60 dB), and (f) 19.44 (BSNR = 20 dB).
x1, and an out-of-focus blur with radius 8 as the initial estimate

of h1. The covariance matrices cov1(h) and cov1(x) are set equal
to zero, and the initial hyperparameter values are calculated from
Eqs. (31)-(33). Note that except the initial blur, all parameters are
calculated automatically using the observed image. In each itera-
tion, to achieve physically meaningful solutions, we imposed posi-
tivity and symmetry constraints on the estimated blur, as in [1].

The quantitative results in terms of estimated noise variances
1/β and improvement-in-signal-to-noise ratios (ISNR) are pre-
sented in Table 1. where ISNR is defined as 10log10(
‖ x− y ‖2 / ‖ x− x̂ ‖2), with x, y, and x̂ the original, observed, and
estimated images, respectively. The ISNR results by the non-blind
versions of the algorithms, where the PSF is known, are also in-
cluded in this table, and they are denoted by TV1-NB and TV2-NB.
It is clear from Table 1 that the proposed algorithms are very suc-
cessful in estimating the noise variance. Restored images are shown
in Figs. 2 and 3. Although the algorithms provide similar restora-
tion performance in terms of ISNR, visually the restored images by
TV1 exhibit less ringing than the ones by TV2. Another important
remark is that although the non-blind algorithms clearly outperform
the blind versions in terms of ISNR, the blindly restored images are
visually almost as good as the non-blind restoration results in the
BSNR = 40dB case, and at acceptable levels in the BSNR = 20dB
case, as can be seen from Fig. 2.

We note here that the proposed algorithms are very robust to
the initial selected value of the blur. When an out-of-focus blur
with radius 10 is chosen as h1, which is very different than the true
blur, the ISNR values in the restoration of the Lena image are 5.07
dB for TV1 and 6.07 dB for TV2 for 60 dB BSNR, and 2.45 dB for
TV1 and 2.30 dB for TV2 for 20 dB BSNR, similarly to the results
in Table 1.

One dimensional slices through the origin of the estimated blurs
corresponding to the restorations of the Lena image are shown in
Fig. 4. It is clear that the algorithms provide accurate estimates of
the true PSF at both noise levels. It should also be emphasized that
if the TV-prior on blur is replaced by a SAR prior, the algorithms
can not provide accurate estimates of the PSF, and therefore the
resulting restorations are blurry. Moreover, if the noise level is high,
e.g., BSNR = 20dB, in most images the algorithms with a SAR prior
for the blur converge to flat images.

It has been reported [11] that the original TV-based algorithms
proposed in [1] and [2] fail to provide satisfactory performances in
images where the background is not black. Semi-blind restoration
approaches are proposed to alleviate this problem [11]. However,
as is clear from Fig. 2, the performance of the proposed algorithms
does not decrease even in this case and high quality restored images
are obtained. This is most probably due to the adaptive updating of
the model parameters and in the case of TV1, utilizing the uncer-
tainty of the variables in the estimation of other unknowns.
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Figure 4: One-dimensional slices through the origin of the origi-
nal and estimated PSFs in the restoration of the Lena image with
algorithms TV1 and TV2.

(a) (b)

(c) (d)

(e) (f)

Figure 2: Restorations of the Lena image blurred with an out-of-
focus blur with radius 4, and BSNR = 60 dB with (a) TV1, (b)
TV2, and BSNR = 20 dB with (c) TV1 and (d) TV2. The non-blind
restoration results by TV1-NB are shown in (e) for BSNR = 60 dB
and (f) for BSNR = 20dB.

(a) (b)

Figure 3: TV1 restorations of the Satellite image blurred with an
out-of-focus blur with radius 4, and (a) BSNR = 60 dB and (b)
BSNR = 20 dB. The corresponding degraded images are shown in
Fig. 1(d) and Fig. 1(f), respectively.

5. CONCLUSIONS

In this paper we represented a novel methodology for parameter
estimation in TV-based blind deconvolution. Using a hierarchi-
cal Bayesian model and variational distribution approximations, the
posterior distributions of the reconstructed image, blur and hyperpa-
rameters are simultaneously estimated. We have provided two dif-
ferent algorithms that resulted from this formulation, both of which
are fully-automated. We have also shown that some TV-based ap-
proaches are special cases of our formulation with known hyperpa-
rameter values. Experimental results demonstrated the performance
of the proposed algorithms.
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