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ABSTRACT

Redundancy in wavelets and filter banks has the potential
to greatly improve signal and image denoising. Having de-
veloped a framework for optimized oversampled complex
lapped transforms, we propose their association with the sta-
tistically efficient Stein’s principle in the context of mean
square error estimation. Under Gaussian noise assumptions,
expectations involving the (unknown) original data are ex-
pressed using the observation only. Two forms of Stein’s Un-
biased Risk Estimators, derived in the coefficient and the spa-
tial domain respectively, are proposed, the latter being more
computationally expensive. These estimators are then em-
ployed for denoising with linear combinations of elementary
threshold functions. Their performances are compared to the
oracle, and addressed with respect to the redundancy. They
are finally tested against other denoising algorithms. They
prove competitive, yielding especially good results for tex-
ture preservation.

1. INTRODUCTION

Estimation of unknown data from noisy observations is a
central problem in statistics. Stein’s principle [1] allowed
for instance a remarkable improvement of the standard esti-
mator of a multivariate normal mean by shrinking the stan-
dard estimator towards zero [2]. This principle demonstrated
its usefulness in signal and image processing in a wavelet
transformed domain, leading to Stein’s Unbiased Risk Esti-
mator (SURE) wavelet shrinkage (SureShrink) proposed by
Donoho and Johnstone [3]. This approach does not require a
priori knowledge of the underlying signal: assumptions only
lie on the noise. It additionally benefits from the wavelet
concentration property, which tends to better represent struc-
tured signal out of a noisy environment. Since then, Stein’s
principle has been exploited in more involved settings [4].
The relatively simple yet effective soft or hard threshold-
ing from earlier works have been improved for instance in
[5, 6]with a linear parameterization of thresholds using el-
ementary functions. Recently, Blu and Luisier [7] associ-
ated redundant wavelet transforms and the SURE principle
to such a linear expansion of thresholds, leading to a method
minimizing the risk in the image domain instead of the trans-
form domain. For applications where textures are especially
important, it may be more effective to resort to transforma-
tions that better preserve high frequency directional details.
An example of such a transform was used in a previous work
[8], in which we proposed a practical way to compute opti-

mized synthesis filter banks (FBs) associated with a complex
analysis FB.

The contributions of this work are twofold. First, we ex-
tend the results by Blu and Luisier to the case of oversam-
pled complex transforms for optimized complex FB denois-
ing. Second, we compare the efficiency of the SURE-LET
approach when applied in the transform or the image domain

In Section 2, we first recall Stein’s principle and intro-
duce some notations. In Sections 3 and 4, we devise two
estimators working on transformed coefficients and on re-
constructed samples. Section 5 describes the SURE-LET ap-
proach used to minimize those estimators. Finally, we ex-
plain their implementation for image denoising and compare
in Section 7 the proposed methods to their oracles as well as
various denoising algorithms.

2. NOTATIONS AND STEIN’S PRINCIPLE

2.1 Notations
Throughout this paper, we consider a discrete-time signal
x of length L corrupted by a zero-mean Gaussian white
noise b of variance σ2 and independent of x. The observed
signal is denoted y = x + b (i.e. yn = xn + bn, for all
n ∈ {1, ...,L}). We suppose that a linear complex transform
is used to analyze this signal. Let L′ be the length of the
transformed signal. D ∈ CL′×L represents the transform
matrix. We also suppose that a linear synthesis operator,
represented by a matrix R ∈ CL×L′ , exists and achieves
perfect reconstruction, i.e. RD = IL. Let Y = Dy, X = Dx
and B = Db be the transformed vectors, we can then write:
Y = (Y1, ...,YL′)> = X+B.

Let Cd,ΓΓΓ be the class of all functions T : Rd → Rd , con-
tinuous, almost everywhere differentiable such that:

1. E
(
‖T(w)‖2

)
< ∞,

2. E

(∥∥∥∥∂T(w)
∂w>

∥∥∥∥
F

)
< ∞,

3. ∀z ∈ Rd , lim
‖t‖→+∞

T(t)exp
(
− (t− z)>ΓΓΓ−1(t− z)

2

)
= 0,

where ‖.‖F represents the Frobenius norm and E(·) desig-
nates the mathematical expectation.

Finally, Tr(A) represents the trace of A, AR (resp. AI) the
matrix of the real (resp. imaginary) parts of A and diag(A)
the vector constructed with the diagonal elements of A.
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2.2 Fundamental lemma
Lemma 1 Let v be a vector of length d perturbed by a
Gaussian noise vector n with zero-mean and covariance ma-
trix ΓΓΓ(n). The observed signal is w = v + n. If a function
T : Rd → Rd belongs to Cd,ΓΓΓ(n) , then:

E(T(w)v>) = E(T(w)w>)−E

(
∂T(w)
∂w>

)
ΓΓΓ

(n).

This lemma, expressed in [1], is known as Stein’s princi-
ple.
Interestingly, this lemma allows us to express a cross-
correlation matrix involving the original signal only through
expectations involving the observed signal. This property is
the cornerstone of the results given in Sections 3 and 4.

3. SURE ESTIMATION ON THE TRANSFORMED
COEFFICIENTS

In this section, we study a first form of Stein’s estimation by
working on the transformed coefficients. More precisely, the
goal is to build an estimator F(Y) of X such that the error on
the coefficients: E

(
‖F(Y)−X‖2

)
is minimal. To this end,

we first use Stein’s principle to estimate this error and then
in Section 5 we explain the minimization strategy.

3.1 Representation of transformed coefficients
We first define the L′ vectors of R2 representing the complex
coefficients after decomposition by: for all j ∈ {1, ...,L′},

Y j =
(

(Yj)R

(Yj)I

)
=
(

DR
j y

DI
jy

)
, where D =

 D1
...

DL′

 .

We suppose that a thresholding function Θ (generally non-
linear) is used on the coefficients. This operator is ap-
plied pointwise, in other words, it can be written: Θ(w) =
(ϑ j(w j))1≤ j≤L′ , for all w = (w j)1≤ j≤L′ ∈ CL′ . For all j ∈
{1, ...,L′}, ϑ j is a scalar function from C to C. More com-
plex operators can be considered [9], but in the scope of this
paper we have considered scalar operators that lead to a sim-
ple minimization process as seen in Section 5.
We also define the functions θ j : R2 → C, such that:
ϑ j(w j) = θ j(wR

j ,w
I
j) for all j ∈ {1, ...,L′}. For all j ∈

{1, ...,L′}, we introduce:

Θ j(Y j) =
(

θ R
j (Y j)

θ I
j (Y j)

)
.

With these notations, the quadratic error can be written:

‖F(Y)−X‖2 =
L′

∑
j=1

∥∥Θ j(Y j)−X j
∥∥2

R2 .

Finally, following the same notations, we introduce the L′

noise vectors: B j =
(

DR
j b

DI
jb

)
. Each vector B j represents a

2×1 Gaussian random vector with zero mean and covariance
matrix ΓΓΓ j, with j ∈ {1, ...,L′}, defined as:

ΓΓΓ j = σ
2
(

DR
j DR>

j DR
j DI>

j
DI

jDR>
j DI

jDI>
j

)
.

3.2 Estimator expression
The following result uses Stein’s principle to build an esti-
mator of the error E

(
‖F(Y)−X‖2

)
.

Proposition 1 If for all j ∈ {1, ...,L′} the function Θ j : R2 →
R2 belongs to C2,ΓΓΓ j , then

εc =
L′

∑
j=1

(∥∥Θ j(Y j)−Y j
∥∥2

R2 +2Tr

(
∂Θ j(Y j)

∂Y>j
ΓΓΓ j

)
−Tr(ΓΓΓ j)

)
,

is an unbiased estimator of E
(
‖F(Y)−X‖2

)
.

In contrast with the case of a real transform, we have to
resort here to a bivariate estimator to approximate the error.

4. SURE ESTIMATION ON THE
RECONSTRUCTED SAMPLES

4.1 Estimator expression
We now aim at proposing a function G : RL →RL of y, where
G(y) = (gn(y))1≤n≤L, to estimate the signal x by minimizing
the mean square error: MSE = E

(
‖G(y)−x‖2

)
.

The difference with the study in the previous section is that
we work now on the data after reconstruction. Once again,
by applying Lemma 1, we can get the following statistical
(proved in [7]).

Proposition 2 If G : RL → RL belongs to CL,σ2IL
, then

εs = ‖G(y)− y‖2 +2σ
2div(G(y))−Lσ

2

is an unbiased estimator of the MSE.

4.2 Expression of divergence
In Proposition 2, we see that the construction of the estimator
involves a divergence term. In the complex case, we reex-
press this term in a more convenient way.
The function G can be written in this case as G =
RΘ(D) where Θ is a pointwise thresholding operator: Θ =
(ϑ`(w`))1≤`≤L′ with w` ∈ C. We introduce the following
pointwise thresholding function on RL′ ×RL′ :

Θ(wR,wI) =
(
θ`(wR

` ,wI
`)
)

1≤`≤L′ =
(
ϑ`(wR

` + ıwI
`)
)

1≤`≤L′ .

The components of G(y) can be written, for all n∈{1, . . . ,L}

and y ∈ RL: gn(y) =
L′

∑
`=1

Rn,`θ`(Y R
` ,Y I

` ).

Moreover, by using the definition Y` = ∑
L
m=1 D`,mym, we de-

duce that for all n ∈ {1, . . . ,L}:(
∂Y R

`

∂yn
,

∂Y I
`

∂yn

)
=
(
DR

`,n,D
I
`,n
)
.
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With these equations, we can express the divergence as:

div(G(y)) =
L

∑
n=1

∂gn(y)
∂yn

=
L

∑
n=1

L′

∑
`=1

Rn,`
∂θ`(DR

` ,DI
`)(y)

∂yn

=
L

∑
n=1

L′

∑
`=1

Rn,`

(
∇θ`(Y R

` ,Y I
` )
)>(∂Y R

`

∂yn
,

∂Y I
`

∂yn

)>
=

L′

∑
`=1

(
∂θ`(Y R

` ,Y I
` )

∂x1

(
DRR

)
`,`

+
∂θ`(Y R

` ,Y I
` )

∂x2

(
DIR

)
`,`

)
= diag(DRR)>Θx1

(YR,YI)+diag(DIR)>Θx2
(YR,YI),

where Θx j
(YR,YI) =

(
∂θ`(Y R

` ,Y I
` )

∂x j

)
1≤`≤L′

, for all j ∈ {1,2}.

This result is an extension to the complex case of the one
derived in [7].

5. DENOISING WITH SURE-LET METHOD

5.1 Principle

We now consider that the thresholding functions F and G are
linear combinations of K elementary thresholding functions
F(k) and G(k) weighted by a vector of parameters a ∈ RK [5,
10]. This combination has been called a Linear Expansion
of Thresholds in [7]. The main interest of this approach is
that the design of the estimators minimizing εc and εs can be
achieved in a straightforward way.

The method consists in finding a vector a minimiz-
ing εc = Jc(a) or εs = Js(a). These functions are convex
quadratic in the parameter vector a, thus the solutions of the
minimization problems are obtained by solving a linear sys-
tem. We now provide the expressions of this system for each
method.

5.2 Minimization of εc

Considering the thresholding function F(Y) =
∑

K
k=1 akF(k)(Y), we can write:

Θ j(Y j) =
K

∑
k=1

akΘ
(k)
j (Y j),

where for all j ∈ {1, ...,L′} and k ∈ {1, ...,K}, the elementary
pointwise thresholding functions verify: Θ

(k)
j ∈ C2,ΓΓΓ j . By

imposing ∂Jc(a)
∂ak

= 0, we have to solve the following system:
Ma = c where for all (k, `) ∈ {1, . . . ,K}2:

Mk,` =
L′

∑
j=1

(
Θ

(`)
j (Y j)

)>
Θ

(k)
j (Y j),

ck = Y>
j Θ

(k)
j (Y j)−

L′

∑
j=1

Tr

∂Θ
(k)
j (Y j)

∂Y>
j

ΓΓΓ j

 .

To prevent bad conditioning of M issues, and thus possible
numerical problems, this system is solved by calculating the
Moore-Penrose pseudo-inverse of M.

5.3 Minimization of εs

The thresholding function considered in this case is:

G(y) =
K

∑
k=1

akG(k)(y) =
K

∑
k=1

akRΘ
(k)(Dy),

where Θ(k) : CL′ → CL′ . In a similar way to Section 4.2 we
define an equivalent thresholding function: Θ

(k)(wR,wI) =
Θ(k)(w).

Once again, by setting ∂Js(a)
∂ak

= 0, the minimization is per-

formed by solving the linear system: M̃a = c̃ where for all
(k, `) ∈ {1, . . . ,K}2:

M̃k,` = G(`)(y)>G(k)(y) and c̃k = G(k)(y)>y−σ
2div(G(k)(y)).

As in the previous section, this system is solved with a
pseudo-inversion.

6. IMPLEMENTATION DETAILS

6.1 Extension to two dimensions
In this section, we apply the SURE-LET methods on images.
Let X be an L×L image, corrupted by a zero-mean white
Gaussian noise B with variance σ2. The noisy observed
image is: Y = X + B. To apply the results of the pre-
vious sections, we consider the vector obtained by using
the column stacking operation: yi1+(i2−1)L = Yi1,i2 for all
(i1, i2) ∈ {1, . . . ,L}2.
Assuming the 2D transform separable and using the notations
introduced for the 1D case, we can write the decomposition
as follows:

DY D> =

(
L

∑
i1=1

L

∑
i2=1

Dn1,i1Yi1,i2Dn2,i2

)
1≤n1,n2≤L′

,

which can be expressed in the equivalent form:

Yn =
L2

∑
i=1

Dn,iyi,

with Dn1+(n2−1)L′,i1+(i2−1)L = Dn1,i1Dn2,i2 , for all (n1,n2) ∈
{1, . . . ,L′}2 and (i1, i2) ∈ {1, . . . ,L}2. Similarly, the synthe-
sis matrix reads: Ri1+(i2−1)L,n1+(n2−1)L′ = Ri1,n1 Ri2,n2 , for all
(n1,n2) ∈ {1, . . . ,L′}2 and (i1, i2) ∈ {1, . . . ,L}2.

Since RD = IL2 (by construction), we directly apply the
SURE-LET methods described in the previous sections.

6.2 Thresholding operators
The following two scalar complex-valued functions are used
to build the thresholding operators:

τ1(x,y) = x+ ıy,

τ2(x,y) = (x+ ıy)

1− e
− (x2+y2)

(ασ)2

 ,

with α ∈ R. Function τ2 can be seen as a smoothed version
of a hard thresholding. The constant α is set to 3/2 in this
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work (in an empirical manner) but it should be adapted to the
chosen transform. The resulting scalar threshold function is
the linear combination of the two previous ones:

ϑk(x+ıy)= θk(x,y)= a1,kτ1(x,y)+a2,kτ2(x,y), ∀(x,y)∈R2.

To properly define the functions F(k) and G(k), we must de-
fine the subbands on which they are applied. The transforms
used in this paper, as described in [8], are complex oversam-
pled filter banks based on a generalized Fourier transform. To
ensure that the reconstructed image is real-valued, we simi-
larly process subbands in a symmetric way. Therefore, each
F(k) and G(k) simultaneously processes two symmetric sub-
bands.

7. SIMULATIONS

We denote by FB-SURE-LET-C and FB-SURE-LET-S the de-
noising methods based on oversampled filter banks and
SURE-LET in the coefficient (as in Section 5.2) and sample
(as in Section 5.3) domain, respectively. The analysis and
the associated optimized synthesis FBs are as in [8, 11].

7.1 FB-SURE-LET-C and FB-SURE-LET-S vs. oracle
The analysis FB is parametrized here by: k = 3 (overlap-
ping factor), k′ = 3 (redundancy) and N = 4 (downsam-
pling factor). Two versions of the Lena image of size
256× 256 and 512× 512 were considered both corrupted
by a zero-mean Gaussian white noise with standard devia-
tion σ = 20. We first compare the performance of both algo-
rithms with their oracle. It is obtained by minimizing either
φc(a1, ...,aK) =

∥∥∥∑
K
k=1 akF(k)(Y)−X

∥∥∥ or φs(a′1, ...,a
′
K) =∥∥∥∑

K
k=1 a′kG(k)(y)−x

∥∥∥, for the FB-SURE-LET-C or FB-SURE-
LET-S, respectively. For each case, we compute the median
PSNR from 20 realizations. The results are reported in Ta-
ble 1. Performances of FB-SURE-LET methods stand very
close to those obtained with the oracle, by -0.4 dB and -0.2
dB in the coefficient and the sample domain, thus showing
the effectiveness of Stein’s principle. Comparing results with
increasing image sizes indicates that with a larger image the
difference between oracles and FB-SURE-LET methods de-
creases, which may be explained by the fact that the estima-
tion becomes more consistent with more samples.

7.2 FB-SURE-LET vs. filter bank redundancy
In this section, we compare the proposed methods for dif-
ferent FBs of varying redundancy. The analysis FBs share
the same overlapping and downsampling factors: k = 3 and
N = 8. The redundancy k′ varies as indicated in Table 2. Its
increase allows to consistently improve the denoising perfor-
mance for the Lena image (of size 256×256) corrupted by a
white Gaussian noise with σ = 30, sometimes drastically in
the FB-SURE-LET-C case. Again, the sample domain denois-
ing method always better performs than the coefficient-based
one. With the chosen FBs we observe that the gap in SNR
between the two methods decreases as the redundancy in-
creases. This result may appear surprising as the gap could be
expected to increase as we depart from the orthogonal case.
This behavior can be explained by the better quality of the
synthesis FBs we use for higher redundancy factors.
FB-SURE-LET-C is meanwhile much more cost effective,

since the optimization requires only one reconstruction,
while FB-SURE-LET-S implies the computation of K recon-
structions, K being the number of parameters to be estimated,
i.e. the length of vector a. To illustrate this difference, we
have chosen an analysis FB parametrized by: k = k′ = 3
and N = 4 and its associated optimized synthesis FB. On a
256×256 image, FB-SURE-LET-S is computed in 63 seconds
against 3 seconds for FB-SURE-LET-C1.

Lena 256×256 Lena 512×512
Noisy image 22.1 22.1

FB-SURE-LET-S 30.0 31.3
Oracle-S 30.2 31.3

FB-SURE-LET-C 29.2 30.5
Oracle-C 29.6 30.7

Table 1: Denoising results (in PSNR) using FB-SURE-LET-
S and FB-SURE-LET-C as well as their respective oracles for
the Lena image with a σ = 20 noise.

Redund. k′ 5/4 3/2 7/4 2
FB-SURE-LET-C 16.7 24.3 25.5 25.9
FB-SURE-LET-S 26.0 26.7 26.9 27.0

Difference 9.3 2.4 1.4 1.1
Redund. k′ 9/4 5/2 11/4 3

FB-SURE-LET-C 26.0 25.7 25.8 27.1
FB-SURE-LET-S 27.2 26.8 26.9 27.4

Difference 1.2 1.1 1.1 0.3

Table 2: PSNR in dB after reconstruction with FB-SURE-
LET-S and FB-SURE-LET-C of Lena image with σ = 30, FB
parameters: N = 8, k = 3 and a varying redundancy.

7.3 FB-SURE-LET vs. other denoising methods
We compare the proposed methods on several standard test
images of size 256× 256 with four other denoising algo-
rithms, namely Curvelets2 (redundancy: ∼ 7.3), SureShrink
CS [3] with cycle-spinning (redundancy: 3 jmax + 1 = 13
where jmax = 4 is the decomposition level), bivariate shrink-
age [12] (BiShrink)3 and undecimated wavelets SURE-LET:
UWT SURE-LET (same redundancy: 13) [7]. We chose N = 4
and k′ = 3 (thus the redundancy is: 9).

Table 3 reports the median PSNR on 20 realizations. FB-
SURE-LET-S favorably compares with UWT SURE-LET and
often outperforms the other algorithms. As earlier, the per-
formance of FB-SURE-LET-C is somewhat weaker. Still, it
generally yields results comparable with the other methods,
except for the higher noise levels.

For σ = 30, Figure 1 provides a cropped version of Bar-
bara image. The oriented textures from the scarf are much
better preserved by FB-SURE-LET-S, due to the nature of the
complex filter banks employed here, well-adapted to fine di-
rectional structure preservation.

1Using Matlab 7 on a computer with an Intel Core 2 T7400 2.16GHz
CPU and 2Gb of RAM.

2Toolbox at http://www.curvelet.org
3Toolbox at http://taco.poly.edu/WaveletSoftware
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(a) (b)

(c) (d)

(e) (f)

Figure 1: Detail on Barbara image: (a) original image, (b)
noisy image (σ = 30), denoised image using (c) Curvelets,
(d) BiShrink, (e) UWT SURE-LET and (f) FB-SURE-LET-S.

8. CONCLUSION

Two forms of Stein’s Unbiased Risk Estimators (SURE) cri-
teria have been derived for denoising with oversampled com-
plex filter banks. Denoising results are close to what the or-
acles predict thus showing the robustness of the FB-SURE-
LET approach. Results are slightly better than those obtained
with other recent denoising methods, especially on textured
areas of images. In a future work, we plan to investigate
other thresholding functions, and study more precisely how
to choose an adapted scaling parameter α .
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