16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP

MINIMUM DESCRIPTION LENGTH BASED PROTEIN SECONDARY STRUCTURE
PREDICTION

Andrea Hategan and loan Tabus

Institute of Signal Processing, Tampere University of Technology
P.O. Box 553, FIN-33101 Tampere, Finland
phone: +(358)331153974, fax: +(358)331153817, email: andrea.hategan@tut.fi, ioan.tabus @tut.fi
web: www.cs.tut.fi/~hategan, www.cs.tut.fi/~tabus

ABSTRACT

This paper introduces a new algorithm for predicting the
secondary structure of a protein based on the protein’s pri-
mary structure, i.e. its amino acid sequence. The problem
consists in finding the segmentation of the initial amino acid
sequence, where each segment carries the label of a sec-
ondary structure, e.g., helix, strand, and coil. Our algorithm
is different from other existing probabilistic inference algo-
rithms in that it uses probabilistic models suitable for directly
encoding the joint information represented by the pair (amino
acid sequence, secondary structure labels), and chooses as
winner the secondary structure sequence providing the min-
imum representation, or description length, in line with the
minimum description length principle. An additional benefit
of our approach is that we provide not only a secondary struc-
ture prediction tool, but also a tool that is able to compress
in an efficient manner the joint sequences that define the pri-
mary and secondary structure information in proteins. The
preliminary results obtained for prediction and compression
show a good performance, which is better in certain aspects
than that of comparable algorithms.

1. INTRODUCTION

Proteins are essential molecules to sustain life in all living
organisms. The process by which a protein is folding in its
three dimensional shape is a prerequisite for a protein to be
able to perform its biological function. Because many dis-
eases are the consequence of some proteins failure to adopt
their 3-D functional shape (i.e. protein misfolding [1]) it is
important to understand the rules by which the proteins fold
in the three dimensional shape.

The three dimensional shape of a protein, known as the
tertiary structure, is induced by its primary structure, i.e. the
amino acid sequence, and the environmental condition. It is
a lot easier to experimentally determine the primary structure
of a protein than it is to determine its tertiary structure, and
thus the methods for predicting the tertiary structure from the
primary structure are a current topic of research. Presently,
there is a huge gap between the number of proteins for which
the primary structure is known and the number of proteins for
which the tertiary structure, and thus their function, is known.

As a precondition for folding in the three dimensional
shape, proteins form some local conformations, e.g. alpha-
helices and beta-strands, called the secondary structure,

This work was supported by the Academy of Finland (application num-
ber 213462, Finnish Programme for Centers of Excellence in Research
2006-2011) and the Graduate school in Electronics, Telecommunication and
Automation (GETA).

which finally are essential for acquiring the three dimen-
sional shape. Because these local conformations impose geo-
metrical constraints on the three dimensional shape of a pro-
tein, the prediction of the secondary structure from the amino
acid sequence is also an important stage in the process of pre-
dicting the tertiary structure. In this paper the aim is to pre-
dict such local conformations from the amino acid sequence,
i.e. for each amino acid in a given protein sequence to pre-
dict a class label that specifies what is the type of secondary
structure to which it belongs.

The field of protein secondary structure prediction from
amino acid sequences has developed during four decades re-
sulting in a large number of methods which can be classi-
fied in three generations [2]. The first generation methods,
that appeared in 1960s and 1970s, evaluated the likelihood of
different amino acids to form different local conformations.
The second generation methods were dominating until early
1990s and used the likelihood of groups of adjacent amino
acids to form different secondary structures. The third gen-
eration methods, of the last decade, additionally consider the
evolutionary information contained in multiple alignments
for refining the prediction of the secondary structure. A mul-
tiple alignment can be built between several homologous pro-
teins, i.e. proteins that have similar known function, but have
different amino acid sequences. Using such an alignment,
one can build distribution profiles for each position in the
sequence, thus providing a stronger discriminative informa-
tion, by accounting for the variability which does not affect
the function of a protein (thus being also less important for
its 3-D shape). Various predictors can be built to use the dis-
tribution profiles, e.g., based on two layer neural networks.

Although the accuracy of the methods using evolution-
ary information is higher than that of the methods that are
using only the amino acid sequence, the prediction of the
secondary structure from amino acid sequence alone is still
an important task because there are many orphan proteins
[3] for which one needs to determine the secondary struc-
ture. For an orphan protein the evolutionary information is
not available, because its amino acid sequence is not sig-
nificantly similar to that of proteins with known secondary
structure and function.

The most investigated approach for protein secondary
structure prediction is to consider a sliding window of typi-
cally 15 amino acids and to predict the class label of the cen-
tral amino acid knowing only the neighboring amino acids.
The main problem of this approach is that it cannot capture
amino acid correlations at a greater distance than the window
length. For this reason, sliding window methods have a poor
prediction accuracy for beta strands, which have to form hy-

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP

MWMPPRPEEVARKLRRLGFVERMAKGGHRLYTHPDGR
LLLLLLHHHHHHHHHHHLLLEEEEELLEEEEELLLLL

k=7 S={LHLELEL} #={6,1135255}

Figure 1: Example of a protein sequence with n = 37 amino
acids and its secondary structure annotation

drogen bonds with other beta strands situated at a larger dis-
tance than the length of the sliding window, in order to create
beta sheets in the folding process.

The problem of secondary structure prediction can be for-
mulated also as a segmentation problem, where one starts
from the primary structure sequence and determines: the
number of segments, the class label of each segment and the
length of each segment. This approach has been already in-
vestigated in the BSPSS [4] and IPSSP [3] algorithms. In
these algorithms the goal is to find the best segmentation
by maximizing the posteriori probability of the segmentation
given the protein sequence, via Bayesian inference.

In our algorithm, called mdIPSSP (minimum description
length protein secondary structure prediction), the best seg-
mentation is chosen via MDL principle [5], by selecting the
hypothesis, i.e. the segmentation, that yields the shortest de-
scription length of the data and of the model parameters. The
probabilistic models and the searching method used in our
algorithm are different than those used in [4] and [3], being
additionally suitable for real encoding of the joint primary
and secondary structure information.

The paper is organized as follows: in the next section the
problem of protein secondary structure prediction is formu-
lated; the third section presents the main features, modelling,
coding, and searching, of the mdIPSSP algorithm. The ex-
perimental results are presented in the fourth section, while
the conclusions are drawn in the last section.

2. PROBLEM STATEMENT

We need to predict the secondary structure annotation of a
given protein sequence X" = {x; ...x,} , i.e. to find the triplet
(k,S,-Z) such that

k,S, %)= min CL(X"|k,S,.% 1
h»)@j;}js})(\w) (1)

where k is the number of secondary structure segments,
S ={s;1...s;} specifies the secondary structure type for each
segment, £ = {I; ...I;} specifies the length of each segment
such that Y*_, ; = n, and CL(X"|k,S,.Z) is the cost of en-
coding the protein sequence X" when the secondary structure
annotation is given by (k,S,.Z). An example illustrating the
notations is given in Figure 1 where the amino acid sequence
of a protein is shown in the first row and its secondary struc-
ture annotation in the second row. The amino acid sequence
represents the input data of the algorithm. The letters in the
second row specify the secondary structure class label for
each amino acid in the first row. The secondary structure in-
formation can be represented by the triplet (k,S,.#) and this
triplet is the output of the algorithm.

In order to be able to compute the codelength of a pro-
tein sequence X" given its secondary structure annotation
(k,S,.%) we have to choose a set of probabilistic models,
that will be denoted by .# . In order to deal with sequentially
computable probabilities, we are going to assume a paramet-
ric first order dependency, p(s;|s;—1,.#), for the class labels,

and a parametric dependency of the amino acid probability,
given their class labels, such that the criterion in (1) will de-
couple as:

k
CL(X"k,S,Z;.4) =Y CL(X"|s;,si_1;.00) (2)
i=1

For a given (hypothesized) secondary structure segmenta-
tion, one can use a procedure to compute the cost of the sec-
ondary structure segments CL(X'i|s;,s;_1;.#), and add all
results into the overall cost (2). Our algorithm will consists
of a search through the space of all segmentations in order
to find the one having the minimum associated cost (1). The
adopted model makes the search feasible by using the dy-
namic programming method. The next section presents the
set of models .# used, the procedure to compute the cost of
encoding a secondary structure segment CL(X"[s;,s;_1;.4)
and the searching algorithm for the best segmentation.

3. THE MDLPSSP ALGORITHM

As in any machine learning algorithm we will define the pro-
cedures for the two steps of training and testing. In the train-
ing step, the algorithm adjusts the parameters and structure
within the adopted classes of parametric models, in order
to acquire knowledge about the dependencies expected be-
tween secondary and primary structures. In the testing step,
the algorithm is provided with some new protein primary se-
quences, different than the ones given in the training step,
and is asked to provide the segmentation, or secondary struc-
ture, which is subsequently assessed against the true one.

For the protein secondary structure prediction problem
the training step implies choosing the structure of the para-
metric probabilistic models .# and adjusting the parameter
values of these models based on the average codelength re-
sulted for the observed segments of a given secondary struc-
ture class. The issues concerning the training step are dis-
cussed in subsection 3.1. In the testing step, the secondary
structure of a new protein is predicted using the models de-
veloped in the training step, through a searching algorithm
described in 3.2. The predicted secondary structure is then
compared with the true secondary structure annotation in or-
der to assess the performance of the algorithm.

3.1 Coding and modelling

We start by describing how the codelength of a given sec-
ondary structure segment CL(X"|s;,s;_1;.#4) is calculated.
In a typical data compression framework the encoder wants
to send some data to the decoder by creating a bitstream that
has to contain all the information needed for the decoder to
be able to recover the original data.

When the encoder has to send one secondary structure
segment X li t0 a decoder, the encoder uses a set of models .#
to create a bitstream that encodes the following information:
the type s;, the length /;, and the amino acid sequence X/ =
{x1...x;}. Using the bitstream and the same set of models
A , the decoder is able to decode from the bitstream all the
information needed to recover the sent secondary structure
segment. The length of the resulted bitstream is the cost of
encoding the given secondary structure segment using the set
of models .2, i.e. CL(X"|s;,si_1;.4).

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP

Let A4 = {Ms, My, #g, #} be the set of following
models: .# specifies the transition between consecutive sec-
ondary structure labels; .#y, 4, #] are conditional (tree)

aabacb *aabacbx
—_
abac *aback

. .) x| a x| a
models for the amino acid being in one of the three secondary ¥ | a x| a
structure types, helix H, strand E, and coil L, respectively. a1 > R
Then, using the arithmetic codes [6], one can encode in the Saaba | < 7aa | b
bitstream all information, with the cost of segment i given xaabac [b xaba | ¢
by: *aabacb * xaaba | ¢
y: * a *ab [a
*a | b *aab | a
I li+1 xab | a %aabacb | *
CL(X’|S,~,S,~,1;//1)=—10g2P(Si\Si71;e///S)— Zlngp(xj\Cj%///s,-) xaba | ¢ xabac | %
j=1 «abac | * ~aabac | b

: prefixes contexts

3)
where ./ is a first order Markov model that gives the prob-
ability of observing a segment of type s; following a segment
of type s;—1 and .#; is a Tree Machine (TM) [7] that gives
the probability of observing the amino acid x; in the con-
text c¢; in a segment of type s;. The summation in (3) has
upper limit /; + 1 since the encoder has to notify when a seg-
ment ends, by sending the ”’STOP” symbol. Thus, the mod-
els .#y £ 1. include along with the standard amino acids the
”STOP” symbol yielding an alphabet </ with n, = |.7| =21
symbols.

A TM is built for each secondary structure type. First, a
maximal tree machine (MTM) is built from a training set for
each type and then the maximal trees have to be pruned in
order to discriminate as much as possible between the three
secondary structure types. Encoding with a TM, implies se-
lecting the context, i.e. a certain node in the tree, in which a
symbol is encoded. All these issues are discussed next.

The tree machines we use here are data structures similar
to those introduced by Rissanen in [7] that keep a sorted list
of pairs (context, symbol). The contexts can be seen as nodes
in a tree, while the symbols forming a context define a path
from the root to the node. Each node in the tree stores a
probability distributions of the symbols that were seen at that
node.

In our application the MTM is built from a large set of
short segments, where each segment has a label, H,E, or L.
The construction of the MTM is explained by the follow-
ing example and it is illustrated in Figure 2. Suppose that
the training set is composed of two segments: aabacb and
abac. First, we pad each segment with the extra symbol "x”,
to mark their beginning and ending. Only for this example,
we assume that the alphabet is &/ = {a,b,c,x}. Then, for
each symbol in all segments we select the longest context
in which it appears, i.e. the prefix of each segment up to
that symbol (the left table in Figure 2). The resulted prefixes
are sorted from right to left in lexical order. The contexts
that will define the MTM are selected such that the prefix
uniquely identifies the associated symbol or the beginning of
a segment has been reached (the right table in Figure 2). The
resulted contexts are arranged in a tree such that each context
defines a leaf. When a context is added to the tree, the tree
is climbed starting from root and following the branches de-
fined by context symbols from right to left. The frequency of
the symbol paired with the added context is increased in all
nodes (contexts) encountered on the path from root to the leaf
defined by the context. For example, for the pair (xaba,c),
the resulted context is ba and the associated symbol is c¢. This
pair is added in the MTM as follows: increase the count for
¢ in the root and then take the branch a. At the arrived node
increase the count for ¢ and take the branch b. At the arrived
leaf increase the count for c. Since a context defines a node

Figure 2: Maximal Tree Machine building

in the tree and a node defines a context, the two terms can be
used interchangeably.

In the encoding process, the context for the current sym-
bol x; is selected by climbing the tree starting from the root
and then taking the branches defined by the previous sym-
bols x;_1,x;_2,... until a leaf is reached or until at the arrived
node r = x;_1xj 2...x;, there is no branch with the label
xj—s—1. If the MTM is used to encode the training set, almost
all symbols, except those at the beginning of segments, will
be encoded using the distributions in leaves, where the dis-
tributions are more relevant and give better estimates for the
probability of the next symbol.

If the MTM is to be used for a data set different than the
training set, the so called zero-frequency problem will oc-
cur. This problem deals with the situation when at the arrived
node r, the probability of the current symbol x; is zero. This
means that in the training phase the current symbol x; has
never been observed in the context r. Because our goal is to
use the MTM for data different than the training set, we have
to assign probabilities for all symbols in the alphabet at each
node. This can be achieved by introducing the probability
for the escape symbol [8], P.s. In the encoding process, if
in the selected context the probability of the current symbol
is zero, the encoder first sends the escape symbol to inform
the decoder that the current symbols has not been seen in the
current context. After this, the encoder specifies which of the
unseen symbols in the current context, actually is sent, using
an equiprobable distribution over the unseen symbols. By
introducing the probability for the escape symbol, the col-
lected distributions at each node will be adjusted to include
also this probability. Thus, if the probability of a symbol x;
in the context r is P(x|r), the adjusted probability will be
P(xj|r) = (1 — Pose) P(x;]7).

Although the longer contexts are more relevant and pro-
vide better probability estimates for the probability of the
next symbol, the problem is that these longer contexts also
appear less often than the shorter ones. Thus, the statistics
kept in longer context accumulate slower. Even if the zero-
frequency problem has been solved by introducing the escape
symbol, when encoding a new data set we would like to avoid
long contexts that are fitted to the training set, because here
it is very likely that the current symbol will be encoded via
the escape event, which yields a longer codelength than the
one in a smaller context, where the symbol is more likely to
be observed. Then, the goal is to prune the MTM such that
to get ride of those long contexts, (over-)fitted to the training
set, where encoding is inefficient.

After one maximal tree MTM, has been created for each

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP

of the three secondary types, s; = {H,E, L}, the goal of prun-
ing is to carve such trees, which will discriminate well be-
tween the three classes. From each MTM;,, we have created
a set of pruned tree machines TMfi ,d =1: Dy, that keep only
the nodes from root until depth level d, where Dy; is the max-
imum level reached over the training set. The problem now
is to find the optimum level i yielding the most discrimina-

%

tive collection of three trees. The resulting trees, TM?? , and
the distribution collected at their nodes represent the abstract
models denoted earlier .Z,.

The calibration process was catried out on a calibration
set, that is different from both the training and testing sets.
Denoting by C;, the calibration set containing all amino acid
segments for type s;, the best value of dj; was selected by the
minimization :

d; = min{CL(C, [TM])+ ¥ [CL(C, | TM) - CL(C,ITM])]}
J

qFsi
“
With all the information described, we are able now to
compute the codelength of a given secondary structure seg-
ment (3) and further to compute the codelength of a given
protein sequence X" given its secondary structure annotation

(k,$,.Z) (2.

3.2 Searching

In the previous sections we described how to encode a given
protein sequence X" when its secondary structure annotation
(k,S,Z) is also given, based on the set of proposed mod-
els .#. Next we move to the problem of actually finding
the secondary structure annotation (k,S,.¢) such that the re-
sulted codelength is minimized (1). The exhaustive search
through all possible segmentations of the given protein se-
quence for choosing the minimizer in (1) is too expensive or
even infeasible for most of the protein sequences, which have
commonly hundreds of amino acids. For this reason we re-
sort to dynamic programming, which can be applied here due
to the separability of the criterion in (2). We have to define
the states and their associated costs, as well as the costs for a
transition from one state to another.

For minimizing (2), a state can be defined as Z(j,k,s),
where j represents the position of the current amino acid x;
in the given protein sequence X", k represents the number
of segments up to position j, and s represents the secondary
structure label for the segment that ends at position j. Each
such state has associated a cost that represents the codelength
of the protein sequence X/, given that there are k segments
and the last one has the label s. From the state Z(j,k,s),
the algorithm can make a transition to the new state Z(z,k +
1,p), with the transition cost given by CL(X/*!|s, p;.4,,).
For each state we mark the state from which we arrived with
the minimum overall cost (cost of starting state plus cost of
transition). For j = n, there are (n — ky,;,) * 3 states, where
kmin = [1/Linax | and Ly, is the maximum allowed segment.
When arriving at the states with j = n, we select the one
with the minimum cost and the best segmentation is found
by following the pointers kept at each state, until the state
Z(0,0,0) is reached.

4. EXPERIMENTAL RESULTS

In order to assess the performance of any prediction algo-
rithm, the training set and the testing set should be distinct.

For the protein secondary structure prediction problem, the
requirements are traditionally more stringent, i.e. the two
data set should not contain sequences that share significant
sequence similarity. This condition is necessary since keep-
ing the sequences that share a certain degree of sequence
similarity (likely to be homologous proteins) will artificially
lower the reported prediction errors.

In our experiments, we have used three data sets.
For training, we have used the PSIPRED data set from
http://bioinf.cs.ucl.ac.uk/downloads/psipred/old/data/, for
the calibration process we have used the EVA data set
from fip://cubic.bioc.columbia.edu/pub/eva/unique list.txt
and for testing we have used the CASP6 targets data set
http://www.predictioncenter.org/casp6/targets/cgi/casp6-
view.cgi?loc=predictioncenter.org;page=caspb/. The
training and testing sets are the same as in [3] for compari-
son purposes.

All the data sets contain the following information for
each protein: the sequence identifier, the amino acid se-
quence and the secondary structure annotation as defined by
DSSP [9]. DSSP defines eight secondary structure classes
(H,I,G,E,B,S,T.-), but usually the eight classes are mapped
to three classes as suggested in [10]: (H,G)=-H, (E,B)=E
and (L,S,T,-)=-L, which we adopt also here.

The performance of the prediction methods were com-
pared in terms of per state prediction accuracy defined as

0i(%) = NP"** N> %100, where i = {H,E,L,3} with i =3
meaning the prediction over all three states, Nl-”’"“ is the num-
ber of observed amino acids in the secondary structure type

i and NV "ed is the number of amino acids correctly predicted

in state i.

The performance of the new algorithm when working as
a compression algorithm, i.e. when the secondary struc-
ture is given, was evaluated in terms of needed bits per
”symbol”. Here, “symbol” is taken as the pair: amino
acid and secondary structure label. In this case, one needs
log, 20 +log, 3 = 5.9 bits per symbol on average to encode
a protein sequence and its secondary structure information.
Since the secondary structure sequence is highly correlated,
we also consider two simple alternatives. In the first one
each amino acid is encoded using log, 20 bits per amino
acid, while for each secondary structure segment the class
label is encoded using log, 3 and the length is encoded by
Elias Gamma codes for integers. The second method, trans-
forms the secondary structure annotation in a string of 0,1
and 2. The O is used to mark that the class label does not
change, while 1 and 2 are used to specify where the class la-
bel changes and which is the new label. The resulted string
is encoded using the arithmetic codes [6]. The first method
is denoted “Clearl” in Table 2, while the second is denoted
”Clear2”.

Table 1 presents the results obtained in the calibration
process on the EVA data set. The table is split in three
parts, one for each secondary structure type. The second
column presents the average codelength when the segments
from one class have been encoded with different pruned trees
resulted from the maximal trees trained on the same class
(HH,EE,LL). The third and the forth column represent the
average codelength when the segments from one class are
encoded using trees trained on different classes. The expres-
sion in (4) tells to choose the level that yields the minimum
value in the last column, for each secondary structure type.

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP

HH | OE | HL | HH+ (OH-HE) + (HA-HL)

dg
] 482 5.92 5.79 2.73
2 4.73 6.02 5.93 2.22
3 4.65 7.61 6.99 -0.64
4 4.81 7.83 7.15 -0.54
5 4.90 7.85 7.16 -0.33
6 4.89 7.85 7.16 -0.33
7 4.90 7.85 7.16 -0.32

dg EE EH EL EE+(EE-EH)+(EE-EL)
1 5.53 4.98 5.66 5.94
2 5.28 5.04 5.54 5.25
3 5.31 5.22 5.67 5.05
4 5.49 5.31 5.79 5.37
5 5.56 5.33 5.81 5.53
6 5.56 5.33 5.81 5.55

I | LL | LH | LE L+ L LI +LLLE)
1 5.41 5.02 5.84 5.37
2 5.21 5.05 5.67 491
3 5.29 5.08 5.86 493
4 5.42 5.17 6.01 5.09
5 5.50 5.20 6.04 5.25
6 5.51 5.20 6.04 5.27

Table 1: Calibration results on EVA set

Algorithm [Qu(%) | Qe(%) | Qu(%) | Qs(%)
PSIPRED 76.06 52.03 69.02 67.68
BSPSS 75.17 41.74 72.69 66.54
IPSSP 74.98 46.08 73.75 67.89
mdIPSSP 322 78.75 21.70 52.21 57.02

Table 2: Prediction accuracy results: per state accuracy.

Table 2 presents the results for the prediction accuracy.
For the mdIPSSP algorithm, the best results were obtained
when the pruned trees had: 3 levels for H, 2 levels for E
and 2 levels for L. Note that from Table 1, this corresponds
to the best results when the segments of a certain type are
encoded with the tree trained on the same secondary struc-
ture type (column 2). The results in Table 2 in the first three
lines, were taken from [3]. PSIPRED is a prediction algo-
rithm that uses additionally evolutionary information, but for
the results in this table it was tested under single-sequence
condition. The new algorithm mdIPPSS has the best perfor-
mance for the helix class. The results are preliminary since
we continue to experiment with more refined pruning tech-
niques. On average, the prediction takes 22 seconds for one
sequence on the CASP6 test set.

Table 3 presents the results for the mdIPSSP algorithm,
when it works as a compression algorithm for a protein se-
quence and its secondary structure information. The results
are better for both data sets when compared with two meth-
ods presented earlier for the “clear representation”. The col-
umn “mC” represents the cost for the set of models .Z if
these should also be sent to the decoder. This is compulsory
for the PSIPRED data set, because the models were trained
on the same set. For the EVA set, it can be assumed that
the models are generic, known to both the encoder and the
decoder. The column ’sC” shows the average codelength
obtained for encoding a protein sequence and its secondary

Data #seqs | mC sC tC Clear 1 | Clear 2
EVA 2181 | 0.13 | 4.86 | 4.99 5.42 5.38
PSIPRED | 2242 | 0.13 | 4.83 | 4.96 5.39 5.35

Table 3: Compression results: bits per symbol (amino acid
and secondary structure label).

structure annotation. The column denoted by “’tC” represents
the total cost, for the model and the data. The last two meth-
ods show the average codelength obtained for the two “clear
representations”. On average, the compression takes 0.08
seconds for one sequence on the EVA set and 0.07 seconds
for a sequence in the PSIPRED data set. The compression
results are compared with the clear representation because,
to our knowledge, there is no other available algorithm for
jointly compressing individual proteins and their secondary
structure information. In a previous work, we took advan-
tages of the secondary structure annotation in a compression
algorithm for amino acid sequences, [11], but in that algo-
rithm we targeted compression of full proteomes, which are
the collection of all protein sequences in a given organism.
The proteomes have length in the range of hundred thousand
amino acids, and the approximate repetitions have a key role
for achieving compression, which cannot be exploited in the
current application, so the method from [11] cannot be ap-
plied to the present dataset.

5. CONCLUSIONS

This paper introduces a new algorithm, mdIPSSP, useful in
two distinct applications: protein secondary structure predic-
tion and joint compression of primary and secondary struc-
ture of proteins. The preliminary prediction results show bet-
ter performance only for one of the classes, but the current
pruning technique is still not well adapted for prediction and
a more refined pruning may lead to a better performance for
all classes. The algorithm can work also as a compression al-
gorithm for individual protein sequences and their secondary
structure information, being the first such algorithm for these
types of data. The compression performance is significantly
better when compared to a simple in clear representation.

REFERENCES

[1] C.M. Dobson, Protein folding and misfolding,” Nature, vol. 426,
pp. 884-890, Dec. 2003.

[2] B. Rost, “Review: protein secondary structure prediction continues to
rise,” Journal of Structural Biology, vol. 134, pp. 204-218, 2001.

[3] Z. Aydin, Y. Altunbasak, and M. Borodovsky, ”Protein secondary struc-
ture prediction for a single sequence using hidden semi-markov mod-
els,” BMC Bioinformatics, vol. 7, no. 178, 2006.

[4] S.C. Schmidler, J.S. Liu, D.L. Brutlag, ”Bayesian segmentation of pro-
tein secondary structure,” Journal of Computational Biology, vol. 7,
no. 1/2, pp. 233-248, 2000.

[5] J. Rissanen, "Modelling by the shortest data description,” Automatica,
vol. 14, pp. 465471, 1978.

[6] J.Rissanen, ”Generalized Kraft inequality and arithmetic coding,” IBM
Journal of Research and Development, vol. 20, no. 3, pp. 198-203,
1976.

[7] J. Rissanen, ”A universal data compression system,” IEEE Trans. on
Information Theory, vol. IT-29, no. 5, pp. 656-664, 1983.

[8] J. Rissanen, A lossless data compression system,” US Patent,
no. 7028042, 2006.

[9] W. Kabsch, C. Sander, "Dictionary of protein secondary structure:
pattern recognition of hydrogen-bonded and geometrical features,”
Biopolymers, vol. 22, pp. 2577-2637, 1983.

[10] B.Rost, C. Sander, "Prediction of protein secondary structure at better
than 70% accuracy,” Journal of Molecular Biology, vol. 232, 584-599,
1993.

[11] A. Hategan, I. Tabus, “Jointly encoding protein sequences and their
secondary structre annotation,” in Proc. GENSIPS 2007, Tuusula, Fin-
land, June 10-12. 2007.

