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ABSTRACT

In this paper, we present a new speech enhancement ap-
proach, that is based on exploiting the intra-frame depen-
dency of discrete cosine transform (DCT) domain coeffi-
cients. It can be noted that the existing enhancement tech-
niques treat the transform domain coefficients independently.
Instead of this traditional approach of independently pro-
cessing the scalars, we split the DCT domain noisy speech
vector into sub-vectors and each sub-vector is enhanced in-
dependently. Through this sub-vector based approach, the
higher dimensional enhancement advantage, viz. non-linear
dependency, is exploited. In the developed method, each
clean speech sub-vector is modeled using a Gaussian mix-
ture (GM) density. We show that the proposed Gaussian
mixture model (GMM) based DCT domain method, using
sub-vector processing approach, provides better performance
than the conventional approach of enhancing the transform
domain scalar components independently. Performance im-
provement over the recently proposed GMM based time do-
main approach is also shown.

1. INTRODUCTION

Estimation of clean speech signal from noise corrupted
speech is a challenging problem with applications in voice
communication systems, automatic speech recognition sys-
tems, hearing aids, etc. Enhancement of noisy speech sig-
nal is generally carried out using statistical models of clean
speech and noise. Existing approaches include spectral sub-
traction [1], Wiener filtering [2], Bayesian estimation ap-
proach in transform domain [3], hidden Markov model based
methods [4], subspace based approach [5], etc. In this paper,
we take the minimum mean square error (MMSE) estimation
approach for speech enhancement (SE) in DCT domain.

For the traditional transform based SE methods [3], [6],
[7], [8], the ubiquitous Gaussian density is used for model-
ing the probability densities of transform domain speech and
noise coefficients. In the literature [9], it has been shown
that the probability density function (PDF) of speech sig-
nal in signal/transform domain is non-Gaussian in nature.
In [10], a DCT domain speech enhancement method is pro-
posed based on modeling the PDF of clean speech DCT coef-
ficients using Laplacian density. Among other non-Gaussian
PDFs, Gamma distribution (family of super Gaussian densi-
ties) has been used in DFT/KLT domain [11]- [14]. In our re-
cent work [15], we also have noted the importance of model-
ing the time domain speech coefficients using non-Gaussian
PDF; we have modeled the joint PDF of time domain speech
samples using GMM. It is mentioned that the GMM has been
used earlier in speech enhancement to model the PDF of each
short-time spectral component of speech [16],[17].

In transform domain, we note that the existing MMSE
estimation based methods [3], [7], [8], [10], [13], enhance
the transform domain coefficients of noisy speech individ-
ually, i.e., scalar processing is employed in the estimation
process assuming the coefficients are independent. This ap-
proach will provide optimum performance if the respective
joint PDFs of clean speech vector and noise vector can be ef-
fectively modeled using multivariate Gaussian densities (as
the de-correlating transform makes the transform domain
components independent). For signals with non-Gaussian
PDF, there exists no linear transform which provides inde-
pendent scalar components in transform domain. Thus, the
transform-domain MMSE estimation method of enhancing
scalar components independently leads to suboptimal perfor-
mance for non-Gaussian PDF based signal, such as speech
signal. To recover this performance loss, we investigate the
approach of processing the sub-vectors in transform domain;
the use of higher dimensional sub-vectors allows us to exploit
the non-linear dependency which is otherwise not possible
using scalar domain processing. In the developed method,
the noisy speech signal vector is transformed using DCT and
the DCT vector is split into sub-vectors; the sub-vectors are
enhanced using the MMSE estimator. We have found that
the new approach provides better performance than the con-
ventional approach of enhancing the transform domain scalar
components independently. Also, the new method has shown
significant performance improvement over the recently pro-
posed GMM based time domain method [15].

2. PROPOSED METHOD

We consider single-channel noisy speech signal as input to
the speech enhancement system. Using additive model of
speech signal degradation in noisy environment, input noisy
speech signal can be written as

y(n) = x(n)+wkm),n =0,1,2,..., (1)

where y(n), x(n) and w(n) are respectively nth sample of
noisy speech signal, clean speech signal and additive noise.
Speech enhancement system processes the sequence of noisy
speech samples as overlapping frames, where each frame
contains K consecutive samples and successive frames are
shifted by R samples. We define tth noisy speech vector
as y (1) = [y (0) yi (1) ... y (K=1)]", 1 =0,1,..., where
y: (n) =y (tR+n). Now, the noisy speech model of Eqn. (1)
can be written in vector notation as y (t) = x(¢) + w(¢),
where x(7) and w(r) are K x 1 vectors of clean speech
and noise respectively corresponding to the noisy obser-
vation vector y (). Denoting the K x K DCT matrix by
D, we define noisy speech vector, clean speech vector and
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noise vector in DCT domain as Y (1) = Dy (¢), X(r) =
D x(z), and W (t) = D w (¢) respectively. Dropping the
frame index ¢, we write the noisy speech model in DCT-
domain as Y = X+ W, where Y, X, and W respectively
denote K x 1 random vectors of noisy speech, clean speech
and additive noise in DCT domain. We view the speech
enhancement problem as a statistical estimation problem,
where we want to get an estimate of X from a given obser-
vation of Y. We split the DCT-domain observation vector Y
into § sub-vectors of dimension L x 1 each. If ith sub-vector
of noisy speech, clean speech and noise are respectively de-
noted by Y;, X; and W, then the observation model is given
by

Y, =X;+W;,i=1,2,...,5. 2)

We assume that X; and X; are statistically independent for
i # j. Similarly, W; and W ; are also assumed to be indepen-
dent for i # j. Again, the independence assumption between
clean speech signal and corrupting noise says that X; and
‘W ; are statistically independent for any i, j. Therefore, X;
is independent of Y ; for i # j and the MMSE estimator of
X, becomes

X; = E{X,|Y} = E{X,|Y;}, 3)

where E is the statistical expectation operator. We denote
the PDFs of X; and W, by fx,(x) and fw,(w) respectively.
In this method, we use Gaussian mixture density to model
the PDF of each clean speech sub-vector X; and a Gaussian
density to model the PDF of each noise sub-vector W; as
shown below.

x, (1) % 0 N (xi3 10, ). @)
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where o, ,u)"z,i and C)an,i respectively denote prior proba-
bility, mean vector, covariance matrix of mth Gaussian com-
ponent and M; is the number of mixture component in the
GMM of ith clean speech sub-vector. We mention that
Z%izl 0n; = 1,1 <i < §. Mean vector and covariance matrix
of ith noise sub-vector are denoted as [, ; and C,, ; respec-
tively. Now, for evaluating the expectation of Eqn. (3), we
use our previously derived result [15] on GMM based MMSE
estimation. By using the theorem of [15], we get

X, =E{X/[Y;} = Z Bui(Yi) 1, (Yi), (6)

where /.L;(”_N(Y,‘) and B, ;(Y;) are respectively defined in
Eqn. (7) and Eqn. (8). By concatenating the estimated sub-
PPN T
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The enhanced speech vector is found by using inverse DCT

asx=D"!X. Finally, enhanced speech frames are overlap-
added to generate the output speech signal.

vectors, we get estimate of X as X = [

2.1 Motivation for split vector approach

In our recent paper [15], we have proposed a GMM based
estimation frame-work for speech enhancement. There we

have modeled the joint PDF of time-domain clean speech
samples corresponding to a speech frame or vector. This al-
lows us to exploit the dependency of speech samples in time-
domain. Experimental result showed that using large number
(1024) of mixture components in the GMM, speech enhance-
ment performance increases with frame size (K) upto a cer-
tain value (5 msec) and then saturates for higher dimension
due to the algorithmic problem in training GMM for high di-
mensional speech vector. But, we know that speech signal
is nearly stationary over 20-40 msec segments. To exploit
the statistical dependency of speech samples over such seg-
ments, larger frame size is generally preferred for improving
the speech enhancement performance. To achieve the high
dimensional advantage, we choose frame size of 32 msec
(K = 256 samples for 8 kHz sampled speech). We avoid the
problem of evaluating the GMM parameters in higher dimen-
sion by using the de-correlating transform (DCT). Thus, we
split the larger dimensional transformed vector into smaller
dimensional (L < K) sub-vectors and a separate GMM is
trained for each sub-vector. The use of DCT helps in ex-
ploiting the correlation among time-domain speech samples
over large frame, but the non-linear dependency among DCT-
coefficients is exploited through the use of joint PDF for the
coefficients of each sub-vector. Thus, the problem of training
the higher dimensional GMM is avoided without sacrificing
the performance.

3. EXPERIMENTS AND RESULTS

3.1 Experimental setup

The speech data used in the experiments are taken from the
TIMIT database. The speech signal is first low pass fil-
tered (3.4 kHz cut-off frequency) and then down-sampled to
8 kHz. We have used about 40 minutes of speech data for
training and a separate 3 minutes of speech data (6 male and
6 female speakers speaking 5 sentences each) for testing. The
training data is used for estimating the GMM parameters em-
ploying expectation-maximization (EM) algorithm. The test
speech is generated by adding noise to the clean speech sig-
nal at the required level. We have considered different types
of noise taken from NOISEX-92 database. In all our experi-
ments, we have assumed the noise to be stationary and noise
statistics are estimated only once from the initial 320 msec
segment (containing only noise) of the test speech. We have
chosen frame size (K) of 256 samples. To measure the speech
enhancement performance, we use the following widely used
objective measures : signal-to-noise ration (SNR), average
segmental SNR (avg. seg. SNR) and perceptual evaluation
of speech quality (PESQ) measure. Informal listening tests
are conducted to verify the subjective quality of enhanced
speech.

3.2 Performance of split-vector approach

We examine the effect of splitting the DCT domain vector
on speech enhancement performance. Using the proposed
DCT-domain GMM based method, we evaluate the speech
enhancement performance in terms of SNR, average segmen-
tal SNR and PESQ score for various sub-vector dimensions
(L) under different noisy conditions as shown in Fig. 1. We
mention that we have used M = 2L number of mixture com-
ponents in the GMM to model the PDF of a L dimensional
clean speech sub-vector. We know that by exploiting the de-
pendency among the coefficients better performance can be
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Figure 1: Speech enhancement performance in terms of SNR [(al), (a2)], average segmental SNR [(b1), (b2)] and PESQ score
[(c1), (c2)] at different sub-vector dimension (L = 1, 4, 8, 16, 32) for various types of noise.
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obtained as illustrated in Fig. 1. We note that the perfor-
mance improves monotonically as the sub-vectors’ dimen-
sions are increased. This observation clearly shows the ad-
vantage of sub-vector based processing (L > 1) over scalar
processing (L = 1 case) in DCT domain. Another interest-
ing observation from Fig. 1 is that the performance saturates
as L is increased beyond a certain value (about L = 10). It
is mentioned that the best performance can be achieved if
the full vector is processed (i.e. without splitting). But, the
saturation in performance with L suggests that the approach
of splitting does not result in sacrificing the performance.
Rather, this approach allows us to handle larger dimensional
speech frames to exploit the statistical dependencies among
the speech coefficients.

3.3 Performance comparison

We compare the performances of the developed GMM based
DCT-domain method (using L = 32) with the recently pro-
posed GMM based time-domain method [15]. We also in-
clude the performances of another DCT-domain method [7],
which is based on modeling the PDF of DCT domain co-
efficients using Gaussian density. In Table 1, we present
the speech enhancement performance of the three methods
under various noisy conditions. Compared to the existing
methods, the new method is shown to provide significant
improvement in performance. The improvement in perfor-
mance for the proposed DCT-domain method over the time-
domain method is due to its ability to exploit the statistical
dependency of speech samples over a much larger frame.
Note that, for the time-domain method, the frame size of 40
samples is found to be optimum [15]). On the other hand,
performance improves over the method of [7], because of us-
ing non-Gaussian PDF (Gaussian mixture) in DCT-domain
rather than Gaussian density and applying the MMSE esti-
mation on sub-vectors instead of individual coefficients. We
also compare the proposed method with the DFT-domain
method of Ephraim and Malah [3]. From Fig. 2, we note
that the proposed method provides better speech enhance-
ment performance in terms of all the three objective measures
and for all types of noise. Informal listening tests also con-
firm about the superiority of the developed method. Thus,
GMM based sub-vector processing in DCT-domain achieves
higher SE performance than the conventional approaches.

4. CONCLUSIONS

A novel speech enhancement method exploiting the intra-
frame dependency of clean speech DCT coefficients is pro-
posed. The developed method nicely overcome the short-
comings of the recently proposed GMM based time-domain
speech enhancement approach. Significant performance im-
provement in the proposed method over other speech en-
hancement methods is noted through the objective measure-
ments and informal listening tests. Thus, DCT domain sub-
vector enhancement approach using GMM can be regarded
as an effective method for enhancing noisy speech signal.
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Table 1: Performances of recently proposed GMM based time-domain method (Output;) of [15], new GMM based DCT-
domain method (Output,) and traditional Gaussian based DCT-domain method (Outputs) of [7]

Noise SNR (dB) Avg. Seg. SNR (dB) PESQ (MOS)
Type Input‘ Output, ‘ Output, ‘ Outputs || Input ‘ Output; ‘ Output, ‘ Outputs || Input ‘ Output, ‘ Output, ‘ Outputs
white 0 8.92 10.05 8.13 [|-9.50| 2.34 3.37 2.20 1.58 | 2.10 2.32 2.12
Gaussian || 5 11.99 | 13.23 | 11.14 || -4.50| 4.68 5.92 4.68 1.84 | 233 2.64 2.50
noise 10 | 15.18 | 16.60 | 14.38 || 0.49 | 6.75 8.66 727 || 2.15| 254 2.97 2.83
0 8.75 10.05 796 |-931| 1.75 3.20 2.09 1.78 | 2.08 242 2.32
pink 5 12.01 | 13.57 | 11.14 || -4.31| 4.08 6.06 455 || 2.11| 235 2.77 2.67
noise 10 | 1543 | 17.22 | 14.67 || 0.68 | 6.83 9.09 728 || 245 2.6l 3.10 3.00
f16 0 7.48 8.76 7.14 |-9.20| 0.79 2.28 1.32 1.86 | 2.11 2.38 222
cockpit 5 11.01 | 12,55 | 1047 | -4.20| 3.42 5.39 399 || 2.17 | 2.38 2.73 2.61
noise 10 | 1471 | 1640 | 14.09 || 0.80 | 6.48 8.60 6.86 || 2.50 | 2.64 3.08 2.94
high freq.|| 0 8.61 9.74 7.59 |-947] 1.71 3.32 1.87 1.64 | 2.18 2.34 2.04
channel 5 11.77 | 12.87 | 10.69 | -4.47| 4.38 5.83 4.42 1.89 | 240 2.66 2.44
noise 10 | 15.06 | 16.19 | 1395 || 0.52 | 6.90 8.54 7.05 || 2.18 | 2.61 2.98 2.80
m109 0 13.46 | 15.03 | 12.35 | -8.73| 5.78 7.56 522 || 237 | 2.53 3.00 2.89
tank 5 1632 | 1858 | 15.54 | -3.73| 8.14 10.63 8.01 270 | 2.81 3.34 322
noise 10 | 1937 | 22.19 | 19.01 | 1.26 | 10.87 | 13.87 | 11.08 | 3.03 | 3.11 3.65 3.51
speech 0 6.08 6.21 5.11 ||-8.83| 0.12 -0.03 | -0.39 || 194 | 2.01 2.01 1.94
babble 5 9.70 10.38 8.70 ||-3.83| 2.74 3.54 243 || 227 | 234 241 2.34
noise 10 | 1350 | 1470 | 1253 || 1.16 | 591 7.26 552 || 259 265 2.80 2.73
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Figure 2: Speech enhancement performances of the Ephraim Malah method [3] and the proposed method for various types of
noise: (1) white Gaussian, (2) pink, (3) f16 cockpit, (4) high freq. channel and (5) m109 tank noise.



