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ABSTRACT
We consider the problem of spectrum estimation of an Auto-
Regressive (AR) process in a sparse multipath environment.
The presence of even a small number of delayed and atten-
uated replica of the source signal in the received signal may
severely degrade the performance of classical AR spectrum
estimation methods. Dwelling on the sparsity of the multi-
path reflections, we propose an approach which looks for a
Finite Impulse Response (FIR) filter which, when convolved
with the received signal’s autocorrelation sequence, yields
the sparsest sequence. We show that under certain condi-
tions such an approach provides a consistent estimate of the
source’s AR parameters if thè0 norm is used as a measure
of sparsity. However, To maintain computational feasibil-
ity, we use thè 1 norm instead. Significant performance im-
provement relative to the classical Yule-Walker (or Modified
Yule-Walker) based estimates is demonstrated in simulation.
We also consider the expansion of the method to the case of
multiple sensors.

1. INTRODUCTION

Spectrum estimation is a fundamental problem in statistical
signal processing, finding use in diverse applications such as
detection, identification, compression, coding, filtering and
more. One of the common approaches to spectrum estima-
tion is Auto-Regressive (AR) modeling, which is also closely
related to the Maximum Entropy method and to the Predic-
tion Error method (see. e.g., [6], ch. 12.3). AR modeling is
especially suited to cases where the (sampled) signal of inter-
est (SOI) emanates from an all-poles system driven by some
white noise - a common physical assumption, e.g., when
working with speech signals over short time-intervals (see,
e.g., [4], ch. 5).

In some cases of practical interest, a propagation path
through which the SOI arrives at the sensor(s) is possibly
characterized by a finite number of reflections (see, e.g., [1]).
Such reflections give rise to the presence of delayed and at-
tenuated multipath replica of the source signal, which in turn
imply the addition of spectral zeros (in theZ-plane) to the
overall generating system - rendering the received signal an
Auto-Regressive, Moving Average (ARMA) process, rather
than an AR process.

If the multipath parameters (delays and attenuations) are
known, then a multipath-cancelation equalizer may be ap-
plied to the received signal in order to recover the SOI at
a preprocessing stage. However, such side-information is
rarely available in practice, and so one needs to work directly
with the received signal.

If classical AR estimation approaches, such as the use of

Yule-Walker (Y-W) equations (e.g., [6]), are applied directly
to the received signal, the resulting accuracy may be severely
degraded by the presence of multipath, and the resulting esti-
mated spectrum would generally be biased and inconsistent.
A possible classical remedy in such cases can be the use of
Modified Y-W equations (e.g., [6]), regarding the received
signal as an ARMA process, whose AR factor coincides with
the AR factor of the SOI. The Modified Y-W equations ex-
ploit estimated autocorrelations of the received signal at lags
farther from the origin, centered about the presumed MA
order. The resulting estimate of the AR coefficients would
be consistent (under commonly met second-order ergodicity
conditions) if

1. All multipath delays are multiples of the sampling pe-
riod; and

2. The presumed MA order is larger or equal to the largest
multipath delay (in samples).

In reality, however, the first condition above is rarely sat-
isfied. Moreover, although the Modified Y-W approach can
offer a consistent estimate (namely, can attain exact estimates
when the observation interval is infinite), the use of estimated
correlations at far lags usually implies poor performance with
moderate sample sizes - even with respect to the ordinary Y-
W equations, since the bias elimination is traded for a severe
increase in the variance. This is mainly because the relative
error in the estimation of far-lagged correlations is usually
significantly higher than the relative error in the estimation of
the short-lagged correlations, since the true correlation val-
ues usually decrease rapidly at far lags, whereas the variance
of their estimates does not.

Even when the number of multipath reflections is small,
the maximum delay may be relatively high. The use of the
Modified Y-W equations in such cases seems rather “waste-
ful”: The implied MA order can be very high (the maximum
delay, in samples) although the effective number of MA co-
efficients may be very small (the number of reflections).

A key observation in this context is that in scenes of iso-
lated reflections, the MA coefficients induced by the prop-
agation paths are sparse. We therefore propose to recover
the AR parameters in terms of a filter which, when applied
to the (estimated) autocorrelation of the received signal, ap-
proximately maximizes the sparsity of the implied MA coef-
ficients by minimizing thè 1 norm of their implied autocor-
relation sequence. The use of the`1-norm as a conveniently-
manageable approximate measure of sparsity has been con-
sidered before, e.g., by Donohoet al. ([5], [7]). Exploita-
tion of the sparsity of multipath reflections through`1-norm
minimization has also been recently considered in a different
context by Linet al. in [3].
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As we shall see in simulation results, such an approach
attains significant improvement in the accuracy of the AR pa-
rameters estimation (and implied spectrum estimation) over
the use of Y-W or Modified Y-W equations.

Our approach becomes even more favorable when mul-
tiple sensors are available (e.g., in a sensors-array), each re-
ceiving the same SOI, possibly undergoing different multi-
path propagation profiles. In such cases we may search for
the filter which simultaneously minimizes the`1 norm of all
auto- and cross- correlation sequences between sensors. The
resulting processing gain is significantly higher than the pro-
cessing gain attained by applying the (Modified) Y-W equa-
tions individually to each sensor and using the averaged re-
sult. Note that the Y-W equations cannot exploit (at least
not by straightforward application) the cross-correlation se-
quences, as these are not even symmetric in a general mul-
tipath scenario, and the exact shift of the zero-lag autocorre-
lation has to be determined first. This is not a trivial matter,
since the multipath delays are generally not assumed to be
integer multiples of the sampling period.

2. PROBLEM FORMULATION

Let s(t) be the SOI, a Wide-Sense Stationary (WSS)
continuous-time random process of unknown spectrum,

whose samples at sample-intervalsTs, s[n]
4
= s(n·Ts) ∀n∈ Z

can be modeled as a discrete-time AR process of known or-
derP, namely, the WSS processs[n] satisfies

s[n] =−
P

∑
k=1

aks[n−k]+w[n] , ∀n (1)

such thatw[n] is a zero-mean white process (“driving-
noise”) of some unknown varianceσ2

w, and the parameters
a1,a2, ...,aP are the unknown AR parameters. It naturally
follows that the polynomialA(z) = 1+a1z−1+a2z−2+ · · ·+
aPz−P has all itsP roots inside the unit-circle (in theZ-
plane).

For example, it is common practice in speech processing
/ coding to assume that whens(t) is a speech signal sampled
at a sampling interval ofTs = 1/8000[s], the resultings[n] is
an AR process of orderP = 10 (over short time-intervals).

Assume now thats(t) propagates to some sensor (e.g., a
microphone) through some isolated-multipaths environment
(e.g., room acoustics [1]). The received signalx(t) can be
modeled as

x(t) =
M

∑
m=0

gms(t− τm) (2)

whereM denotes the number of multipath reflections (in ad-
dition to the direct, main path),{gm}M

m=0 denote the unknown
path-loss coefficients and{τm}M

m=0 denote the respective un-
known propagation delays. Without loss of generality we
shall assume thatτ0 = 0, namely that the main path has zero
delay. This is merely an arbitrary determination of the time-
origin, and is certainly immaterial to the statistical character-
ization ofs(t), due to its stationarity. In addition, in order to
mitigate the scaling ambiguity between the direct-path loss,
the sensor gain and the SOI’s power, we shall assume that the
SOI has unit power, namely thatE[s2(t)] = E[s2[n]] = 1.

The received signalx(t) is sampled at time intervalsTs,
and the samplesx[n] = x(n ·Ts) are the available data, from

which it is desired to estimate the AR parameters, which in
turn yield the spectrum estimate ofs[n].

Note that we only consider the noiseless case in here.
Even in the absence of multipath, additive noise is consid-
ered a significant problem in AR spectrum estimation, and
special care should be taken in applying any AR estimation
scheme to noisy data. Due to space limitations, the issue of
additive noise remains beyond the scope of this paper.

3. AR ESTIMATION THROUGH `1 MINIMIZATION

Let Rss[`]
4
= E[s[n+`]s[n]] denote the autocorrelation ofs[n].

TheZ-transform ofRss[`] is the spectrum

Sss(z)
4
=

σ2
w

A(z)A∗(1/z∗)
. (3)

Let H(z)
4
= 1

σ2
w

A(z)A∗(1/z∗) denote a Finite Impulse Re-

sponse (FIR) filter, whose impulse response is denotedh[`].
It follows immediately that the convolution ofRss[`] with h[`]
results in an impulse (Kronecker’s delta function,δ [`]):

(h∗Rss)[`] =
P

∑
k=−P

h[k]Rss[`−k] = δ [`] , ∀`. (4)

Now consider the following constrained minimization:

min
h̃[`]

∞

∑
`=−∞

∣∣∣∣∣
K

∑
k=−K

h̃[k]Rss[`−k]

∣∣∣∣∣ s.t.
K

∑
k=−K

h̃[k]Rss[k] = 1, (5)

whereK ≥ P is some specified length parameter. This prob-
lem can be stated as:Find the finite sequence{h̃[`]}K

`=−K ,
which minimizes thè1 norm of its convolution withRss[`],
subject to the constraint that the value of the convolution at
` = 0 is 1.

In view of the preceding discussion, the minimizing so-
lution is readily seen to be given by

h̃[`] =
{

h[`] |`| ≤ P
0 |`|> P

(6)

sinceh[`] satisfies the constraint and zeros-out the convolu-
tion at all ` 6= 0, which means that it attains the minimum
possiblè 1 norm of the convolution under the constraint (this
norm evidently equals1). In fact, h[`] would be the mini-
mizer ofanyproper norm of the convolution under the spec-
ified constraint. However, as we shall see immediately, we
take special interest in thè1 norm.

Assume now that all the multipath delays in (2) are inte-
ger multiples of the sampling intervalTs, and define a set of
coefficients{bq}Q

q=0, whereQ ·Ts is the largest delay and

bk =
{

gm if ∃m∈ [0,M] | τm = k ·Ts

0 otherwise
(7)

The received signalx[n] can now be expressed as

x[n] =
Q

∑
k=0

bks[n−k]. (8)
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Subsequently, define the polynomialB(z)
4
= b0 + b1z−1 +

· · ·+ bQz−Q, and considerRxx[`]
4
= E[x[n+ `]x[n]], the au-

tocorrelation sequence ofx[n]. TheZ-transform ofRxx[`] is
the spectrum,

Sxx(z) = B(z)B∗(1/z∗)Sss(z), (9)

and hence the convolution ofRxx[`] with h[`] yields the se-
quenceβ [`], whoseZ-transform isB(z)B∗(1/z∗). This se-
quence is given by

β [`] =
Q

∑
q=0

bqbq−`∀` (10)

(under the convention thatbk = 0 for k /∈ [0,Q]).
When the number of multipathsM is small, the sequence

β [`] is sparse, having at most2M + 1 nonzero elements. It
is then conceivable thath[`] can be found by looking for the
filter which, when convolved withRxx[`], yields the sparsest
sequence (under the scaling constraint, to avoid a trivial zero
solution). The most “natural” measure of sparsity is the`0
norm, which counts the number of nonzero elements. Indeed,
we can establish the following theorem:

Theorem 1. Assume the integer-delays multipath model in

(8), (7) and letβ̃ [`]
4
= ∑K

k=−K h̃[k]Rxx[`−k] denote the convo-
lution between the autocorrelation sequence ofx[n] and an
FIR filter of length2K + 1 with K ≥ P. Let the minimum
time-distance between all multipath components be given by
D ·Ts, namely|τm− τn| ≥ D ·Ts for all n 6= m, n,m∈ [0,M].
Then ifK < P+D/2, the filter{h̃[`]}K

k=−K which minimizes

(subject to the scaling constraint) thè0 norm ‖β̃ [`]‖0, is
given by(6) (namely, is equivalent toh[`])).

Proof. WhenK = P, only h̃[`] = h[`] is capable of canceling
all the 2P poles ofSxx(z). With any other filterh̃[`] of the
same length, the resulting convolution will be infinite, due
to remaining uncanceled poles, and as such would have an
infinite `0 norm.

WhenK > P, the optimal̃h[`] should still cancel all of the
poles ofSxx(z) (in order to avoid an infinitè0 norm ofβ̃ [`]),
but might theoretically have2(K−P) extra zeros. The result-
ing β̃ [`] in such a case would be given by the convolution of
β [`] with a sequence of length2(K−P)+ 1, corresponding
to a polynomial (in the Z-plane) representing the extra ze-
ros. But since the minimum distance between nonzero taps
in β [`] is greater than2(K−P) (according to the condition
onK), such a convolution cannot generate any cancelation of
taps, and is therefore guaranteed to at least double the num-
ber of non-zero taps iñβ [`] (with respect toβ [`]), thereby
attaining at least double thè0 norm that would be attained
by h[`]. This means that the optimalh̃[`] cannot have such
extra zeros, and must therefore be given by (6).

It therefore follows, that assuming the availability of a
consistent estimate ofRxx[`], a consistent estimate ofh[`] can
be attained by finding thè0-norm minimizer ofβ̃ [`] (under
the specified length and scaling constraints). Unfortunately,
however, thè 0 norm has several problematic aspects as a
minimization criterion: First, it is highly sensitive to numeri-
cal and/or statistical errors, as any slight deviation from zero
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Figure 1:Top: a typical correlation sequence of the received signal
in a multipath environment; Bottom: thè1 sparsified result. The
multipath delay is7.2 (non-integer)

counts as a nonzero and adds to the norm. This problem may
be mitigated by thresholding; however, even in a thresholded
version,`0 minimization is a non-convex optimization prob-
lem, and is NP-hard.

A possible appealing alternative to`0 minimization is`1
minimization (see, e.g., [5], [7]), which, although less true
to the notion of sparsity thaǹ0, is still closely related to
sparsity, yet admits convenient minimization algorithms due
to its convexity.

We should emphasize that we did not prove (not claim)
that the proposed̀1 minimization yields a consistent esti-
mate in our case, not even under the length and sparsity con-
ditions of Theorem 1. Nevertheless, it is intuitively reason-
able to assume that aǹ1-optimal filter would still have to
cancel all of the poles ofSxx, so as to avoid an infinite-length
β̃ [`]. But this is only an intuitive notion, since in contrary
to the situation with thè0 norm, in some cases an infinite
sequence may have a smaller`1 norm than a finite sequence
(even under our scaling constraint).

As shown above, consistency of the`1 minimizer is only
guaranteed when there is no multipath (M = 0) - but in such
cases the ordinary Y-W estimate is also consistent. But while
the Y-W based estimates can suffer significant degradation
in the presence of multipath, the proposed method seems
better-immune to sparse multipath components. Indeed, we
have observed in simulations that the proposed method sig-
nificantly outperforms the competing Y-W based estimates in
a sparse multipath scenario. This is also true (empirically, in
our experiments) when the multipath delays are not integer
multiples of the sampling intervals. In such cases Theorem
1 does not hold, and the theoretical derivations above be-
come slightly more complicated, as the discrete coefficients
bq should be replaced with interpolation coefficients (essen-
tially, sampled and time-shifted sinc(·) functions). Neverthe-
less, the general structure, the “essential sparseness” and the
rationale behind the approach, all remain the same.

4. IMPLEMENTATION DETAILS

In order to apply the proposed approach we need to outline a
minimization strategy for solving the constrained minimiza-
tion problem (5). Before we do that, we would like to in-
troduce a slight modification to this minimization problem,
by imposing an additional symmetry constraint on the filter
h̃[`]. This is a very reasonable constraint, since it exploits the
knowledge that the trueh[`] is symmetric, and reduces the
number of free parameters in the minimization by a factor of
two. In addition, for practical considerations we would not
consider the convolution from−∞ to ∞, but only over a finite
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(long) lags-span,̀∈ [−L,L], with L >> K.

Let us therefore denote bỹh
4
= [h̃[0] h̃[1] · · · h̃[K]]T

the positively-indexed half of the symmetric sequence
{h̃[`]}K

`=−K . Since the convolution relation is a linear op-
erator with respect tõh, we may reformulate (5) as

min
h̃
‖RT h̃‖1 s.t. cT h̃ = 1. (11)

Here the(2L+1)×(K +1) matrixRT is the sum of a partly-
Hankel and a Toeplitz matrix, as follows:

RT =




0 r̂[−L+1] r̂[−L+2] · · · r̂[−L+K]
0 r̂[−L+2] r̂[−L+3] · · · r̂[−L+1+K]
...

...
ppp ppp ...

0 r̂[1] r̂[2]
ppp r̂[K]

...
...

ppp ppp ...
0 r̂[L+1] r̂[L+2] · · · r̂[L+K]




+

+




r̂[−L] r̂[−L−1] · · · r̂[−L−K]
r̂[−L+1] r̂[−L] · · · r̂[−L+1−K]

...
. ..

. . .
...

r̂[0] r̂[−1]
. . . r̂[−K]

...
. ..

. . .
...

r̂[L] r̂[L−1] · · · r̂[L−K]




. (12)

The K + 1 vectorcT is the middle row ofRT , namely (in
Matlabr notation), c = R(:,L + 1). The entriesr̂[`] are
shorthand for the autocorrelation valuesRxx[`]. In practice,
estimated values are used,

r̂[`]
4
= R̂xx[`] =

1
N−|`|

N−1−|`|
∑
n=0

x[n+ |`|]x[n]

` ∈ [−L−K,L+K] (13)

(in practice, the symmetry of botĥr[`] andh̃[`] can be readily
exploited to reduce the number of rows inRT by half, but we
shall not pursue this option in here, due to space limitations).

Next, we can turn the constrained minimization prob-
lem (11) into a more convenient unconstrained minimiza-

tion problem as follows: Set̃h0
4
= c/(cTc), and denote by

the (K + 1)× K matrix C any complete basis for theK-
dimensional null-space ofcT . Thus, any vectory satisfying
cTy = 0 can be expressed asy = Cx. C can be easily found,
e.g., using Gram-Schmidt orthogonalization. It then follows
that any solutioñh satisfying the constraint in (11) can be ex-
pressed as̃h = h̃0 +Cx. Substituting back into the criterion
in (11), we end up with the unconstrained minimization

min
x
‖RT(h̃0 +Cx)‖1 ≡ min

x
‖ATx−b‖1, (14)

with A
4
= CTR andb

4
= −RT h̃0. This is a classical linear

`1 minimization problem. Direct minimization of this convex
criterion can be obtained in an iterative algorithm with guar-
anteed convergence to the unique (global) minimum within a
finite number of iterations, see, e.g., [2] for a possible algo-
rithm. To use more standard tools, this problem can also be

cast as a linear program,

min
w,x

[1T0T ]
[
w
x

]
s.t.

[
I −AT

I AT

][
w
x

]
≥

[−b
b

]
, (15)

where1 and0 denote(2L+1)×1 all-ones and all-zeros vec-
tors (resp.),I denotes the(2L+1)× (2L+1) identity matrix
andw is an auxiliary(2L+1)×1 vector participating in the
minimization.

Once the unconstrained minimizing solutionx̂ (of (14))
is found, the desired solution of (11) is given byĥ = h̃0 +
Cx̂. The symmetric filter̂h[`] is then extracted from̂h as
ĥ[`] = ĥ|`|, ` =−K, . . . ,K (ĥk denoting the(k−1)-th element

of the vectorĥ). Then, the polynomial

Ĥ(z)
4
=

K

∑
`=−K

ĥ[`]z−` (16)

is constructed and rooted, yielding2K roots{p̂k}2K
k=1. As-

suming no roots on the unit-circle, they can be partitioned
into two groups ofK roots each: The first group of roots (in-
dexed1,2, . . . ,K) contains the roots located inside the unit-
circle, and the second (indexedK + 1,K + 2, . . . ,2K) con-
taining their reciprocals. By forming the monic polynomial
Â(z) = ∏K

k=1(1− pkz−1), one can read off the estimated AR
coefficients from the resulting polynomial, or, alternatively,
to obtain a direct estimate of the SOI’s spectrum,

Ŝss(ejω) =
σ̂2

w

|Â(ejω)|2 , (17)

whereσ̂2
w is determined so as to comply with the unit-power

conventionR̂ss[0] = 1
2π

∫ 2π
0 Ŝss(ejω)dω = 1.

5. MULTIPLE SENSORS

When more than one sensor is available, it is possible to ex-
ploit not only the autocorrelations of the individual sensors,
but also the cross-correlations between sensors. Note that the
Z-transforms of all of these correlation sequences share the
same poles (namely, the poles of the SOI) and (possibly) dif-
fer only by their zeros. Therefore, the same filterh[`] would
sparsify all of these sequences simultaneously.

We therefore propose to apply the same`1 minimiza-
tion approach to the concatenated convolutions ofh̃[`] with
all of the available (estimated) auto- and cross-correlation
sequences. This can be easily attained by augmenting the
matrix R in (12) with similarly constructed matrices, in
which r̂[`] denotes the respective estimated auto- or cross-
correlation sequences. The scaling-constraint vectorc would
be determined from one of the autocorrelation sequences.

When several sequences are to be simultaneously spar-
sified by convolution with the same common sequence, the
occurrence of ‘’coincidence solutions”, yielding a smaller`1
norm than the ”intended solution”, becomes more rare. As a
result, the accuracy of the solutions is significantly improved
- as we shall demonstrate in simulations.

6. SIMULATION RESULTS

To demonstrate the performance of the proposed method
(given the acronym “SPARE”: SParsity-based AR Estima-
tion) we simulated an AR SOI undergoing a multipath en-
vironment as follows: The SOI was generated first as a
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discrete AR process of orderP = 6 with the AR coeffi-
cients set to correspond to six poles at[0.8,0.6+0.6 j,0.6−
0.6 j,−0.45,−0.7+0.4 j,−0.7−0.4 j] (an arbitrary choice),
excited by white Gaussian random noise. This signal was
then upsampled (interpolated) by a ratio of1 : 10, so as to
simulate the continuous SOI and to enable fractional delays
(at a 0.1 resolution). We then simulated the propagation
model (2) withM = 1,4 multipath components (in addition
to the main path). To apply fractional delays, each (m-th)
replica of the interpolated signal was shifted by the rounded
value of10· τm (whereτm is the desired fractional delay, in
samples), and then the combined signal was downsampled
by 1 : 10to generate the “sampled” signalx[n] at the original
sample rate.

We usedg0 = 1, and we shall show the performance
versus a single parameterg, controlling the relative mag-
nitude(s)gm of the multipath component(s) as follows: In
the single-multipath experiment the magnitude|g1| = g was
held constant over repeated trials and only the sign ofg1 was
drawn at random in each trial. In the4-multipaths experi-
ments, the magnitudes|gm| (m= 1,2,3,4) were each drawn
at random (independently) in each trial from a uniform dis-
tribution between−g andg.

The random time-delays were drawn independently for
each multipath component in each trial, from a uniform dis-
tribution between1 and5 (resp.,10) for the single multipath
(resp.,4-multipaths) experiment.

As a measure of the accuracy of the spectrum estimates
we used the well-known Itakura-Saito spectral distance (e.g.,
[4]) of AR estimates (in its frequency-domain version):

d(S(ejω), Ŝ(ejω))
4
=

1
2π

∫ 2π

0

[
S(ejω)
Ŝ(ejω)

−1− log
S(ejω)
Ŝ(ejω)

]
dω.

(18)
In addition to the single-channel experiment, we also

conducted two-channels experiments, with similarly ran-
domized, independent multipath parameters in the second
channel. In addition, a random delay between the direct-
paths to each channel was applied in each trial, drawn in-
dependently from a uniform distribution between−3 and3.

In applying SPARE we used estimated correlation se-
quences of (one-sided) lengthL = 50and a convolution filter
of (one-sided) lengthK = 7. The data length wasN = 50000.
We compare the performance of SPARE to the performance
attained by ordinary Y-W estimation in Figures 2 and 3. In
the two-channels experiment the Y-W spectral estimate was
constructed as the averaged Y-W spectral estimates from the
two channels. Each simulation point represents the average
of 1000 independent trials (in which all multipath parame-
ters, as well as the SOI, were redrawn independently), dis-
carding the worst5% of the results for both algorithms, to
avoid occasional outliers, occurring in both methods upon
“pathological” realizations of multipath constellations. We
also applied the Modified Y-W estimate, but its average per-
formance was generally much worse (nearly by orders of
magnitude) than that of the ordinary Y-W estimate, so we
chose to exclude these results from the Figures.

7. CONCLUSION

We presented a new method for the mitigation of the effects
of multipath on AR spectrum estimation. The method applies
`1-norm minimization to the convolution of the estimated
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Figure 2: Single multipath: Estimation accuracy vs. multipath’s
relative magnitude.
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Figure 3: Four multipaths: Estimation accuracy vs. multipath’s
relative magnitude.

correlation sequence with an FIR filter, thereby attempting
to find the filter whose zeros are the SOI’s spectral poles. Al-
though consistency is not guaranteed (due to the use of an
`1 instead of aǹ 0 norm), significant performance improve-
ment over Y-W based methods was demonstrated in simula-
tions. Naturally, the improvement is attained at the cost of
increased computational complexity, yet the`1 minimization
can be applied with guaranteed global convergence within a
finite number of iterations.
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