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ABSTRACT

Optimal detection of unusual and significant changes in
network Origin-Destination (OD) traffic volumes from sim-
ple link load measurements is considered in the paper. The
ambient traffic, i.e. the OD traffic matrix corresponding to
the non-anomalous network state, is unknown and it is con-
sidered here as a nuisance parameter because it can mask the
anomalies. Since the OD traffic matrix is not recoverable
from simple link load measurements, the anomaly detection
is an ill-posed decision-making problem. The method pro-
posed in this paper consists of finding a linear parsimonious
model of ambient traffic (nuisance parameter) and detecting
anomalies by using an invariant detection algorithm based
on a separation of the measurement space into disjoint sub-
spaces corresponding to normal and anomalous network traf-
fic. The method’s ability to detect anomalies is evaluated in
real traffic from Abilene, a United States backbone network.
The theoretically expected results are confirmed.

1. INTRODUCTION

Network management becomes very complex as networks
increase in size and complexity. The traffic demand in a
network is typically described by a traffic matrix that cap-
tures the amount of traffic transmitted between every pair
of ingress and egress nodes in a network, also called the
Origin-Destination (OD) flows. A volume anomaly is a sud-
den change in an OD flow’s traffic (for example, due to a
denial-of-service attack, a flash crowd event, a virus/worm
propagation, etc.) that spans multiple physical links of the
network. The reliable detection of these unusual and signif-
icant changes in the OD traffic matrix is an important issue
for network operation.

High hardware requirements are necessary to network-
wide collect and process the direct OD flow measure-
ments [1]. Consequently, the Simple Network Management
Protocol (SNMP), which is a widely deployed standardized
protocol, is preferred in practice to measure link loads and
obtain some information on the traffic matrix. The challenge
lies in the ill-posed nature of the problem: the number of un-
known OD flows is much larger than the number of SNMP
measurements. For this reason detecting an anomaly in the
traffic matrix from SNMP measurements is a difficult task.

Several approaches are proposed to remedy this problem.
The first group of methods consists in detecting anomalies in
SNMP measurements without taking into account the traffic
matrix. Such methods typically use time series (AutoRegres-
sive Integrated Moving Average or ARIMA models among
others) [2, 3, 4, 5] to model the SNMP measurements’ evo-
lution in time and detect deviations. In [6], the authors pro-
pose to decompose the SNMP measurements on a Principal

Component Analysis (PCA) basis. These methods can de-
tect anomalies by monitoring each link but they do not ex-
ploit the linear mathematical relation between the OD traf-
fic matrix and the SNMP measurements, represented by the
routing matrix. Moreover, they cannot be applied when the
routing matrix varies in time (dynamic routing) and they can-
not be used to estimate the OD traffic matrix. The second
group of methods [1, 7, 8] exploits this linear mathematical
relation. These approaches typically assume that the traffic
matrix is well approximated by a known statistical model.
Such a method requires a well known prior to be efficient,
which is not always feasible in practice. In [9], the authors
study a large number of methods based on different models
for SNMP measurements (wavelets, PCA among others) and
OD flows (ARIMA time series) to detect anomalies. A major
drawback of these methods is the lack of theoretical results
on their optimality properties (maximization of the probabil-
ity to detect an anomaly for example) of the studied meth-
ods. Finally, the last group of methods consists in using the
Kalman filtering technique [10] to model the time evolution
of the traffic matrix and to detect changes in the OD flows.
Unfortunately, strictly speaking, the ill-posed nature of the
measurement model makes the Kalman filter not observable
and the Kalman filtering efficiency strongly depends on the
initialization, which is a serious limitation in practice.

The main contributions of this study are the following:
firstly, a parsimonious linear model of non-anomalous OD
flow volumes (“ambient” traffic) is proposed. This model can
be used in two ways, either to estimate the OD flow volumes
or to eliminate the non-anomalous “ambient” traffic from the
SNMP measurements in order to provide residuals sensitive
to anomalies. Secondly, since a few anomaly-free SNMP
measurements (at most one hour of measurements) is suffi-
cient to obtain a reliable model of the OD flows, the proposed
method is well adapted to highly non-stationary in time mea-
surements and to dynamic routing. Finally, an optimal in-
variant detection algorithm is proposed to detect anomalies
directly from SNMP measurements (no need of direct OD
flow measurements). This algorithm is optimal in the sense
that it maximises the probability of detecting the anomalies
under a constrained false alarm probability.

2. PROBLEM STATEMENT

This section briefly presents the SNMP measurement model
and the anomaly detection problem.

2.1 SNMP Measurements

Let us consider a network composed of r nodes and n
monodirectional links [6, 9]. The volume of traffic y(ℓ),
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Figure 1: Detection of unusual changes in OD traffic vol-
umes. A step-wise anomaly appears at time t0 in the OD
flow x(1,3) and it is routed on links y(1) and y(2).

typically in bytes, on the link ℓ at time t (to simplify the
notations, the subscript t is omitted) is provided by SNMP
link load measurements [9]. Let x(i, j) be the OD traf-
fic demand from node i to node j at time t. This situa-
tion is shown in Fig. 1. The link loads and the traffic ma-
trix are simply related by a linear equation Y = AX where

Y = (y(1), . . . ,y(n))T
, X = (x(1), . . . ,x(m))T

contains the m
(m ≫ n) unknown traffic matrix elements x(k) = x(ik, jk)
written as a vector and A = {a(ℓ,k)} is the n× m routing
matrix where 0 ≤ a(ℓ,k) ≤ 1 represents the fraction of OD

flow k volume routed through link ℓ. Here, XT denotes the
transpose of the matrix X . Without loss of generality, the
known matrix A is assumed to be full row rank, rank(A) = n.
Clearly, since m ≫ n, it is impossible to infer X from Y .

2.2 Volume anomaly detection problem

The detection problem consists in detecting a significant vol-
ume anomaly in an OD flow x(i, j) by using only SNMP
measurements y(1), . . . ,y(n). For example, in Fig. 1, it is
necessary to detect a sudden increase of the traffic volume
x(1,3) by using y(1), y(2) and y(3) (typical anomalies to be
detected in SNMP measurements are presented in [6]). As
it was mentioned above, the main problem with gathering
the traffic matrix from SNMP measurements is that n ≪ m.
To overcome this problem a parsimonious linear model of
non-anomalous traffic has been used. The idea of this model
is that the non-anomalous (ambient) traffic X can be repre-
sented at each time t by using a known family of q basis
functions B = (b1,b2, . . . ,bq) such that q < n. Therefore, the
ambient traffic can be expressed as X ≈ Bµ where the m×q
matrix B is assumed to be known and µ ∈ R

q is a vector of
unknown coefficients which describes the OD flows’ varia-
tion with respect to the set of vectors bi. The advantages
of such a parametric model are the following: firstly, a non-
parametric basis, typically the PCA basis, can be used to gen-
erate the matrix B but this solution needs direct OD flow mea-
surements (infeasible in practice) and the PCA basis depends
on the period when the measurements are made [11]. Sec-
ondly, the parametric detection methods’ performance is bet-
ter than the non-parametric one provided the adopted model
is accurate enough. Therefore, the parametric approach is
used to design a reliable detection algorithm derived from a
spline-based OD flow model.

3. OD FLOW MODEL

The derivation of the ambient traffic matrix model consists
of two different steps: i) description of the ambient traffic by
using a spatial stationary gravity model and ii) linear approx-
imation of the gravity model by using polynomial splines.

3.1 General gravity model

Gravity models [12, 13] assume that the traffic volume be-
tween two nodes is directly proportional to the relative attrac-
tion of each node and inversely proportional to some func-
tion of the separation (typically the distance) between these
nodes. Let us assume that, at time t, the node i of the net-
work is characterized by an attractive factor A(i) related to
the incoming flow at node i and a repulsion factor R(i) asso-
ciated to the outgoing flow from node i. A network-adapted
formulation of the gravity model [12] may be given by the
following equation:

x(i, j) ≈ h(R(i) ·A( j)) ·d(i, j)−1, (1)

where d(i, j) is the deterrence function representing the sep-
aration between nodes i and j at time t and h : R 7→ R is a
weighting function relating the repulsion and attraction fac-
tors. Typically, the function h is a non-decreasing smooth
function, which is a reasonable assumption in the absence of
another physical model on the network. The function h is un-
known and makes it possible to model more complex interac-
tions between nodes and to give more flexibility to the model
as suggested (but not used) in [12, 13]. Following [12], it is
assumed that d(i, j) = d for all 1 ≤ i, j ≤ r where d is an un-
known real value. This assumption is quite reasonable in the
case of an autonomous system which is geographically lim-
ited, as the Abilene network [14] for example, since the dis-
tance between nodes are not significant for end-users. Hence,
it follows that (1) can be rewritten as:

x(k) = x(ik, jk) ≈ d−1 ·h(ω(k)) (2)

where ω(k) = R(ik) ·A( jk) represents the importance of OD
flow k in terms of traffic volume outgoing from ik and incom-
ing to jk. Without any loss of generality, it is assumed that
0 ≤ ω(k) ≤ 1 for all k.

3.2 Spatial stationarity

Firstly, it is assumed that the order of importance between
OD flows remains stable in time, i.e.

ω(k1) ≤ ω(k2) ≤ . . . ≤ ω(km), (3)

for all time t, where k j is the index of the OD flow with the
j-th rank of importance (the relevance of this assumption is
shown in section 5). Secondly, one of the few invariants of
Internet traffic is “the elephants and mice phenomenon” [15]:
a few percentage of flows contributes to a large proportion of
total traffic. Hence, OD flows can typically be classified in
three classes of traffic depending of their volume of traffic:
dominating OD flows, negligible OD flows and medium-size
OD flows. This last class of traffic is defined to add more
flexibility to the classification of OD flows. These classes in-
duce a segmentation of the interval [0;1] in three parts [0;π1],
[π1;π2] and [π2;1], with 0 < π1 < π2 < 1, corresponding re-
spectively to negligible, medium and dominating OD flows.
As it has been experimentally confirmed, the segmentation is
time-stable, at least during several days (see section 5).
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3.3 OD flow spline-based model

The function h is assumed to be non-decreasing with a cer-
tain smoothness and defined piecewise, with respect to knots
π1 and π2, on the interval [0;1]. Therefore, it is linearly
approximated by using polynomial splines (basic definitions
and results on polynomial splines can be found in [16]). Let
{ω 7→ b1(ω), . . . ,ω 7→ bq(ω)} be a basis of q = p + 3 func-
tions for the space of splines of degree p with p− 1 con-
tinuous derivatives and 2 knots. By using (2), there exists

a unique time-dependent vector µ = (µ(1), . . . ,µ(q))T
such

as X ≈ Bµ where B is the m× q matrix whose element at
position (i, j) is b j(ω(i)). Here, since the function h is un-
known, sampling points ω(i) can be arbitrarily chosen in the
interval [0;1] provided condition (3) is verified. The exis-
tence of dominant OD flows is sometimes modelled by using
α-stable laws [17]. In such a context, the spline-based ap-
proximation is naturally justified by the necessity to have a
piecewise approximation of such a heavy-tailed power law
distribution. Finally, it is assumed that model errors together
with the natural variability of the OD flows follow a spatial
Gaussian distribution [1], which leads to the model:

X = Bµ + ξ (4)

where ξ ∼ N (0,γ2 Σ) is a Gaussian noise with the m×m

spatial diagonal covariance matrix Σ = diag(σ2
1 , . . . ,σ2

m).
The matrix Σ is assumed to be known and stable in time. On
the contrary, the scalar γ2 serves to model the mean level of
the variance (due to the natural OD flow time variability) and
it may depend on the time. In practice, Σ and γ2 are estimated
from a few anomaly-free SNMP measurements.

4. ANOMALY DETECTION PROBLEM

The goal is to detect an anomaly with the highest probability
of detection for a given probability of false alarm, i.e. activat-
ing an alarm in absence of anomaly, which is an undesirable
event.

4.1 Hypotheses testing: problem statement

According to the previous section, the non-anomalous link
load measurement model is given by the following linear
model :

Y = ABµ + Aξ = Gµ + ζ , (5)

where Y = (y(1), . . . ,y(n))T
and ζ ∼ N (0,γ2 AΣAT ). With-

out any loss of generality, the resulting matrix G = AB is
assumed to be full column rank. Since the matrix Φ = AΣAT

is known, the testing problem consists of choosing between
the two alternatives:

H0 ={Z ∼ N (θ + Hµ,γ2 In); θ = 0, µ ∈R
q} (6)

H1 ={Z ∼ N (θ + Hµ,γ2 In); θ 6=0, µ ∈R
q}, (7)

with Z = Φ− 1
2 Y , H = Φ− 1

2 G, Φ− 1
2 is the square-root matrix

of Φ−1, Φ−1 is the inverse of Φ and In is the identity matrix
of size n. Here µ is considered as a nuisance vector param-
eter since i) it is completely unknown, ii) it is not necessary
for the anomaly detection and iii) it can mask the anomalies.
Typically, when an anomaly occurs in OD flow j, the vector

θ has the form θ = ε Φ− 1
2 a( j) where a( j) is the j-th nor-

malized column of A and ε is the intensity of the anomaly.

The aim is to detect the presence of an anomalous vector θ
not explicable by the ambient traffic model (4).

Let Kα = {φ : supµ∈Rq Prθ=0,µ(φ(Z) = H1)≤α} be the

class of tests φ : R
n 7→ {H0,H1} with upper-bounded max-

imum false alarm probability, where the probability Prθ ,µ
stands for the vector of observations Z being generated by the
distribution N (θ +Hµ,γ2 In) and α is the prescribed proba-
bility of false alarm. The power function β is defined with the
probability of correct detection: β (θ ; µ) = Prθ 6=0,µ(φ(Z) =
H1). The subtlety of the above mentioned hypotheses testing
problem consists of choosing between H0 and H1 with the
best possible performance indexes (α , β ) while considering
µ as a nuisance parameter.

4.2 Anomaly detection methodology

It is easy to see that the problem remains invariant under
the group of translations G = {g : g(Z) = Z + Hc , c ∈ R

q}
(see an introduction to the principle of invariance in [18]).
The maximal invariant statistics (also called “parity vec-
tor”) U = WZ is the transformation of the measured out-
put Z into a set of n− q linearly independent variables by
projection onto the left null space of the matrix H. The
matrix W T = (w1, . . . ,wn−q) of size n × (n − q) is com-
posed of the eigenvectors w1, . . . ,wn−q of the projection ma-

trix P⊥
H = In−H(HT H)−1HT corresponding to eigenvalue 1.

The matrix W satisfies the following conditions: WH = 0,

W TW = P⊥
H , WW T = In−q. Let S be the family of surfaces

S = {Sc : c > 0} with Sc = {θ : ‖P⊥
H θ‖

2

2/γ2 = c2}. Then,
it is shown [19] that the test

φ∗(Z) =

{

H0 if Λ(Z) = ‖P⊥
H Z‖

2

2/γ2 < λα

H1 else
, (8)

where the threshold λα is chosen to satisfy the false alarm
bound α , Prθ=0,µ(Λ(Z) ≥ λα) = α , is Uniformly Best Con-

stantly Powerful (UBCP)1 in the class Kα over the family of
surfaces S . The statistics Λ is distributed according to the
χ2 law with n− q degrees of freedom. This law is central
under H0 and non-central under H1 with the non-centrality

parameter θ T P⊥
H θ/γ2.

5. NUMERICAL RESULTS

This section shows the relevance of the model and the per-
formance of the detection algorithm.

5.1 Description of the data set

The evaluation of the proposed methods requires the knowl-
edge of the real OD traffic flows. Such measurements are
quite difficult to obtain in a commercial network but are
available for the Abilene network. The Abilene backbone
is composed of r = 12 core routers and m = 144 OD flows.
For these numerical experiments, n = 42 backbone links are
measured. More details on this network are given in [14] and
real data are available in [20]. The primary data inputs are
the time series of link loads (bytes across interfaces) gath-
ered through SNMP. The sampling rate is one measurement
per 10 minutes, i.e. each measurement corresponds to the to-
tal of volume of traffic (in bytes) which has passed through a

1A test φ∗ ∈ Kα is UBCP on S if 1) βφ∗ (θ ′) = βφ∗ (θ ′′), ∀θ ′,θ ′′ ∈ Sc;

2) βφ∗ (θ) ≥ βφ (θ), ∀θ ∈ Sc, ∀c > 0 for any test φ ∈ Kα which satisfies 1).
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given link during 10 minutes. Two sets of measurements are
used: the first one, the anomaly-free data set, is composed
of 6 anomaly-free SNMP measurements (one hour measure-
ment period) and the second one, the testing data set, is com-
posed of 720 SNMP measurements (five days measurement
period). Let Ta (respectively Tb) be the set of time index as-
sociated to SNMP measurements of the anomaly-free (resp.
testing) data set. The anomaly-free data set is measured one
hour before the testing one.

To identify the set of “true” anomalies in the testing data
set (as a precursor to the validation step), unusual deviations
from the mean in each OD flow are manually detected. Man-
ual inspection declares an anomaly if the unusual deviation
intensity of the guilty OD flow leads to an augmentation of
traffic 1) larger than 1.5% of the total amount of traffic on the
network and 2) larger than 1% of the amount of the traffic
carried by the links routing this guilty OD flow. Hence, only
significant volume anomalies are considered as “true anoma-
lies” (small volume anomalies have little influence on link
utilisations). Let T

◦
b ⊂ Tb be the set of time index t associ-

ated to the 680 non consecutive SNMP measurements of the
testing data set manually declared as anomaly-free (40 mea-
surements of the testing data set are affected by at least one
significant volume anomaly).

5.2 Numerical validation of the model

Although many aspects could potentially be included in the
evaluation, the focus is on the potential impact of perfor-
mance errors on traffic engineering tasks. Hence, the root
mean square error (RMSE) is used:

RMSElabel(t) =

√

m

∑
i=1

(

x̂ label
t (i)− xt(i)

)2
, ∀t ∈ T

◦
b.

Here, xt(i) denotes the true traffic volume of OD flow i at

time t ∈ T
◦
b and x̂ label

t (i) denotes the corresponding estimate
for the method entitled ‘label’. Three estimates are com-
pared : 1) simple gravity estimate [14] with label ‘SG’, 2) to-
mogravity estimate [12] with label ‘TG’ and 3) spline-based
Maximum Likelihood (ML) estimate with the label ‘SML’.
Since the measurement model (5) is a Gaussian linear one,
the optimal estimate of Xt is the ML estimate [21] X̂ SML

t

given by:

X̂ SML
t = B(HT H)−1HT Zt .

The statistical properties of the ML estimate are well
known [21] contrary to the simple gravity and tomogravity
estimates [14, 12]. The temporal correlation of the noise se-
quence (ζt)t≥1 is ignored for the following reason: it can be
theoretically shown that the integration of the ARMA (Au-
toRegressive and Moving Average) model of (ζt)t≥1 does not

change the covariance matrix (and the bias) of X̂ SML
t .

The spline-based model is computed by using SNMP
measurements of the short anomaly-free data set : 1) the
tomogravity estimate x̂ T G

t (k) is computed for all OD flow

k and all t ∈ Ta, 2) the mean flow values x̄ T G(k) =

∑t∈Ta
x̂ T G

t (k) are computed and 3) sorted in ascending order
to obtain a rough estimate of the OD flow ranks. The spline-
based model is designed with cubic splines (p = 3) and knots
π1 = 0.8507 and π2 = 0.9830 with sampling points ω(k) uni-
formly distributed in the interval [0;1]. Small variations on
the values π1 and π2 have no serious effect on the results.

Method SG TG SML
Total RMSE 9336.9 3934.9 3765.6

Table 1: Total RMSE (in kilobytes) for 680 anomaly-
free measurements for gravity (SG), tomogravity (TG) and
spline-based (SML) models.

The mean value x̄ T G(k) is also used as an estimate σ̂2
k of σ2

k ,

which leads to an estimate Φ̂ of Φ (quite efficient and suffi-
cient in practice). In this estimation step, it is not necessary
to know γ2

t as explained in [21].
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for 680 anomaly-free measurements.

Fig. 2 shows the error RMSE(t) over the set T
◦
b. The x-

axis of the figure has no time meaning and it corresponds to

the index of each measurement. The sum
√

∑t∈T
◦
b

RMSE(t)2

on this time period is computed in Table 1 as a global in-
dicator to compare the methods. Clearly, the spline-based
estimate gives better results than the others. To verify the
spatial Gaussian assumption, residuals Ut are computed for
each t ∈ T

◦
b. The Kolmogorov-Smirnov test [18] at the level

5% accepts the Gaussian hypothesis for 670 of these mea-
surements (acceptation 98.5% of the time).
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Figure 3: Approximation of real OD flows (full lines) by the
spline-based model (dashed lines).

Typical non-anomalous OD flows, sorted in the increas-
ing order of their volume of traffic, are shown as functions
of time t in Fig. 3. Since the “shape” of sorted OD flows is
almost constant over the time, only a few sorted OD flows
are plotted. The SML estimated profiles of the OD flows are
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Type of situation Spline-based PCA

Normal working 672 (98.82 %) 673 (98.97 %)
False alarms 8 (1.18 %) 7 (1.03 %)
Missed detections 9 (22.50 %) 35 (87.50 %)
Correct detections 31 (77.50 %) 5 (12.50 %)

Table 2: Results of the detection for 720 measurements com-
posed of 680 anomaly-safe measurements and 40 anomalous
measurements for the spline-based and PCA tests.

also plotted on the same figure with dashed lines. It shows
that the “shape” of the OD flows is well modeled by the pro-
posed spline-based model and is stable over the time. Hence,
the spatial stationarity assumption is quite reasonable.

5.3 Numerical validation of the detection algorithm

The detection algorithm is applied to the SNMP measure-
ments of the testing data set. For the detection purpose, it is
crucially important to have a good estimate of the noise level
γ2

t . This parameter is estimated from the short anomaly-free
data set by using the ML estimate of noise variance [21] in
residuals Ut . Since this parameter can slowly vary in time,
its value is updated during the test. During the test, at time
t, if no anomaly has been declared one hour before, γ2

t is
estimated by its value one hour before.

The results are presented in Table 2. The second col-
umn shows that the proposed test obtains a false alarm rate
of 1.18% comparable with the prescribed level of false alarm
α = 0.01. The probability to detect a volume anomaly is
about 77.5%. The third column presents the results obtained
by the PCA test described in [6]. The threshold of this test is
chosen to obtain a similar false alarm rate of 1.03%. Clearly,
the PCA test is not as sensitive (correct detection rate about
12.50%) as the proposed test. Indeed, the PCA decompo-
sition of SNMP measurements is too rough to detect small
(but significant) anomalies. Finally, Fig. 4 shows the correct
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Figure 4: Correct detection rate versus false alarm rate for the
spline-based test (solid line) and the PCA test (dotted line).

detection rates of the spline-based test and the PCA test for
different false alarm rates varying between 0 and 1. For ex-
ample, for a correct detection rate of 80%, the false alarm
rate of the spline-based test (≈ 2%) is clearly better than that
of the PCA test (≈ 70%). Hence it can be concluded that the
numerical results confirm the theoretical properties of the de-
tection method and shows that the proposed test outperforms
the PCA approach, at least for the Abilene data set.

6. CONCLUSION

The problem of anomaly detection in OD traffic volume from
SNMP measurements has been considered as a statistical
hypotheses testing problem with nuisance parameters (non-
anomalous traffic). Since the number of SNMP measure-
ments is significantly lower than the number of OD flows, an
original linear spline-based parsimonious model is proposed
to describe the non-anomalous traffic and to overcome the
ill-posed nature of the SNMP measurement model. Results
obtained with real data traffic from a United States back-
bone network show that both the OD traffic matrix estima-
tion and the volume anomaly detection approaches outper-
form the methods previously applied in the field.
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