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ABSTRACT 

The paper first deals with the design of Rayleigh fading 

channel simulators based on a Moving Average (MA) model. 

We present a new approach to estimate the model parame-

ters based on the inner-outer factorization. The core of the 

approach consists of assimilating an infinite-order MA 

model to the outer spectral factor of the channel power 

spectral density (PSD). This outer factor, which leads to a 

causal minimum-phase filter, is first evaluated inside the 

unit disk of the z-plane. Then, we propose to compute the 

Taylor expansion coefficients of the outer factor since they 

coincide with the model parameters. This has two advan-

tages: unlike other simulation techniques, the first p pa-

rameters remain unchanged when one increases the model 

order from p to p+1; in addition, our approach offers the 

possibility of selecting an appropriate model order for a 

given mean error bound. Then, we extend this approach to 

ARMA models to weaken the oscillatory deviations from the 

theoretical PSD in the case of AR models, or low peaks at 

the Doppler frequencies for MA models. A comparative 

study with existing channel simulation approaches points 

out the relevance of our ARMA model-based method. 

1. INTRODUCTION 

When designing communication systems based for instance 

on CDMA techniques or when conceiving new receivers 

and studying their performances, channel simulation is one 

of the steps to be carried out. 
p
 

In an environment with no direct line-of-sight between 

transmitter and receiver, the marginal distributions of the 

phase and of the amplitude of the channel process are uni-

form and Rayleigh respectively. In addition, the theoretical 

power spectral density (PSD) of the real and imaginary 

parts of the fading channel samples is U-shaped and has 

two infinite peaks at the normalized maximum Doppler 

frequency ± df : 
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while the corresponding normalized discrete-time autocor-
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relation function is given by the zero-order Bessel function 

of the first kind: 
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Given these assumptions, various families of channel simu-

lators have been proposed. 

For instance, Jakes’ fading model [5] based on a sum of 

sinusoids (SOS) makes it possible to generate time-

correlated waveforms. In [7], Patzold et al. compare the 

statistical properties of this simulator with those of the 

underlying stochastic reference model. They conclude that 

sufficient results can be expected with 10 or more sinu-

soids. However, as independent channels cannot be easily 

simulated with this kind of model, Dent et al. [2] propose to 

weight the sinusoids by orthogonal random codes such as 

Hadamard ones. As an alternative, filtering-based ap-

proaches can be considered: 

On the one hand, the filter can be designed in the fre-

quency-domain. Thus, in [9], the authors combine a filter-

ing step and an inverse discrete Fourier transform (IDFT). 

Although Young et al. [12] manage to reduce the computa-

tional cost of this approach, all samples have to be gener-

ated by using a single fast Fourier transform. Due to the 

IDFT, this off-line simulation requires a large memory stor-

age. 

On the other hand, the filtering can be carried out in the 

time-domain. This is the case of simulators based on 

ARMA, AutoRegressive (AR) or Moving Average (MA) 

models. This approach may be a priori questionable. In-

deed, as the PSD of the real and imaginary parts is bandlim-

ited, the channel process should be deterministic, according 

to the Kolmogorov-Szegö formula1. However, unlike the 

SOS methods, the linear stochastic models are quite simple 

and few parameters have to be estimated, making these 

approaches very popular both for channel simulator design 

and Kalman-filter based receiver design in mobile commu-

nication system. Thus, in [6], the transfer function associ-

ated to the ARMA model corresponds to a 3
rd
 order But-

terworth low-pass filter. Nevertheless, choosing this filter 
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leads to a poor approximation of the channel properties. In 

the method proposed in [8], a sub-sampled ARMA process 

followed by a multistage interpolator is considered. Ac-

cording to the authors, this combination makes it possible 

to select low orders for the ARMA process. Nevertheless, 

only a very high down-sampling factor can lead to a PSD 

which is never equal to zero and hence allows the simulated 

channel to match the theoretical channel properties. 

In various papers including [1] and [11], the authors sug-

gest using a p
th
 order AR process because it can generate at 

most p resonances in the PSD [11]. However, when select-

ing a 2
nd 
order AR model whose parameters are obtained by 

solving the Yule-Walker equations, the two peaks of the 

PSD are located at 2/df±  instead of ± df  [11]. When 

the AR order is higher than 2, the channel autocorrelation 

matrix used in the Yule-Walker equations becomes ill-

conditioned [1]. To overcome this problem, Baddour et al. 

[1] suggest adding a very small bias 2σ  in the main diago-

nal of the autocorrelation matrix of the channel (e.g., 
2σ =10

−7
 for df =0.01). This leads to modeling the channel 

by the sum of the theoretical fading process and a zero-

mean white process with variance 2σ . 

In [10], the authors model the channel by a finite-order 

Moving Average (MA) process. The MA parameter estima-

tion consists of designing a FIR filter by means of the win-

dow method. Indeed, the impulse response coefficients, 

namely the MA parameters, are estimated by first taking the 

inverse Fourier transform of the square root of the theoreti-

cal PSD of the channel, by windowing it and then by shift-

ing it in time. However, the first p MA parameters change 

when increasing the model order from p to p+1. Another 

solution to estimate the MA parameters is based on 

Durbin’s method [4]. Since this method turns the MA pa-

rameter estimation issue into a set of two of AR parameter 

estimation problems, the channel autocorrelation matrix 

used in the Yule-Walker equations may be ill conditioned. 

Hence, Baddour’s ad-hoc solution [1] must be considered. 

In addition, like Verdin’s approach [10], the selection of the 

model order has to be addressed. 

In this paper, to estimate the channel model parameters and 

select the model order, we propose to consider the inner-

outer factorization, which has been used so far in informa-

tion theory, system theory, control and filter design [3]. 

Thus, when dealing with MA modeling, the corresponding 

transfer function can be expressed as the product of: 

• the inner function which can be seen as an all-pass 

filter; 

• the outer function which is causal and has its zeroes in 

the closed unit disk in the z-plane; hence, this corre-

sponds to a minimum-phase filter. In addition, the 

square absolute value of the outer function on the unit 

circle in the z-plane equals the theoretical PSD of the 

channel. Furthermore, among all functions which have 

the same absolute value on the unit circle in the z-plane, 

the outer function is the one with the largest absolute 

value outside the unit disk.  

In the following, we suggest using an infinite-order MA 

model whose transfer function coincides with its outer 

function. This approach is then extended to the ARMA 

model. Since finite-order models are rather considered in 

practical case, the approach we propose makes it possible to 

tune the upper bound of the error, in absolute value, be-

tween the theoretical PSD and the simulated one. Hence, 

this tuning leads to criteria for the model order selection. In 

addition, it should be noted that with our method, the first p 

parameters are unchanged when increasing the model order 

from p to p+1.  

The paper is organized as follows: section 2 deals with the 

estimation of the model parameters and the selection of the 

model order. It also describes the numerical implementation 

of the estimation method. Section 3 shows how the MA 

approach can be adapted to the ARMA models. In the last 

section, a comparative study illustrates the benefits of the 

proposed ARMA methods with respect to the methods pro-

posed in [4] , [10] and [1]. 

2. INNER-OUTER FACTORIZATION FOR 

 MA MODEL 

2.1 Mathematical overview 

Let )(nh  be an infinite-order MA process defined as fol-

lows: 
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where { }
0≥kkb  are the real MA parameters and )(nx  is a  

zero-mean white noise sequence with unit variance. If )(nh  

has its PSD equal to the channel’s theoretical density thS , 

the corresponding transfer function ∑
≥

−=
0
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k

k
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Given (4), the function G  is a spectral factor of 
thS . 

In the following, to use the classical inner-outer factoriza-

tion setting of the Hardy spaces theory over the unit disk in 

the z-plane instead of its exterior, we rather deal with the 

function ∑
≥

=
0

)(
k

k
kMA zbzF  instead of )(zG . Indeed, since 

{ }
0≥kkb  are real, one has: 

 
2

*
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It is known [3] that all the functions )(zFMA  satisfying (4) 

are of the type: 

 )()()( 0 zFzUzFMA =  (6) 

where U  is any inner function and 0F  is the unique outer 

function satisfying (4), provided that thS  is log-integrable; 
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otherwise, (4) has no causal solutions as a consequence of 

Kolmogorov-Szegö formula. 

For the sake of simplicity, we consider the particular case 

where 1)( =zU , meaning that the spectral factor MAF  is 

outer. Selecting any other function will only affect the ar-

gument of )(zG . 

The method we propose operates in two steps: 

• the outer function 0F  is evaluated in the z-plane on a 

circle of radius 1<r , by using the Poisson integral rep-

resentation defined as follows: 
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• the MA parameters { }
0≥kkb  are obtained by using 

( )
)2exp(0 πυjrz

zF
=

. Indeed, the MA parameters coincide 

with the coefficients of the Taylor series of the outer 

function ( )zF0 : 
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Hence, { }
0≥kkb  can be obtained through the Cauchy formula: 
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Remark 1: as suggested in [1], the channel PSD must be 

slightly modified to be log-integrable. Here, it corresponds 

to the product of two factors defined as follows: 

 







≤

−=

elsewhere1

if
1

)( 22
d

d
U

ff

fffS π  (9) 

and 




 +≤

=
elsewhere

)1(if1
)(

ε

ξ dflat ff
fS  (10) 

where the parameter ε  guarantees the log-integrability 

condition whereas ξ  allows the compensation of the offset 

of the frequency peaks at df . In counterpart, it affects the 

decay of the PSD at df . In the following, mod
0F  denotes 

the outer function computed with (7) where the theoretical 

channel PSD thS  is replaced by the modified PSD, namely 
flatU SS . 

Remark 2: in practical case, a truncated version of the MA 

model ∑
=

=
p

k

k
kp zbzF

0

)(  is considered. Selecting the model 

order by minimizing the following criterion 

fjjj
p

jth eedeFeSJ πθθθ θ 2
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cannot lead to a finite value of p. For this reason, we sug-

gest searching an upper bound of that criterion for a given 

order p. Hence, one has: 
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At that stage, given a prescribed error bound 

)21(20 df−> πεδ , there is always a minimum value for 

the model order p that satisfies: 

 22
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In the next section, we present a way to estimate the Taylor 

coefficients of the outer function of the channel PSD, in 

practical case. 

2.2 Implementation 

Since the integrand in (7) cannot be computed analytically, 

we suggest estimating the values of the outer function for a 

finite number of points on a circle of radius 1<r  in the 

z-plane. 

For this purpose, let us introduce N values of the discrete 

PSD { } 12/,,2/)/( −−= NNm
U NmS

…

. Given df , N must be 

chosen high enough so that the discrete version of the PSD 

can be relevant. Then, for a given radius r, the outer function 
UF  of US  can be computed by using the discrete version of 

the Poisson integral formula (7) for 2/2/ NnN <≤− : 
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where ∗  denotes the convolution. Thus, (13) can be im-

plemented through a fast convolution algorithm. Moreover, 

the outer function 
flatF  of flatS  is expressed by: 
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To calculate the Taylor coefficients, the following discrete 

version of eq. (8) is considered: 
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It should be noted that (14) can be implemented as a 

weighted FFT of )/()/( NnFNnF flatU ⋅ .  

Therefore, the algorithm requires ( )NNO log  operations. 

3. INNER-OUTER FACTORIZATION FOR 

 ARMA MODEL 

Let us now consider the ARMA process )(nh  defined by: 

 ( ) ( ) ( )∑∑
+∞

==

−+−−=
01 k

k

q

k

l knxbknhanh  (15) 

The corresponding transfer function:  

)(

)(

1

)(

1

0

zA

zB

za

zb

zF
q

k

k
l

k

k
k

ARMA =

+

=

∑

∑

=

−

+∞

=

−

 

satisfies: 
( )

)()(
2exp

2
fSzF th

fjz
ARMA =

= π
 

We choose the denominator )(zA  to be a second-order 

polynomial with roots equal to dfj
e

πρ 2±
, with 10 << ρ  

and close to 1. Therefore, the numerator )(zB can be de-

fined as follows: 
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To evaluate the outer function of )(zB , thS  in eq. (7) is 

replaced by the right side of eq. (16). Then, the parameters 

{ }
0≥kkb  can be estimated by using the method presented in 

Section 2 based on (8). Moreover, since a finite polynomial 

approximation of the outer factor of )(zB  has no roots  

equals to dfj
e

πρ 2±
, the resulting transfer function still ad-

mits two poles equal to dfj
e

πρ 2±
. This leads to a better 

fitting of the model PSD in a small neighborhood of Dop-

pler frequencies. 

4. COMPARATIVE STUDY 

In this section, we compare the proposed simulators with: 

• the AR-based simulator [1],  

• the MA-based simulator given in [10] and, 

• Durbin’s method for MA parameter estimation [4]. 

For the MA and ARMA channel simulators we propose, N 

is set to 4096 samples. The parameter r is assigned
2
 to 0.98 

whereas ε  and ξ  are set to 0.0125 and 0.025 respectively. 

These values are chosen experimentally for a compromise 

between the maximum Doppler frequency offset and the 

                                                           
2 Simulations showed that when 965.0<r  and 998.0>r , the square 

of estimated MA model diverges from the theoretical PSD. 

PSD decay. For the ARMA-based model, different values 

of the pole modulus, namely ρ, have been heuristically cho-
sen in each scenario. 

To compare the various simulators, we introduce three cri-

teria.  

The first criterion is the mean error dJ  defined as follows: 
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The second and third criteria are two quality measures, de-

fined in [12], i.e. the mean power and maximum power 

margins meanG  and maxG : 
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where xC  and xĈ  are the DD×  covariance matrices of 

respectively the theoretical channel and the simulated chan-

nel processes and 2
Xσ  is set to the unity in this case.  

According to various test we carried out
3
 and given in table 1 

and figure 1, the proposed MA-based method and Verdin 

simulator provide close results and outperforms Durbin-

based method.  

According to table 1 and figures 2 and 3, the ARMA-based 

approach outperforms the other solutions. More particularly, 
in figure 2, the PSD obtained with the ARMA(2,298) is very 

close to the theoretical PSD both in low frequencies and in 

the neighborhood of the Doppler frequency whereas Bad-

dour’s AR-based approach
4
 gives important oscillations in 

the range ( )dd ff ,−  and has a maximum peak offset at 

Doppler frequency.  
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Figure 1 - PSD of MA-based simulators with 05.0=df . 

                                                           
3
 For MA(p) and AR(p) models the number of parameters is the 

order p. For ARMA(p, q) models the number of parameters is 

qp + . For the criteria, we the set 131072=L  and  1024=D . 
4
 The AR-based approach requires )( 2orderO operations when 

using Levinson recursion. 
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Table 1 

Evaluation of error dJ and quality measures meanG  and maxG  for various simulators 

  dJ  )dB(meanG  )dB(maxG  

number of 

parameters  01.0=df  05.0=df  01.0=df  05.0=df  01.0=df  05.0=df  

Proposed ARMA  0.8829     0.2650 1.0971     0.5078  1.1476     0.5183 

Baddour AR [1]     0.5570     0.6317     1.5935     2.4487     1.7659     2.6832 

Proposed MA     0.9765     0.4271     4.0550     6.2141     4.2897     6.4728 

Verdin MA [10]     0.6040     0.3591     3.2063     3.0014     3.4206     3.1852 

50 

Durbin MA [4] 0.9859  0.4961 4.6373 10.4704 4.8668 10.7523 

              

Proposed ARMA      0.4090     0.1290     0.7908     0.1765     0.8171     0.1818 

Baddour AR [1]     0.8008     0.3382     2.1303     0.7204     2.3946     0.7940 

Proposed MA     0.6432     0.2940     7.6300     4.0548     7.9383     4.2852 

Verdin MA [10]     0.5307     0.3428     3.0998     2.0063     3.3135     2.1541 

120 

Durbin MA [4] 0.8234 0.3762 8.4128  9.4176 8.6786 9.7032 

            

Proposed ARMA     0.2364     0.0772     0.3451     0.0875     0.3796     0.0927 

Baddour AR [1]     0.5695     0.2475     0.5434     0.1830     0.7038     0.2514 

Proposed MA     0.4267     0.1670     5.3696     1.5923     5.6463     1.7150 

Verdin MA [10]     0.3831     0.1963     1.9042     0.9865     2.0559     1.0713 

300 

Durbin MA [4] 0.5850 0.2489 11.8706 7.4949 12.1374 7.7233 
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Figure 2 - PSD of simulators with 05.0=df  and 300 parameters. 
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Figure 3 - PSD of simulators with 05.0=df  and 50 parameters 

5. CONCLUSIONS 

In this paper, we have investigated the relevance of inner-

outer factorization for Rayleigh fading channel simulator. 

We have proposed a new method to estimate the model pa-

rameters both for MA and ARMA models. The comparative 

study we have carried out confirms that our ARMA-based 

simulator outperforms the other approaches. 
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