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ABSTRACT

In this paper 1 , we investigate the finite-length system performance
of turbo-equalized systems over frequency-selective block-fading
channels for packet data transmissions. First, we derive a tight up-
per bound on the frame error rate (FER) performance of the sys-
tem under maximum-likelihood sequence estimation based on an
approximation of the Euclidean distance distribution at the output of
the noiseless inter-symbol interfering channel. Then, we show that
the intersymbol interference can be viewed as an additional fading
factor depending on the channel selectivity, but also on the coding
scheme and the interleaver type. By introducing the interference-
to-fading ratio, we evaluate the impact of the interference in the
performance degradation compared to the effect of the fading. We
show that a two-stage interleaver structure is needed to achieve cod-
ing diversity and turbo-equalization gain.

1. INTRODUCTION

In data packet communication systems over frequency-selective
channels, turbo-equalization [1] is an efficient technique that com-
bines signal detection and error correction in an iterative scheme
leading to substantial gains in intersymbol interference (ISI) miti-
gation in comparison with systems using disjoint signal detection
and correction. System performance is usually addressed in terms
of bit error rate (BER) in the context of static ISI channels using
iterative detection and decoding approaches based on EXIT chart
analysis [2] assuming infinite coded sequence [3]. However, in data
packet communication systems, a finite packet length is used, and
system performance is actually measured in terms of frame error
rate (FER) rather than of BER. Finite length system performance
can be predicted by the analytic assessment of the corresponding
maximum likelihood (ML) receiver.

The performance of maximum likelihood sequence estimation
was first analyzed by Forney [4, 5] for uncoded transmission over
static ISI channels. Upper and lower bounds were derived based
on the Euclidean distance distribution at the output of the noiseless
ISI channel. This distribution is estimated using a trellis-based ap-
proach using the state diagram of the channel to calculate the trans-
fer function of the channel. In [6], the authors proposed to upper
bound the performance of a serially concatenated turbo-coded sys-
tem, assuming uniform interleaving. This approach was applied to
a turbo-equalized system by viewing the ISI channel as a rate-1 trel-
lis encoder. This approach has been applied in [7, 8] to the case of
turbo-equalized systems over partial response channels. However,
for a multipath-fading channel, where the channel is time-variant,
trellis-based approaches can not be applied, because the transfer
function depends on the particular channel realization. For this type
of channels finite length system performance was essentially stud-
ied by means of numerical simulations like in [9].

In this paper, we propose a novel approach for the evaluation
of the Euclidean distance distribution at the output of uncorrelated
block fading ISI channels, based on the autocorrelation functions of
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the error sequence and channel response. We found evidence that
union bounds provide tight FER approximation (eventhough the
bounds are loose for BER evaluation) of turbo-equalized systems
with finite frame length. In particular, we show that a two-stage
interleaver is needed for the block diversity transmission scheme
to achieve simultaneously coding diversity and turbo-equalization
gain.

The remaining of this paper is organized as follows. In Section
2, we introduce the turbo-equalized system model with block diver-
sity. In Section 3, we address the problem formulation. In Section
4, we investigate the distribution of the Euclidean distance at the
output of noiseless ISI fading channel and we derive an approxima-
tion of this distribution in order to evaluate a tight upper bound on
the FER performance. In Section 5, we discuss the diversity issues
in the turbo-equalized system and the interleaver structure. Finally,
conclusions are given in Section 6.

2. SYSTEMMODEL

We consider a bit-interleaved coded communication system with
B-blocks diversity as shown in Figure 1. A sequence of K informa-
tion bits d is encoded into a sequence c

′ of N coded bits using a rate
R=K/N linear error correcting code (ECC). The coded sequence of
bits is then interleaved using a random interleaver of length N which
in turn is mapped into a sequence of symbols x using a binary phase
shift keying (BPSK) modulation alphabet {−1,+1}. The modu-
lated sequence x is then divided into B blocks (x1, · · · ,xB) of equal
length M = N/B, assumed to be an integer. Each block of sym-
bols xb = (xb,1, · · · ,xb,M) for 1 ≤ b ≤ B is transmitted through an
ISI channel modeled by its equivalent discrete time finite impulse
response of length L denoted by hb = (hb,0, ...,hb,L−1), which is
assumed to be constant over a block period but changes from one
block to another. We assume that channel tap coefficients are mod-
eled by real-valued independent and identically distributed (i.i.d.)
Gaussian random variables with zero mean and variance 1/L. Ac-
cording to this model, the received sequence samples corresponding
to the b-th transmitted block are given by,

rb,m =
L−1

∑
ℓ=0

hb,ℓxb,m−ℓ +wb,m, m= 1, · · · ,M,

where wb,m is an independent additive white Gaussian noise

(AWGN) with variance σ2
w. The average signal to noise ratio (SNR)

is defined by ρ = Es/N0 = Es/(2σ
2
w). At the receiver side, we con-

sider a turbo-equalizer for iterative detection and decoding with per-
fect channel state information. In order to characterize the FER, we
extend the union bound on the FER under maximum likelihood se-
quence detection and decoding initially proposed by Benedetto [6]
for serially concatenated codes.

3. MAXIMUM-LIKELIHOOD PERFORMANCE

In this section, we present a novel approach to extend Benedetto’s
upper bound to the case of ISI channels. We apply the proposed ap-
proach to uncorrelated time variant channels. Let X denote the
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Figure 1: Model of a turbo-equalized system over frequency-selective block-fading channels.

ensemble of the 2K possible transmitted sequences. The maxi-
mum likelihood receiver estimates the transmitted sequence x by
the coded sequence x̂ taken from X given by

x̂ = argmin
x∈X

B

∑
b=1

||rb−hb ∗xb||2.

For a given set of channel realizations H = {h1, · · · ,hB}, the pair-
wise error probability (PEP) between two arbitrary coded sequences
x and x̂ is given in [4] by

P2(x, x̂|H ) =Q

(

√

d2
E (x, x̂|H )ρ/2

)

, (1)

where Q(x) = 1√
2π

∫+∞
x e−t

2/2dt, and

d2
E (x, x̂|H ) =

B

∑
b=1

d2
E (xb, x̂b|hb), (2)

is the squared Euclidean distance between x and x̂ at the output of
noiseless ISI block-fading channels which depends on the error se-

quence between the pair of coded sequences e , x̂−x. Therefore,
the Euclidean distance will be denoted in the rest of this paper as

a function of the error sequence as d2
E (e|H ). It can be evaluated

within each block by

d2
E (eb|hb) , ‖hb ∗eb‖2 =

M+L−1

∑
m=1

∣

∣

∣

∣

∣

L−1

∑
ℓ=0

hb,ℓeb,m−ℓ

∣

∣

∣

∣

∣

2

, (3)

where the first sum on the right hand side is performed over M+
L− 1 symbols to take account of the dispersive nature of the ISI
channel. Moreover, we assume that symbols outside a block period
are known by the receiver and consequently the corresponding error
values are assumed to be identically zeros i.e. eb,m = 0 for m /∈
[1,M].

Assuming a uniform interleaver, and by extending the results
of [6], the union bound on the average FER performance of the
maximum-likelihood receiver, denoted by Psub, conditioned on a
particular set of channel realizations H is given by

Psub(ρ|H ) ,∑
d2
E

A(d2
E |H )×Q

(

√

d2
Eρ/2

)

, (4)

where A(d2
E |H ) is the output squared Euclidean distance enumer-

ator of the concatenated system defined by,

A(d2
E |H ) ,

N

∑
d=dmin

Ac(d)× A
ch
d (d2

E |H )
(

N
d

) , (5)

where dmin is the minimum free distance of the ECC, Ac(d) is the
output weight enumerator of the ECC defined as the total number of

binary error sequences with Hamming weight d, and Achd (d2
E |H ) is

the input-output Euclidean distance enumerator of the ISI channel,
defined as the average number of binary error sequences with Ham-

ming weight d and output squared Euclidean distance d2
E , where the

average is taken over X .
Since the error function Q(.) is a rapidly decreasing function,

the dominant terms in the union bound are those with low error
weight d. The first term Ac(d) depends on the used code and can
be evaluated in different ways. Since we are interested in an up-
per bound, Ac(d) can be upper bounded as in [6] by neglecting the
length of the error events compared to codeword length N, as fol-
lows

Ac(d) ≤
kmax

∑
k=1

(

RN

k

)

∑
d1,··· ,dk

d1+···+dk=d

a(d1)×·· ·×a(dk), (6)

where a(di) are the output weight enumerators of error events of the
ECC and kmax = ⌊d/dmin⌋.

The main problem in evaluating (5) arises from the evaluation

of the term Ach
d

(d2
E |H ). Most of previous works has addressed this

problem in the context of static channels using enumeration tech-
niques, hence computationally prohibitive for large channel mem-
ory, like in [10] and references therein. We present in this paper a
novel approach in the evaluation of the Euclidean distance distribu-
tion which provides an analytical tool to predict channel effects on
the Euclidean distance and can be applied for general static chan-
nels as well as time variant channels.

We start by first noticing that the quantity

Pd(d
2
E |H ) ,

Achd (d2
E |H )
(

N
d

) (7)

can be interpreted as the conditional probability of obtaining a

squared output Euclidean distance d2
E with a weight d error se-

quence given H . For the BPSK mapping scheme, the non-zero
elements en of the error sequence take their values from the ensem-
ble {−2,+2} depending on the transmitted symbols xn in such a
way that x+e is a valid coded sequence. A given binary error se-

quence of weight d with fixed error positions, can generate one of 2d

signed error sequences e depending on the transmitted sequence x.
By averaging over X , we assume that each signed error sequence e

can be obtained with equal probability P= 2−d as long as d << K.
This is equivalent to assuming error elements as independent. The
same simplifying assumption was made by [7] justified by the use
of a high rate linear code. Under this assumption the conditional
probability in the equation (7) can be rewritten as

Pd(d
2
E |H ) ,

Ãch
d

(d2
E |H )

2d
(

N
d

) (8)
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where Ãch
d

(·) is the total number of signed error sequences e ∈ Ed

leading to a squared Euclidean distance d2
E , where Ed denotes the

ensemble of all signed error sequences with Hamming weight d

with cardinality |Ed |= 2d
(

N
d

)

. The independence assumption is tra-
duced in (8) by a probability space extension.

Now, instead of enumerating the quantity Ãch
d

(d2
E |H ) as in [10]

for example, we evaluate directly the probability Pd(d
2
E |H ) over

the probability space Ed . This is a true probability mass function

(pmf) of the discrete random variable d2
E . By averaging (4) over

all possible channel realizations, d2
E becomes a continuous random

variable with probability density function (pdf) denoted by fd(d
2
E )

and, consequently, the sum over d2
E is converted to an integral as

follows

Psub(ρ) =
∫ ∞

0

N

∑
d=dmin

Ac(d)Q
(

√

xρ/2
)

fd(x)dx. (9)

In order to evaluate the upper bound (9), we must determine the
pdf of the squared Euclidean distance over all error sequences and
channel realizations. This is the subject of the next section.

4. OUTPUT EUCLIDEAN DISTANCE DISTRIBUTION

Since all transmitted blocks undergo independent channels with the
same statistics, we first evaluate the effect of the channel on a sin-
gle block. By developing the squared sum in (3) and performing
some algebraic computations, we can rewrite the squared Euclidean
distance for the block b under the form

d2
E (eb|hb) = R0(hb)R0(eb)+2

L−1

∑
ℓ=1

Rℓ(hb)Rℓ(eb), (10)

where Rℓ(x) is the aperiodic autocorrelation function (AACF) at lag
ℓ of the sequence x of length M defined by

Rℓ(x) ,
M

∑
m=1

xmxm−ℓ, for |ℓ| ≤M−1,

with xm = 0 form /∈ [1,M]. Note that the first term on the right hand
side of (10) is the squared Euclidean distance over an equivalent ISI-
free fading channel, whereas the second term includes the effect of
ISI on the Euclidean distance. In order to separate the fading effect
from the ISI effect on the Euclidean distance, we rewrite (10) as the
product of independent random variables as follows

d2
E (eb|hb) = R0(eb)Γb(hb)Θb(eb,hb), (11)

where
Γb(hb) , R0(hb),

Θb(eb,hb) , 1+2
L−1

∑
ℓ=1

R̃ℓ(hb)R̃ℓ(eb),

where R̃ℓ(·) denotes the normalized AACF by R0(·). Under uniform
interleaving, the error weight d is distributed randomly over the fad-

ing blocks with ∑Bb=1 db = d. Conditionally to a given block error
weight db within the current block, we have R0(eb) = 4db. The
random variable Γb is the channel gain which follows a Gamma
distribution (independent of b) with shape parameter α = L/2 and
scale parameter β = 2/L with pdf denoted by fΓ(γ) given by

fΓ(γ) =
1

βαΓ(α)
γα−1e−γ/β , (12)

with mean and variance given by

µ(Γb) = αβ = 1, σ2(Γb) = αβ 2 =
2

L
. (13)

The interference random variable Θb can be interpreted as an addi-
tional fading factor which quantifies the Euclidean distance fluctu-
ations due to the selectivity of the channel which depends on db. To
characterize the distribution of the Euclidean distance, we need to
characterize the distribution of Θb. Unfortunately, Θb is a combi-
nation of related random variables whose joint probability density
function is difficult to derive analytically in general [11]. Therefore,
the distribution of Θb can only be analytically assessed through an
approximation. By contrast, exact expressions for the main statisti-
cal characteristics of Θb including the mean and the variance, can
be derived and will be used for the pdf approximation.

4.1 Mean and variance

The out-of-phase autocorrelation coefficients of the error sequence
Rℓ(eb) are discrete random variables. It can be easily verified that
they are pairwise uncorrelated with zero mean using the fact that er-
ror elements are assumed i.i.d. with zero mean. Using this property,
it can be shown (demonstration details are omitted for brevity) that
the variance is given by

σ2(Rℓ(eb)) = 16(M− ℓ)
db(db−1)

M(M−1)
, 1 ≤ ℓ ≤M−1. (14)

Similarly, autocorrelation coefficients of the channel Rℓ(hb) are
continuous random variables which are pairwise uncorrelated. The
out-of-phase autocorrelation coefficients Rℓ(hb) are zero mean with
variance

σ2(Rℓ(hb)) = (L− ℓ)/L2, 1 ≤ ℓ ≤ L−1. (15)

Using (14), (15) and the fact that Rℓ(eb) and Rℓ(hb) are indepen-
dent, we can show from (10) and (11) that

µ(Θb) = 1, σ2(Θb) = 2
db−1

db
× L−1

L+2
× 3M−L−1

3M(M−1)
. (16)

Note that variance is zero for L = 1 or db = 1, which corresponds
respectively to an ISI-free channel or to an isolated error. Also, for
L << M the variance of Θb decreases linearly with the block size
M, whereas the value of the variance is not significantly affected for
increasing values the other two parameters db and L.

4.2 An approximation for the Euclidean distance distribution

The first step in investigating the distribution of Θb is to determine
its support. For normalized channel gain (Γ(hb) = 1), it is shown
in [12] that the squared Euclidean distance is lower bounded by a

certain minimum value d2
E ,min which depends on the channel length

whatever was the channel response. This gives a lower bound on

the interference variable θmin = d2
E ,min/4db. The maximum value

θmax is less important for system performance and lay out of our
interests.

Additional information about the shape of the distribution of
Θb can be obtained by noting that Θb = 1 for all error blocks with
isolated error elements separated by at least L positions regardless
of the channel response, because for these sequences, all out-of-
phase AACF Rℓ(eb) will be identically zeros. In fact, the probabil-
ity of such sequences, denoted by Pz, forms a lower bound on the
conditional probability of Pr(Θb = 1|db).We find by combinatorial
enumerations the value of Pz as

Pr(Θb = 1|db) ≥ Pz =
(

M− (db−1)(L−1)

db

)

/

(

M

db

)

.

which is a decreasing function of db. Numerically, for N = 256 and
L = 5 we find pz = 0.97, 0.72, 0.21 for db = 2, 5, 10, respectively.
We approximate the distribution of the remaining error sequences
by a truncated Gaussian distribution over [θmin,θmax] with the vari-

ance σ2
ISI = σ2(Θb)/(1−Pz). Finally, we deduce the conditional
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Figure 2: Distribution of the interference random variable Θb for
L= 5 and M = 256 for different values of db.

pdf of Θb:

fΘb(θ ) = P0
1−Pz
√

2πσ2
ISI

e−(θ−1)2/(2σ2
ISI) +Pzδ (θ −1),

where P0 is a normalization factor due to the Gaussian truncation,
and δ (x) is the Dirac distribution defined as δ (x) = 1 for x = 0,
and δ (x) = 0 otherwise. Figure 2 shows the curve fΘb(θ )dθ for

dθ = 0.01 compared with a simulated pdf obtained by 106 error
sequences over random channels with L = 5 for different values of

db. From [12] (Table I), we have d2
E ,min = 0.2679 for an error se-

quence of weight db = 2, which yields to θmin = 0.134. We observe
that our approximation is very close to the actual distribution for
low values of db. For high error weights, the tail of the actual dis-
tribution decreases more slowly than the Gaussian tail and presents
a slight asymmetry around the average. Using this approximation,
we can now evaluate the upper bound on FER given in (9) in the
case of a single block transmission (B = 1). The upper bound can
be rewritten using the new variables θ and γ as follows,

Psub(ρ) =
∫

γ

∫

θ
∑
d

Ac(d)Q
(

√

2dγθρ
)

fθ (θ ) fγ(γ)dθdγ . (17)

Because of the convexity of error function Q(.), performing
summation over d and limiting the obtained error probability by
1 before integration over channel statistics leads to a tight upper
bound as explained by Malkamaki and Leib in [13]. We evaluate
the upper bound in two steps. First, we evaluate the average er-
ror probability over interference statistics for a fixed fading level as

function of the instantaneous SNR ρ ′ , γρ ,

PISI(ρ
′) =

∫ ∞

0

(

∑
d

Ac(d)
fΘ(t/d)

d

)

Q
(

√

2ρ ′t
)

dt, (18)

where the change of variable t = dθ was used. Then we average
obtained error probability over fading statistics after limiting error
probability by 1 as follows

Psub(ρ) =

∫ ∞

0
min

{

1,PISI(ρ
′)
} fγ (ρ

′/ρ)
ρ

dρ ′.

Figure 3 shows the obtained upper bound for a rate 1/2 recur-
sive, systematic convolutional (RSC) code with generator polyno-
mial (1,5/7)8 in octal notation. The frame length is N = 1204 and
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Figure 3: Upper and lower bounds on FER in the system over ISI
fading channels with B= 1, L = 5, and N = 1024.

the channel length is L = 5. Simulation results were obtained by a
maximum a posteriori turbo-equalizer after 5 iterations. The lower
bound on FER shown in the same figure is the corresponding lower
bound for a fading channel without ISI. We remark the obtained up-
per bound is within only 1dB from the lower bound over all SNR
range.

4.3 Interference to fading ratio

In order to compare the impact of Θb on the system performance
in comparison with Γb, we define the interference to fading ratio
(IFR) by

IFR ,
σ2(Θb)

σ2(Γb)
. (19)

By substituting (13) and (16) in (19), we have

IFR =
db−1

db
· L(L−1)

L+2
· 3M−L−1

3M(M−1)
. (20)

Typically, the IFR has a very small value for practical system pa-
rameters. For example, when M = 256 and L = 5, we find IFR ≤
0.01 for any value of db.

This shows that the ML system performance is essentially dom-
inated by channel fading rather than ISI. Therefore, the effect of the
ISI on the distance distribution can be neglected (Θb ≈ 1) for the
considered channel model. The system performance can be approx-
imated by the performance of the coded system over an equivalent
ISI-free flat fading channel following the Gamma distribution given
in (12). For B > 1, the Euclidean distance analysis becomes com-
putationally prohibitive. Consequently, we resort to the asymptotic
analysis.

5. BLOCK DIVERSITY AND INTERLEAVER DESIGN

In this section, we investigate the asymptotic system performance
for high SNR values and the effect of the interleaver type on the
diversity gain in the system. For the equivalent flat fading channel
model, the total squared Euclidean distance can be expressed using
(2) and (11) by

d2
E =

B

∑
b=1

4dbΓb,

which is a linear combination of i.i.d. Gamma distributed random
variables with random coefficients db. Obviously, the blocks with
db = 0 do not contribute to the diversity in the system. We denote
by W (e) the random variable that gives the number of blocks for
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which db 6= 0. This random variable is called block diversity. A
higher value ofW is translated into a better diversity gain υ defined
in [14] as the asymptotic slope of the FER curve as function of the
SNR in log-domain

υ = − lim
ρ→∞

log(FER(ρ))

logρ

Under uniform interleaving assumption, the minimum value of
block diversity W is always 1 for any value of B, and the asymp-
totic slope of the FER for high SNR will be the same as for B = 1
because there is a non-zero probability of having an error sequence
with all its non-zeros error elements grouped in a single block. In

fact, the weights vector d , (d1, · · · ,dB) follows a multivariate hy-
pergeometric distribution. We can show by combinatorial analysis
that the exact pmf ofW is given by

pW (w) =

(

B
w

)

(

N
d

)

w

∑
i=1

(−1)w−i
(

w

i

)(

iM

d

)

.

The proof is omitted for the sake of space limitation. Therefore,
a random interleaver is not a suitable choice for turbo-equalized
systems under block diversity transmission scheme. For block fad-
ing channels, a class of linear block codes called maximum dis-
tance separable (MDS) codes, have been optimized [15, 16] using
cyclic interleaving (or multiplexing) to maximize the block diver-
sity. Cyclic interleaving alone is not sufficient to decorrelate mod-
ulated symbols as required by the turbo-equalizer. We propose to
use a two-stage interleaver formed by a length-N cyclic interleaver
in tandem with B random interleavers of length M. The cyclic in-
terleaver multiplexes the codeword over the B blocks, whereas each
random interleaver is performed over a single block.

In order to show the performance of the turbo-equalized system
using the proposed interleaver, we have simulated the FER perfor-
mance for B = 4 using three types of interleavers: a random inter-
leaver, a cyclic interleaver, and a two-stage interleaver. The other
system parameters are the same as previously used to obtain Figure
3. Simulations results are reported on Figure 4.

Note that the cyclic interleaver achieves the optimal diversity
gain of the code given by the outage probability, but it has a poor
turbo-equalization performance due to the local dependency be-
tween transmitted symbols. Conversely, the random interleaver
achieves a good turbo-equalization performance but it has a poor
diversity gain. Whereas, the two-stage interleaver achieves simulta-
neously the diversity gain of the code and a good turbo-equalization
performance.

6. CONCLUSIONS

In this paper, we present a new approach to evaluate the Euclidean
distance distribution at the output of a frequency-selective channel.
For single block transmission, we develop an approximation of the
distance spectrum for uncorrelated block-fading ISI channels. We
apply this approximation to evaluate a tight upper bound on FER
performance based on the uniform interleaver approach. We show
that the ISI is insignificant compared to the fading for ML detection.
Moreover, in the case of multiple block transmissions, we propose a
two-stage cyclic-random interleaver to meet simultaneously coding
diversity and turbo-equalization requirements.

REFERENCES

[1] C. Douillard, A. Picart, P. Didier, M. Jezequel, C. Berrou, and
A. Glavieux, “Iterative correction of intersymbol interference:
turbo-equalization,” European Trans. Telecommun., vol. 6, pp.
507–512, Oct. 1995.

[2] S. ten Brink, “Convergence of iterative decoding", IEEE Elec-
tron. Lett., vol. 35, pp. 806–808, May 1999.

[3] N. Sellami, A. Roumy, and I. Fijalkow, “A proof of conver-
gence of the MAP turbo-detector to the AWGN case,” IEEE
Trans. Signal Process., vol. 56, pp. 1548–1561, April 2008.

[4] G. Forney Jr., “Maximum-likelihood sequence estimation of
digital sequences in the presence of intersymbol interference,”
IEEE Trans. Inf. Theory, vol. 18, pp. 363–378, May 1972.

[5] G. Forney Jr., “Lower bounds on error probability in the pres-
ence of large intersymbol interference,” IEEE Trans. com-
mun., vol. 20, pp. 76–77, Feb. 1972.

[6] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Se-
rial concatenation of interleaved codes: performance analysis,
design, and iterative decoding,” IEEE Trans. Inf. Theory, vol.
44, pp. 909–926, May 1998.

[7] M. Oberg and P. H. Siegel, “Performance analysis of turbo-
equalized partial response channels,” IEEE Trans. Commun.,
vol. 49, pp. 436–444, March 2001.

[8] A. Ghrayeb and M. El-Tarhuni, “On the performance of turbo
equalization for precoded ISI channels," Wireless Commun.
and Mobile Comput., vol. 6, pp. 431–438, Jan. 2006.

[9] H. Samra and Z. Ding, “A hybrid ARQ protocol using inte-
grated channel equalization,” IEEE Trans. Commun., vol. 53,
pp. 1996–2001, Dec. 2005.

[10] J. Li, K. R. Narayanan, and C. N. Georghiades, “An efficient
algorithm to compute the Euclidean distance spectrum of a
general intersymbol interference channel and its applications,"
IEEE Trans. Commun., vol. 52, pp. 2041–2046, Dec. 2004.

[11] S.M. Kay, A.H. Nuttall, and P.M. Baggenstoss, “Multidimen-
sional probability density function approximations for detec-
tion, classification, and model order selection,” IEEE Trans.
Signal Process., vol. 49, pp. 2240–2252, Oct. 2001.

[12] W. Ser, K. C. Tan, and K. C. Ho, “A New Method for determin-
ing "unkonwn" worst-case channels for maximum-likelihood
sequence estimation" IEEE Trans. Commun., vol. 46, pp. 164–
168, Feb. 1998.

[13] E. Malkamaki and H. Leib, “Evaluating the performance of
convolutional codes over block fading channels,” IEEE Trans.
Inf. Theory, vol. 45, pp. 1643–1646, July 1999.

[14] L. Zheng and D. N. C. Tse, “Diversity and multiplexing: a fun-
damental tradeoff in multiple-antenna channels," IEEE Trans.
Inf. Theory, vol. 49, pp. 1073–1096, May 2003.

[15] M. Chiani, A. Conti, and V. Tralli, “Further results on convo-
lutional code search for block-fading channels," IEEE Trans.
Inf. Theory, vol. 50, pp. 1312–1318, June 2004.

[16] R. Knopp and P. A. Humblet, “On coding for block fading
channels," IEEE Trans. Inf. Theory, vol. 46, pp. 189–205, Jan.
2000.

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP


