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ABSTRACT
Application of spatial Independent Component Analysis
(ICA) to functional magnetic resonance imaging (fMRI)
subject to the simultaneously recorded electroencephalogra-
phy (EEG) signals as constraint, has been investigated in this
work. In this novel approach, the closeness between the time
course of spatial independent components of fMRI and EEG
signals during epileptic seizure period is introduced as the
constraint to the separation process. The performance of the
algorithm has been tested on a set of simultaneous EEG and
fMRI data and the results show a more accurate localization
of the blood-oxygenated level-dependence (BOLD) regions,
better algorithm convergence, and a higher correlation be-
tween the time course of spatial components and the seizure
EEG signals than the conventional ICA method.

1. INTRODUCTION

As one of the advanced brain function monitoring modal-
ities, fMRI provides high resolution spatial information
which helps visualization of the brain activation. Blood-
oxygenated level-dependence (BOLD) regions in fMRI re-
sult from event-related, movement-related, and abnormal
brain activities such as seizures. The most widely used ap-
proach for fMRI data analysis was developed by Friston et
al. (1995) [1], which is based on the general linear model
(GLM). Based on this model, the prior knowledge or spe-
cific assumptions about the time courses contributing to the
signal changes are required for model specification. There-
fore, the appearance of false BOLD regions or lack of BOLD
in places where the right stimulus cannot be modelled is in-
evitable by using this technique. This can happen in seizure
detection and localization using fMRI, when the ictal dura-
tion is short and the seizure onset is difficult to be specified.

In comparison with the common fMRI analysis, for
which the functional data are acquired from the designed ex-
periments, the fMRI data from epileptic seizures are very dif-
ferent. As the spontaneous brain activation caused by certain
functional disorders, the response of epileptic seizure is very
difficult to be modelled or to be predicted. Although in some
literature [2]-[3], some researchers have investigated the sta-
tistical parameter mapping of epileptic EEG and fMRI data,
the seizure spike mapping in their methods was strictly lim-
ited by carefully choosing the functional data that have dis-
tinguishable periodic seizure spikes, so that the spikes can
be used as the stimuli to construct the design matrix. Al-
though these approaches can work for the mapping of epilep-
tic spikes, but a very carefully chosen functional data and
marking the spikes accurately by clinical expert are required.
In such cases, a model-free method as ICA is more desirable
to detect the seizure active area without any preassumptions
about the seizure time course.

In contrast to the model-based GLM, the data-based
model relies on the data instead of prior information on stim-
uli or predefined brain functions. Spatial ICA (SICA), which
was proposed by McKeown et al. in [4] as the first applica-
tion of ICA to fMRI data analysis, has raised more atten-
tion recently. In this model, the fMRI data are considered
as the linear combination of a number of temporally or spa-
tially independent components, and no preassumptions re-
garding the stimuli responses are required. This is favorable
since the brain function and its hemodynamic response are
too complicated to simply choose a fixed predefined HRF
and to assume that the shape of HRF remains constant dur-
ing the events for all brain voxels. Although some research
have exploited temporal [8] and spatiotemporal [6] [12] ICA
for the analysis of fMRI data, more work reside in the SICA
due to the temporal dynamics of brain activities still remains
unknown and the computational cost is extremely high in the
temporal ICA approach.

The constrained ICA has also been applied to fMRI sig-
nal analysis in order to incorporate more prior information
into separation process. The prior information could ei-
ther take the fMRI time course into account, or as shown
in this work, use the temporal information from the EEG
data. Recent works have shown that the performance of ICA
for fMRI analysis will improve if some prior information is
incorporated into the estimation process [7]-[9]. Lu and Ra-
japakse [8] employed a predefined stimulus as the reference
signal in the temporal ICA model such that the output source
components are closest to the reference. Calhoun et al. pre-
sented a semi-blind spatial ICA [9], in which the constraint
is introduced by incorporating the GLM design matrix which
contains information on the fMRI time course. Although
these methods provided some promising results, their con-
straint still relies on GLM, therefore they are only suitable
for the case that the stimuli of the fMRI data can be pre-
specified. For an epileptic fMRI, these approaches cannot
work due to the difficulties of specification of the epileptic
seizures.

More recently the relationship between hemadynamic
and electrical activity has been investigated in animal [10]
and humans [11], which has shown that the amplitude of
hemodynamic response at the region of interest follows the
change of the amplitude of the evoked electrical response.
The connection between the components of ERP and fMRI
spatial maps has been examined in [12]. The results from
these studies suggested that hemadynamic response and
electrical activity have certain connection. In this work, a
novel constrained SICA (CSICA) method is proposed, in
which the relationship between the simultaneous recorded
EEG and fMRI has been introduced into separation process
as the temporal constraint.
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In the following sections, the SICA model is first briefly
described and the development of the CSICA algorithm is
explained. The experiment results are then presented. The
proposed method is applied to a set of simultaneous EEG and
fMRI data, the results are compared with an unconstrained
SICA. The better performance of CSICA is illustrated in
terms of algorithm improvement, correlation measurement
and seizure BOLD mapping in the brain.

2. METHOD

2.1 Spatial ICA

The first application of the spatial ICA model for fMRI
analysis was introduced by McKeown et al. in 1998 [4].
In this model, the brain areas executing different tasks are
assumed to be spatially independent and the fMRI data are
linearly combined by a number of independent components
associated with their time course of activation. As in a con-
ventional noise free instantaneous linear model, the mixing
process of the spatial ICA can be expressed as:

X = AS (1)

WhereX is aT×V matrix of the mixtures,T is the length
of the fMRI scan in terms of time samples,V is the number
of brain voxels involved in the analysis.A is aT×N mixing
matrix,N is the number of the unknown spatial independent
sources. S is a N×V matrix of unknown sources. From
this model, it can be seen that the fMRI signals can be de-
composed into a number of spatial independent components
S and their associated activation waveform (the time course
of activation)A. The unknown sources can be obtained by
estimating an unmixing matrixW and computing

Y = WX (2)

WhereY is anN×V matrix of the estimated sources, andW
is anN×T unmixing matrix to be estimated. In an optimal
case,W should be the pseudoinverse ofA, i.e. W† = A. (†
denotes pseudoinverse).

2.2 Constrained Spatial ICA

A recent work has shown that the performance of application
of ICA to fMRI analysis will improved if a prior informa-
tion is incorporated into the estimation process. As in [9],
Calhoun et al. presented a semi blind spatial ICA. In the ap-
proach, the constraint is introduced by incorporating GLM
design matrix which contains the information of fMRI time
course. The columns of the mixing matrix are constrained
according to the their closeness to the predefined design ma-
trix time course. At each iteration of estimation, the weight
parameters are updated not only based on the Infomax [13]
learning rules, but also by comparing their cross-correlation
with the time course from the design matrix. If the correla-
tion is lower than certain threshold, the weights will be re-
updated based on the constrained rule. However, this method
cannot work for seizure fMRI data because their constraint
still rely on the GLM.

In this work, we aim to incorporate the simultaneously
recorded EEG data into the fMRI separation process as the
constraint. As the columns of the mixing matrix represent
the time courses of the spatial components, the temporal con-
straint can then be added to the columns of the mixing matrix
such that EEG information can be taken into account.

The ICA algorithm is chosen as Infomax [13], in which
the separating matrix is updated by using the natural gradient
method as:

W(k+1) = W(k)−η(k)[I +ϕ(Y)YH ]W(k) (3)

WhereI is the identity matrix,η(k) is the learning rate at
iterationk. ϕ(·) is a nonlinear function which is selected as
ϕ(·) = 2tanh(·). (·)H denotes the conjugate transpose. A
new constrained update rule is formulated as

W(k+1) = W(k)−η(k)[I +ϕ(Y)YH +αΛ]W(k) (4)

whereα is an empirical adjustment factor which is adjusted
based on the algorithm performance to ensure that the algo-
rithm monotonically converge.Λ = diag{Λii}, i = 1, ...,N,
is a diagonal weight matrix containing the temporal infor-
mation about EEG data, which works as the constraint.Λ
can be formed as

Λ = diag(cor(W−1
i ,u)) (5)

wherecor(·) denotes the correlation measurement andu rep-
resents the seizure EEG reference after processing.W−1

i
represents each column of the mixing matrixA asW is the
pseudoinverse ofA. Based on this constraint, the temporal
information from EEG is taken into account in fMRI sepa-
ration because the columns of the mixing matrix represent
the weights of the time course of the components. The op-
timization process is subject to the correlation between the
ith column vector of the mixing matrix and the processed
EEG time seriesu. The seizure signalu has to be selected
carefully either by using a seizure detection technique, or by
choosing the seizure component from separation of multi-
channel EEG data, or based on the prior clinical information
about the seizure. In this work,u is chosen based on the prior
clinical information.

Therefore, according to Eq. (4), the constraint is added
into the Infomax algorithm learning process. In each update
iteration,W will be updated not only based on the Infomax
principle, but also based on the closeness of the columns of
W−1 to the processed EEG signal.

3. EXPERIMENTS AND RESULTS

3.1 Data detail

The simultaneously recorded EEG and fMRI data were ob-
tained from National Society for Epilepsy, University Col-
lege London (UCL). The fMRI data were acquired on a mod-
ified 3T GE Horizon system and EEG data were recorded by
Brain Product system. The length of EEG-fMRI data is ap-
proximately 5 mins before the seizure onset. The functional
data was acquired starting from the16th scan. In this experi-
ment, the functional data was truncated from the acquisition
20th till 107th, which is the scan just before seizure onset.
The first four scans were discarded in order to remove the ini-
tial gradient effect in the fMRI recording. Each acquisition
consists of 47 contiguous slices, the dimension of the images
is 64×64×47, the voxel size is3.75mm×3.75mm×2.5mm.
The interval between each scan, RT (Repeat Time) is 3
sec. The simultaneous 64 channel EEGs are sampled by
250Hz, and the scanner artifacts have been removed by data
provider.

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP



3.2 Preprocessing

(1)The raw fMRI sequences were processed in both spa-
tial and temporal domains using SPM (Statistical Parameter
Mapping). The preprocessing procedure included slice tim-
ing and realignment in order to mitigate the motion artifacts.
(2) The off-brain voxels were excluded from the image data
to reduce the data dimension. The data were then converted
from 4D to 2D format to be ready for application of the spa-
tial ICA. (3) In order to construct the reference vectoru in
Eq. (5), the signals from electrodes F8 and P8, which contain
the most significant seizure information, were selected based
on the clinical consultant suggestion. (4) The reference sig-
nal was filtered by a lowpass filter with the edge frequency of
15 Hz to keep the important seizure information (because the
frequency of seizure is in the range of 2.5 to 15 Hz [14],[15]).
(5) The difference in resolution between the EEG and fMRI
signal was solved by down-sampling the reference EEG and
up-sampling the column of mixing matrix.

3.3 Results

The SICA and the proposed CSICA were applied to the
processed fMRI data. In each iteration of CSICA, the cor-
relation between the column vectors ofW−1 and EEG refer-
ence vector was measured as the factor of constraint. Then
the unmixing matrixW was updated according to Eq. (4).
The performance of the two algorithms is compared in terms
of convergence (weights change), the correlation between
the seizure EEG reference and the corresponding columns
of the mixing matrix, and the mapping of the dominant com-
ponent from separation.

Fig. 1 gives the algorithm convergence graph. It clearly
shows that the proposed CSICA algorithm converges to a
lower minimum than that from SICA. Fig. 2 illustrates the
region of activation obtained from both algorithms. The level
of the activity is represented by the normalized standard de-
viation (z-value). The activation area is the brain area in
which the voxles have the z-value higher than the threshold
(1.5 in this experiment). The mapping of component (active
area) is then displayed by overlaying the area on the top of
high solution structure images. Based on the advices of the
clinical consultant, the highlighted part in the left frontal area
is caused by the MRI scanner noise, and the right temporal
area is verified to be within the epileptic zone. This has been
verified by clinical consultant. Also based on the clinical in-
vestigation, the small patch at the right temporal region is
more focussed in the result obtained from the CSICA.

Table 1 gives the maximum correlation coefficients be-
tween the column vectors of mixing matrix and the EEG ref-
erence, which were obtained by averaging five trials of each
algorithm. It can be seen that CSICA provides the higher
correlation between the columns ofW−1 and the seizure
EEG signal than that from the SICA.

Table 1:The maximum correlation between the EEG reference and col-
umn vectors of the mixing matrix.
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Figure 1: Comparison of algorithm convergence for the
SICA and the CSICA.

4. CONCLUSIONS

In this paper for the first time the simultaneously recorded
EEG seizure signal has been incorporated as the temporal
constraint into the separation of fMRI sequences and local-
ization of BOLD due to seizure using spatial ICA. The cor-
relation between these two modalities and its application is
indeed a challenging problem. The experimental results have
shown that the BOLD region as the result of seizure onset,
has been clearly highlighted using the proposed constrained
spatial ICA approach. This algorithm outperforms the ex-
isting unconstrained SICA algorithm in terms of algorithm
convergence and the closeness between the component time
course and the seizure EEG signals. Further improvement
in the performance may be achieved if a better mathemati-
cal modelling of the relationship between seizure EEG and
fMRI can be developed. More comprehensive evaluation of
the proposed method can be done if more dataset can be ex-
amined. This can be an agenda for future research in this
area. Nevertheless, the results presented here still are very
promising and can be further exploited in both separation
and localization of seizure signals in joint EEG-fMRI signal
processing.
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