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ABSTRACT objects. The hierarchical atlas is built in order that thsitian of
the regions defined in one layer is depending on the posifitineo
regions defined in the previous layer. The advantages ofhthge
registration with a hierarchical atlas are twofold. Fitsallows to
apply local matching constraints only on the objects thatrate-
vant to establish a point-to-point correspondence. Theeditices
the risk to fall in a local minima by registering first the otij de-
termining the position of other objects. However, this aiehical
image registration process is rather limited to applicetiorhere a
reference image can categorize a range of images. It is tells w
adapted to describe biological images due to the existimgiso
tency between anatomical structures of same type. Atldstrag
tion is already used in many medical applications such igisator
radiation therapy planning, automatic labeling of anatahstruc-
tures or morphological and morphometrical studies to bgrigr
knowledge in a segmentation task.

The hierarchical image registration suits well to the norapa
metric atlas registration framework we have recently preskin
[6]. This technique derived from the optical flow model ané th
active contour framework allows to base the registratioaroétlas
on selected structures. In this paper, we propose to eeatuaitsi-

1. INTRODUCTION multaneous segmentation and registration model on thffsretit
Image registration technigues aim at establishing a poipeint ~ tYPeS of image registration problems. In particular, wel whiow
correspondence between two images. The registrationeold e advantages of the hierarchical approach in our actinéooo-
treated as an optimization problem. Its goal is to find thesra Pased atlas registration framework and highlight the irgpare of
formation (or spatial mapping) that will bring a moving inesigto ~ the registration order of the anatomical structures. ,
alignment with a fixed image. In fact, registering two images- This paper is organized as follows. Firstly, in Section 2, we
sists to align their corresponding features. The classatifes that ~Present an overview of our non parametric atlas registrdtame-
can be extracted from the images to register correspontie iea- ~ WOrk introduced in [6]. Then, we describe how this framewcak
ture space. The search space is defined by the parameters of #€ improved by combining it with the hierarchical regisatap-
type of transformation selected to align the images. proach we have presented in [7]. After, in Section 3, we stuav t

Image registration problems are often solved hierarclyical Performance of our hierarchical registration model on 20 8B
Here we consider as hierarchical, the approaches thatstaase- medlcql images. Finally, results are discussed and cdnokigire
duce the registration problem in a simpler problem by lingjtthe ~ drawn in Section 4.
feature space and/or the search space. The solution oOfirthyiées 2 METHOD
problem is then used as initial condition for a more complebp '
lem, i.e. with more image features to register and/or morama- 2.1 Active Contour-based Atlas Registration M odel
ters to optimize. Afterwards, the process is repeated thaibrig-
inal image resolution and/or number of parameters is rehchiee

This paper proposes to apply the non parametric atlas ratist
framework we have recently developed in [6]. This technidae
rived from the optical flow model and the active contour fraroek
allows to base the registration of an anatomical atlas oected
structures. A well-suited application of our model is then migid
registration of medical images based on a hierarchicad.aflhis hi-
erarchical registration approach that we have previoughpduced
in [7], aims to better exploit the spatial dependencies ¢t be-
tween anatomical structures in an image matching procesisasic
idea is to first register the structures the most relevargtimate the
deformation in order to help the registration of secondamycsures.
This aims to reduce the risks of mismatching. Here, we pr@pos
to test our novel simultaneous registration and segmentatiodel
on different types of medical image registration probleiRssults
show the advantages to combine our active contour-baséstreeg
tion framework with the structure-based hierarchical apph and
highlight the importance of the registration order of thatamical
structures.

The main source of inspiration of our joint registration aset)-
hierarchical approach is mainly used to increase the gpbilia reg- mentation algorithm is the pgrtial der_ivative equation EB{pased
istration algorithm to recover large differences betwdenmoving ~ Method proposed by Vemuri et al. in [#2] The formulation of
image and the fixed image, to avoid to fall in a local minimum-du their model is intuitively deduced from the general levef olu-
ing the optimization of the transformation parameters gnaitch-  tion equation (1) introduced by Osher and Sethian in [9].

ing), or to speed up the registration process.

Common methods proposed so far to reduce the feature space og(xt) _
generally consist to reduce the image resolution, oftendmaase to ot~ k) =viwxt)|Owx 1), 1)
fine multiresolution approach [2], and/or to extract partac image
features, as the contours, by image filtering [5]. In [7], wepwse 1There exists also a variational energy-based approadatéttby Yezzi

to reduce the feature space by selecting with a hierarchitze, the et al. in [13]. We chose the PDE-based approach becausenissewre

image objects to consider at each level of the registratioogss. flexible to solve joint registration and segmentation peaid notably in the
The main objective of our approach is to exploit the spaékdtion-  choice of the attractive and regularization terms compptie speed func-
ships that exist between neighboring regions in the registrtask.  tion.

In [7], we describe the hierarchical atlas as an image coatgo$ 2The level set method is the non parametric model of the activéour

several layers. Each layer contains a subset of the moviagem technique.



wherev is the velocity of the flow or speed function that contains registration force) at each point of the level set functidhe level
the local segmentation and contour regularization comssrand  set function models the contours of the objects selectedeimtlas
@y is the signed distance function often used to representiémpl to drive its registration. We show in Sections 2.1.2 and3tHhat a
itly the active contour (AC) by its zero level. The originalee  large variety of active contour segmentation models cansee in
brought by Vemuri’s model is to replace, in (4 by the inten-  the registration process.

sity function of the image to register (the moving image).ugh

the level sets considered in the segmentation processsporrd to  2.1.2 Label Function Representation

the contours naturally present in the moving image, i.e.ctii®es ¢ gigned distance function representatigncan be used with

of high image gradient. A dense deformation field is then gene 5y tyne of forces derived from the active contour framew(see
ated by tracking the deformation of these level sets duliegseg-  gection 2.1.3). However, this representation can model revo

mentation process. The main advantage of this model usg thyions only. As we said, the intensity function represeatairo-
intensity function, is to register any type of contours §ld, open,  nsed by Vemuri et al. in [12] can model any type of contours
connected or disconnected) unlike the signed distancaiunthat = ;¢ it can only be used with pixel-based registration forc@®
can only model closed and disconnected contours. Howeer, t qne with these limitations, we propose to represent theeacbn-
gggsgéﬁ?neagzna?ésgobni%g:2\3’biiglé'ngi'snéiglétshgeltexgles.‘ml s cgz tours selected in the atlas by a label functigr. This label func-
e.g. local intensity differences between both images osiatein zfn szrg'ts t?q_?i)f |nekakn€a[r1b|trellqr}yifn;21?26r V?/L;?ggnfs?ﬁe‘fﬂo
the patient image, can lead to missregistration. MorecsieGe ; k== T 10 = ><ks .ok .
this Eontour rep?esentation does not pe?mit to select smmi(:(l)cn- labeled region and s the number of regions. In this representation,
tours or closed regions in the atlas, the Vemuri's modehistéid to active contours are modeled by the discontinuitiegofThe main

pixel-based segmentation forces only. That means thatthigel ~ advantage of the label function representation is to djsishn re-
cannot use in the registration process typical segmenttioes of ~ 910NS by using only one function. However, this represémtaoes
the AC framework such as boundary-based and region-baseesfo not contain the polarity information (information indiazg the in-
(see Section 2.1.3). Unlike [12], our registration modedfige to ~ S1d€ and the outside of a modeled region) necessary to certipait
use forces developed in the AC framework since it is basedhen t '€gion-based forces of the AC segmentation framework. ,Ties
general level set approach [9]. Moreover, we propose to lband Introduced in the general formulation of our model (7) a tiore
the registration of multiple regions by modeling the actioatours ~ X) € {~1,0.1} in order to generate the polarity information. The

with a label function objective of this function is to adapt the orientation of gradient
' v @ based on local label values such that it always gives the-pola
21.1 Deformation Field Extraction ity of the current region, i.eS(x) v @_ is always oriented from the

. . . . inside to the outside of the region (see [6] for more detailor
The general formulation of our model is derived from the kiag model). With the label function representation, the gelnferanu-

of the signed distance function motion with the optical lddF)  |ation of our registration model (7) becomes:
approach [3]. The OF technique assumes that the brightrfess o

the moving image, here the level set functigp stays constant for au(x.t)

small displacements and a short period of time: ot = Sxviax+u(xt),0))

V@ (X+u(x,t),0)
|V @ (X+u(x,t),0)|

™
@W(xt) = @(x+dut+di) = da(xt) =0, (3 2.1.3 Registration / Segmentation Forces

wheredu is the instantaneous deformation vector field digg is

the total derivative ofgy. By using the chain rule, this optical flow u v
. . . . Forces: |—=-v——
constraint can be rewritten as the evolution equation of ciove a vy
flow: ——
du(x,t) _ Pt (th) V%(XJ) (3) Regularization Attraction
(9t | v %(th)‘ | v %(th)‘ ) (mean c’urvature) .
. Lo e aiv| Y Pixel-based Object-based
where @y, given by (1), represents the variation of the level set [\v¢| V= ()= B+ 1,0)
function according to the desired forces such as supensegd Boundary-based  Region-based
mentation, shape prior knowledge or contour regularipatithus, vs  (region competition)
by introducing the evolution equation of the level set segfaigon 7
model (1) in (3), we obtain the following formutaerging the active i ., _ 1 \sstatistical region
. . . h . __Typical Forces of AC Models with g = ——— descriptor
contour segmentation framework with the image registratask " Forces also used in OF Models 1+[v7]
du(x.t) _v(@(x 1) V@xt) (4)  Figure L: Classification of the AC forces according to théfeeat in
ot T @(X.1)] a contour matching process.
The level set functiorgy does not evolve with the usual finite dif- Figure 1 summarizes the different types of forces cominmfro
ference scheme. Its position at tihés given by the deformation  the AC segmentation framework that can still be used in tige re
field u(x;t) and the initial level set functiogy (x,0) such that: istration process. The most useetjularization forceof the AC
framework is the mean curvature force. This force smoothes t
@(xt) == @(x+u(xt),0), (5)  level sets by minimizing their length. They can be appliecaog

type of contour representation. Thixel-based forceare based on
the smallest image feature, the pixel value. They allow toall
registration of the whole moving image domain or selectegbres.
Pixel-based forces are the typical segmentation forcebefQF

with @y (x,0) is the initial active contour position. This ensures that
the evolution of the level set function exactly correspotmshe
current deformation. Introducing (5) in (4) yields to:

au(x,t)
ot

= —v(@(x+u(xt),0)) V@ (x+u(xt),0) . (6 SWe note that in the active contours segmentation framewbekjdea

T 7 @y (X u(x,t),0)| of using labels to perform a multiphase segmentation hastigcbeen pre-

sented (see for instance [8]). The difference with our werkhat this rep-

This equation corresponds tbe general formulation of our AC- resentation has been proposed for particular variatiomaigy-models and
based atlas registration moddt defines a displacement vector (or we present a scheme for any type of PDE-based models.



model. In AC model, these forces are rather used to incluede iners defined in the hierarchial atlas are registered. Theigtizt the

tensity or shape prior knowledge in a segmentation procHssse
forces can match any type of contours (closed or open) andlsan

registration of the structures of one hierarchical laydpsiéhe seg-
mentation of the structures of the next ones as in the usoakps

be used with any type of representation. However, they ang ve the global registration helps the local registration. katésult part,

sensitive to image noise and are limited to recover smadb reedi-
tions. Theobject-based forcesan register image regions. If we
apply an object-based force on each point of a signed distamc-
tion, every level set will collapse to the closest targettoanin the

we will see that the order in the structures registratiomigadrtant
for the good convergence of the matching process.

In [7], we have used a mutual information-based BSplines al-
gorithm similar to the method proposed by Rueckert et al1@j fo

target image. So, they need to be computed only on the zegb levregister each layers of the hierarchical atlas to the tangage. In

set of the signed distance functigr or around the interface of the
labeled functiong_. Finally, region-based forceare very efficient
forces of the AC framework because they are much less sengiti
noise than thdoundary-based forcesThey can also perform su-
pervised segmentation, i.e. they can use prior knowledgacrd
from a reference image. For the atlas-based applicatiorzidess
in this paper, we use a registration force based on mearstiat
is inspired by the unsupervised region-based segmentatamel

this paper, we propose to use the region-based forces ofavet n
active contour-based atlas registration model to regibpbjects
defined in the hierarchical atlas. The advantage of our nalel
gorithm is that it is more flexible than the BSplines alganitto
include local constraints in the registration processstFit is spe-
cially designed to base the registration on structurectslery an
atlas. Then, we will see in Section 3.1) that it can also muadtei-
out any special scheme, a tumor growth in an atlas. In ordalsto

proposed by Chan and Vese [4]. This force is derived from theconsider in the registration process the variation of teduwf the
following energy designed to be minimal when the mean of a reimage objects or open contours, we propose to perform thé fina
gion Q defined in the target image by the evolving level set functionstep of the hierarchical registration process with the rioestl reg-

is close to the mean of the corresponding region in the mnefere

image:E = [o [1(X) — pi "™ [2dx+ fo_ |1(X) — udi’ |2dx where
Qin is the image area inside the contour &l is the image area
outside the contoumprior is the prior mean of a given region ex-
tracted from a reference image (the atlas) bistthe intensity func-

tion of the image to segment. The corresponding speed amcti
is: v =(1(x) = "2+ (1(x) — pb")?. This mean-based force
assumes that corresponding regions between the referaddde
target images have similar me4nslote thatuP"°" does not evolve
during the registration process. Hence it is computed oncthe
reference image in a pre-process step. At each iteratienglig:
placement computed on the active contour is extended to tiogew
image by linear diffusion. Then, the transformation is ¢aieed
to be bijective with the technique proposed by Thirion in][1Hi-
nally, the registration process is speeded up with a meéioiution
approach.

The main advantage of our active contour-based atlas ragist
tion model is that it allows to base the registration of aastn
selected objects. Registering particular objects of amgamaill in-
evitably influence the position of their surrounding obgedtie to
the dense deformation field interpolation. To take benefithsf
spatial dependance in the atlas registration process, ogoge in
the next section to combine our atlas registration modé thi¢ hi-
erarchical atlas registration approach we have previaosigduced
in [7].

2.2 Hierarchical AtlasRegistration Approach

Figure 2 illustrates the AC-based registration procesgiatting the
hierarchical approach. To register a moving image to a fimeabie,
the usual method begins to align globally the images withra-pa
metric registration algorithm. This first step allows witliesv de-

istration forces of our atlas registration framework, tirepbased
forces. Pixel-based forces can be computed on the wholeeimag
domain if the atlas is consistent with the fixed im2age only on
selected regions.

In this paper, the hierarchical approach will be especiadlgd
to combine in a registration process the advantages of tierre
based forces and the pixel-based forces of our active-uoi@sed
framework.

Local Registration

Global
Registration

Parametric
Algorithm

Pixels

Pixel-based
Forces

Fixed
Image

Moving
Image Object-based
Forces

Hierarchical Approach

Degrees of Freedom——————p +

Figure 2: Active contour-based atlas registration proogsgrating
the hierarchical approach.

3. RESULTS

3.1 AtlasRegistration on a Brain MR Image with Tumor

Figure 3 shows preliminary results obtained in a tumor gnomg-
plication. This experiment aims to illustrate the effecttad region-
based registration forces and its usefulness in an hidcalchtlas
registration process. The atlas and the patient imageseapec-
tively shown in Figures 3(a) and 3(b). These images corrmspo
to 2D slices extracted from 3D brain MR images. We note that
the patient image contains a tumor not present in the atlameA
voxel seed (shown by a red point) has been inserted insidatthe

grees of freedom to put both images in the same position are th |as to model a tumor growth. The difference between the tumor

to bring their corresponding contours closer. In this waovk, have
used an affine registration algorithm. Then, a registraigorithm
according much more degrees of freedom to its transformasio
used to recover the possible variabilities that we can hateden
both images especially if they come from different patieritfie
hierarchical approach we have proposed in [7] permits téoper
this second step progressively by limiting the number oft@améa
cal structures to register. The first layer of the hierarobmtains a
subset of structures that are the most relevant to competeetior-
mation field. The resulting deformation field is then usednitsai
condition for the registration of the next layer of the hiety. This
next layer includes the next most relevant structures tistegbut
also the contours of the first layer in order to keep a congtia
their registration. Afterwards, the process is repeat¢itithe n lay-

4possible intensity differences between both images caadeed in a
pre-process step by histogram matching.

growth model we have previously presented in [1], is that seied
simply corresponds to the initial position of an active camtand
not to a special tumor growth model. With this method, the pre
segmentation of the patient tumor is not require as with aar p
vious method because the active contour is going to segrhent t
tumor of the patient image during the registration proc&se. con-
tours copied on all these images are contours selected iatldme
(the head in green, the brain in yellow, the ventricles inebdund
the tumor in red). Our active contour-based algorithm pesria
select the atlas contours that will drive its registratibmthis case,
the registration was performed following the registratéthe head
contour and the tumor growth. The rest of the image just fadlo
the deformation interpolated from the displacement of #lected
contours. Figure 3(c) shows the segmentation result cidadfter

5Here, we consider two images as consistent if there exisira fogpoint
correspondence between each objects of both images.



the region-based registration of the external contour@fisad and
the tumor. Figure 3(d) shows the computed deformation fiéld.
can see that the registration of the selected green and redure
has brought the yellow and blue contours closer to theietazgn-
tours. This object-based registration points out the apdgpen-
dance that exists between anatomical structures. Thissisplatial
dependance that we would like to exploit in the image regjfigtn.
However, as we have only based the registration procesdextes
contours of interest, the probability of registration esracreases
more we are far from these contours. To cope with this linatat
we propose for the next medical application to use regisetand
pixel-based forces and to combine both these forces withitre
archical approach.

(d)

Figure 3: Active contour-based registration of an atlas domaén
MR images presenting a large occupying tumor. a) Intensiasa
with objects of interest (the head in green, the brain inoyelithe
ventricles in blue, and the tumor one-voxel seed in red). #AsA
contours superimposed to the patient image. c) Resultsegbtht
segmentation and registration driven by the external corabthe
head and the tumor contour. d) Computed deformation field.

3.2 Compensation of Intra-Operative Brain Shift

Image-guided surgery aims at bringing pre-operative mftdion to
the surgeon during the procedure. Most often, this involegss-
tering pre-operative images with the patient in the opegatbom.

First we have tested our simultaneous registration and segm
tation algorithm by applying region-based forces on themxl
contour of the brain and lateral ventricles for the 2 codrseales
and pixel-based forces on the whole image volume for thedsigh
scale. Figure 4(b) shows the results with the region-baseze$.
We can see that these forces have permit to reduce signifi¢caat
deformation due to the brain shift (see the lateral vergsidhown
by the red arrow) and that the registration errors increases we
are far from the contours considered to drive the registnatsee
the internal sulci shown by the yellow arrow). Figure 4(cdwh
the final result after the pixel-based registration. Theodehtion
of the internal sulci is now also compensated (see yelloavgtr
Figure 4(d) shows the whole computed deformation.

Figure 4: Registration combining region-based and pixealell
forces (Target contours in green). a) Initial differencg Region-
based registration. ¢) Region-based and pixel-basednatips. d)
Computed deformation.

We have then compared the registration results by usingd-pixe
based forces only, region-based forces only or by combirggimpn-
based and pixel-based forces with the hierarchical apprdégure
5(a) shows an axial view of the registration obtained witkepi
based forces for the 3 resolutions. Figure 5(a) shows thstrag
tion obtained with region-based forces for the 3 resol&tioRig-
ure 5(b) shows the registration obtained with the regiosedeand
pixel-based forces combined with the hierarchical apgroddter

A number of methods have been developed for this purposél Untthat, we have measured the registration errors of thesstratpn

late 80’s, these have involved rigid body registration tegbes.
Although rigid body techniques have proven clinically wdeft
has been shown that brain deforms during the surgical puweed
The main factors causing this deformation include the Iés®re-
brospinal fluid (CSF), the injection of anaesthetic agearid, the ac-
tions of the neurosurgeon (such as resection and retractidhen
this is the case, rigid body transformations are not suffidie reg-
ister accurately pre- and intra-operative information.e§é defor-
mations can significantly diminish the accuracy of neurdgetion
systems. Therefore, it is of great importance to be able tmtify
and correct these deformations by updating preoperatiegimg
during surgery.

For this application,
sate the intra-operative brainshift between two intraatpez 0.5
Tesla MR brain imagé&s(image size: 256x256x60, voxel size

0.9375x0.9375x2.8nn?). Both these images have been aligned

with an affine registration algorithm to account for patiemive-

ment within the magnet. Figure 4(a) shows a coronal view ef th

moving image. The contours of the target image have beerdopi
in green on this Figure in order to visualize the deformatioe
to the brain shift. One can very well observe the brain shittie
direction of the earth’s gravity, as well as the shrinking!lué |at-
eral ventricles. The registration processes describemhbghs per-
formed with 3 resolutions. The computing time is in avera@e 5

minutes (120 iterations per resolutién)

6These images come from the Surgical Planning Laborator)(&Rhe
Harvard Medical School. We would like to thanks the Prof. @iriwarfield
for having giving us the access to those data.

"The times given in this paper are related to a computer wighfolr
lowing characteristics: Intel(R) Pentium(R), 4 CPU, 2.8 GH.00 GB of
Ram.

our model was tested to compen-

by using landmarks. Figure 5(d) shows in red the landmar&s th

we have manually selected in the source image and in green the

landmarks that we have manually selected in the target imdge
that the landmarks 1 to 3 have been selected on the cortidatsu
The landmarks 4 and 5 on the ventricles, the landmarks 6 amd 7 o
internal sulci and the landmark 8 on the border of the edenhe. T
eventual errors due to the manual selection of these lardnhave
to be taken into account in the analysis of these quanttaésults.

e
4

'S

> * 4
GENE o)
@ (b) (© (d)
Figure 5: Comparison between pixel-based registratiogione
based registration and, combined region-based and passebreg-
istration. a) Pixel-based. b) Region-based. c) Combingibme
based and pixel-based. d) Landmarks points superposed tarth
get image. Source landmarks in green. Target landmarkslin re

Table 1 presents for each landmark, the measurements of the

Euclidean distances between the deformed moving landnzentts
the target landmarks. These distances are givenrm This table
indicates in its first line the initial distances betweengbarce and
target landmarks. The following rows show the final distaobe
tained after applying the registration forces indicatedtanleft of
the table.

From these results we can draw the following conclusions:



structures closer to their target contours. This time tigésteation

Table 1: Distances irmm between the deformed source land- respects the hierarchical approach.

marks after the region-based registration and the landsmaudn-

ually placed on the target image. 4. CONCLUSIONS
ical Surf: icl | Sulci d. d . . .
———J—Sregte e [ fendsue | B Bo®l The main advantage of the atlas registration framework we ha
. 512 | 1120 | 186 || 378 | 439 || 224 | 239 748 recently developed in [6] is that it allows to base the regtiin
fegon || 138 | as | 1es || v | 33| Jos | am || Bae of an atlas on selected structures thanks to the regiord e
Region+Pixel || 118 | 326 | 138 || 245 ] 245 |] 171 | 171 226 mentation forces coming from the Active Contour (AC) method

Registering selected structures of a medical image willliptably
influence the position of their surrounding objects due todanse

e Table 1 shows that the region-based forces have allowed to réléformation field interpolation. To take benefit of this splatle-
duce significantly the differences between landmarks esen f Pendance in the atlas registration process, we have profoseis
away from the contours selected to drive the registration. paper to combine our simultaneous segmentation and retstr

e We note a clear difference between the pixel-based retjisira Model with the hierarchical image registration approachhaee
and the combined region-based and pixel-based registrisio ~Previously introduced in [7]. Such structure-based hirmal reg-
the landmarks located in the middle of the shifted corticat s iStration approach implies to study the existing depenigsnbe-

face, i.e. the landmarks number 1 and 2. The brain shift hag";‘e_err]‘ anatomica:] structul;es of a megi?al image and ttwo db;ghrm
been better recovered by applying a region-based registrat WHich structures have to be registered first. Here, we haver
al ; : that a tumor growth in an atlas can bring the surroundinggiras
before the pixel-based registration. ; ; X
closer to their target contours, that the region-basecefoderived
3.3 Neck CT Images from the AC framework can be useful to recover an intra-ofpeya
) o . brain shift, that the hierarchical approach permits to comthe ad-
In this application, we have studied the type of structuresn@ed  yantages of the region-based and pixel-based forces irsirapn
to register first to follow the concept of the hierarchicapagach.  process and that the hardest structures as bones have tpstenesl
For this experiment we have used two 3D neck CT images. Theystin an atlas. An interesting future work on the hieracehatlas
original size of these images are 512x512x62 with a pixed siz  regjstration approach would be to study the dependancesitiqo
0.9375x0.9375x4.0nm To I’educe the Computatlon t|me, we haVe between anatomica' structures in different types Of médinage

subsampled and cropped these images to a size 120x150x28 (piin order to better exploit this prior knowledge in atlas stgition.
size 1.875x1.875x8m). The first column of Figure 6(a) shows

the initial difference between both images. The gray levelge is REFERENCES

the moving image. The contours drawn on the panels corréspor{1] M. Bach Cuadra, et al., “Atlas-based segmentation dfiplag-
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