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ABSTRACT

In many magnetic resonance spectroscopy (MRS)
applications, one strives to estimate the parameters
describing the signal to allow for more precise knowl-
edge of the analyte. Typically, MRS signals are well
modelled as a sum of damped sinusoids that has
properties that are partly known a priori. FREEK, a
recently proposed subspace-based parameter estimation
method allows for inclusion of such prior knowledge.
More specifically, FREEK assumes that there is a con-
stant frequency spacing (say ∆) between the damped
sinusoids, which is exactly known. However, any errors
in this prior knowledge will affect the accuracy of the
estimates. Herein, we present an extension of FREEK,
making it robust to such errors by allowing ∆ to lie
in a small interval and utilizing a robust estimate of
∆ in the estimation of the remaining parameters. The
proposed approach is numerically shown to provide
robust estimates of the sinusoidal parameters at various
noise levels in the presence of mismatch between the
actual and the assumed spacing.

1. INTRODUCTION

Magnetic resonance spectroscopy (MRS) is a non-
invasive analytical technique able to provide biochem-
ical signatures of various analytes. The technique is
widely used in medical diagnosis and several biochemi-
cal studies [1, 2]. From a signal processing perspective,
MRS signals can most commonly be represented as sums
of damped sinusoids whose individual parameters, such
as frequency, amplitude, and damping, provide direct
information about the identity, concentration and dy-
namics of the molecules of the analyte (see, e.g., [3]).
Accurate estimation of these parameters is, therefore,
a well-known and important problem in MRS applica-
tions, and several parameter estimation methods exist
in the literature [4–10]. Among these, subspace-based
methods, e.g., HSVD [4], HTLS [6] etc., are particu-
larly attractive because of their high level of automa-
tion, requiring minimal user involvement or expertise.
However, these methods do not take into account the
generally a priori known relations between the param-
eters of groups of signal modes, commonly referred to
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as multiplets [11–13]. Further, several MRS applications
allow the user to concentrate on only a small band of the
frequency spectrum. This reduces both the out-of-band
interference and the computational cost, since only the
frequency-selected data is considered [14,15].

Recently, a number of singular value decomposition
(SVD) based algorithms have been proposed in litera-
ture with the aim of incorporating some or all of the
aforementioned features. In particular, the KNOB-
SVD [13] algorithm allows for inclusion of prior knowl-
edge, SELF-SVD [16] extends HSVD to frequency-
selected version and FREEK [15] combines the features
of the KNOB-SVD and SELF-SVD algorithms. Specif-
ically, for a multiplet of interest, FREEK assumes that
the modes have the same damping constant and that
there is a constant spacing (say ∆) between them, which
is exactly known. The main disadvantage of this ap-
proach is that any error in the assumed ∆ would lead
to a reduced accuracy of estimation for all the param-
eters. Herein, we present and extension of the FREEK
algorithm, aiming at making it robust to such errors
by allowing a certain degree of uncertainty in ∆. The
proposed robust algorithm, here termed the Robust
Frequency-selective Knowledge-based SVD (RobFKS),
allows ∆ to lie in a small interval and utilizes a robust
estimate of ∆ in the estimation of the remaining param-
eters. This provides more accurate parameter estimates
at a nominal increase in computational cost. We develop
the proposed algorithm in Section 2 and investigate its
performance numerically in Section 3.

A word on notation: (·)T , (·)∗ and ‖ · ‖ are used to
represent the transpose, the conjugate transpose and
the norm, respectively, while diag{x} represents a diag-
onal matrix, formed with the vector x along its diagonal.

2. THE PROPOSED ALGORITHM

To demonstrate the proposed robust algorithm, we con-
sider the problem of doublet parameter estimation often
encountered in MRS applications (the same approach
can be easily extended for a triplet). We assume that
the measured data consists of N time-domain samples
being modelled as a sum of M exponentially damped
complex sinusoids (see, e.g., [3])

y(t) =

M∑
k=1

ρkγt
k + e(t) (1)

γk = e−αk+iωk , (2)



where t = 0, 1, . . . , N − 1, e(t) is the noise term, γk

represent the signal modes, and ρk, αk and ωk are the
(unknown) complex amplitude, damping constant and
angular frequency of the kth damped sinusoid, respec-
tively (with sampling period absorbed in αk and ωk for
notational convenience). Here, the problem of interest

is to use the data, {y(t)}
N−1
t=0 , to estimate the parame-

ters (ρ, α, ω) of a pair of modes while incorporating the
(approximate) prior knowledge

α2 = α1 (3)

ω2 = ω1 + ∆I , ∆I ∈
[
∆ ∆

]
(4)

where ∆ and ∆ represent lower and upper limits of
the known range of frequency spacing between the two
peaks. We may rewrite (4) in terms of a known and an
uncertain offset as

ω2 = ω1 + ∆ + u, |u| �
∆ − ∆

2
� ε (5)

∆ �
∆ + ∆

2
. (6)

As noted in the introduction, frequency-selective Fourier
transform can be applied to the measured data to allow
for maximal out-of-band interference rejection and com-
putational efficiency. This is achieved by defining a set
of L frequency points{

2πl1

N
,
2πl2

N
, . . . ,

2πlL

N

}
, (7)

with l1, . . . , lL, being given, not necessarily consecutive,
integers selected such that (7) covers the band contain-
ing only the doublet of interest. The frequency-selected
Fourier transformed data vector, here denoted Y, can
then be written as

Y = V∗
Ly (8)

y =

[
y(0) . . . y(N − 1)

]T

(9)

VL =
[

vl1 · · · vlL

]
(10)

vlj =

[
1 ei2πlj/N . . . ei2πlj(N−1)/N

]T

(11)

Using SELF-SVD [16], we may form a matrix W that
has the same range space as the S × 2 matrix A, where

A =

[
aS(γ1) aS(γ2)

]
(12)

aS(γk) =
[

1 γk . . . γS−1
k

]T
. (13)

In the interest of brevity, we refer the reader to [16] for
details on computing W and on selection of the user
parameter S. Using (3) and (5), we may rewrite (12) as

A =

[
aS(γ1) aS

(
γ1e

i(∆+u)
) ]

. (14)

Following the MUSIC-like approach presented in [14]
(see also [17]), we define a S × (S − 2) matrix, H, that

forms an orthonormal basis of the null space of W∗.
Thus, orthogonality between A and H implies that

H∗aS(γ) = 0, (15)

iff α = α1 and ω = ω1 or ω = ω1+∆+u. Combining (15)
with the observation that

aS

(
γ1e

i(∆+u)
)

= U∗D∗aS(γ1), (16)

where

D = diag

{[
1 e−i∆ . . . e−i(S−1)∆

]}
(17)

U = diag

{[
1 e−iu . . . e−i(S−1)u

]}
, (18)

leads to the following constrained minimization for esti-
mating u, α and ω

min
α1,ω1,u

a∗
S(γ1) [HH∗ + UDHH∗D∗U∗]aS(γ1)

subject to |u| � ε (19)

Further, reminiscent of [15], it can be shown that

rank (HH∗ + UDHH∗D∗U∗) = S − 1. (20)

Thus, the minimization in (19) can be seen as a problem
of finding the eigenvector associated with the smallest
unique eigenvalue of

Gu � HH∗ + UDHH∗D∗U∗. (21)

Further, for a small ε, the uncertain offset u, defined
in (5), may be estimated as the argument in the range

r = [−ε ε], (22)

where this smallest eigenvalue occurs, i.e.,

û = arg min
u∈r

λmin{Gu}, (23)

where λmin{Gu} denotes the smallest eigenvalue of Gu.
Using (23), we can now find the eigenvector b associated
with the smallest eigenvalue of Gû. From (19), we have

aS(γ1) ∼ b. (24)

Noting that

aSγ1 = aS , (25)

where

aS � [IS−1 0]aS (26)

aS � [0 IS−1]aS , (27)

gives

bγ1 = b, (28)



where b and b are defined similar to aS and aS , respec-
tively. From (28), the least squares estimate of γ1 is
simply

γ̂1 =
b
∗
b

‖ b ‖2
. (29)

The estimate, γ̂1, can then be used to extract estimates
of damping and frequency parameters as

α̂1 = −�

{
log{γ̂1}

}
(30)

ω̂1 = �

{
log{γ̂1}

}
, (31)

where �{z}, �{z} and log{z} represent the real part,
the imaginary part and the complex natural log of the
complex number z, respectively. Finally, defining

θ = [ρ1 ρ2]
T , (32)

we note that the noise-free part of Y can be written as

V∗
L

[
aN (γ̂1) aN (γ̂2)

]
θ � Σθ, (33)

where

γ̂2 = γ̂1e
i(∆+û). (34)

Hence, the least squares estimate of θ is given by

θ̂ = (Σ∗Σ)
−1

Σ∗Y. (35)

We note that (23) involves a 1D search over the (typi-
cally small) range of u. For a small enough range, we
may make use of matrix perturbation theory to avoid
computing the eigenvalues of Gu at each grid point.
This can be achieved by first computing the eigenvalue
decomposition of Gj0 (where j0 is some central point in
the grid) and then using the approximation [18,19]

λj ≈ λj0 + x∗
j0(Gj − Gj0)xj0 , (36)

where (λj0 , xj0) represent the smallest eigenvalue and
the associated eigenvector of Gj0 , while the approxima-
tion error is of the order

‖Gj − Gj0‖
2. (37)

For cases with large ranges involved, we can divide
the search into smaller intervals and apply the pertur-
bation formula separately within each interval. This
approximation approach has empirically been found to
work well. Finally, we remark that the matrix H is
only introduced for algorithm development. In actual
computations, HH∗ can be replaced by I − WW∗.

3. NUMERICAL EXAMPLES

In this section, we apply the proposed robust algorithm
to simulated data mimicking a typical MRS signal. The
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Figure 1: Part of the FFT spectrum of the simulated
signal showing the doublet of interest, at σ = 30.
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Figure 2: Damping constant estimate RRMSE versus
the difference between assumed and actual peak spacing,
at σ = 5, 15 and 30.

simulated data follows (1), and consists of a doublet
with the following parameters

ρ1 = 100 units, α1 = 10 Hz, ω1 = 20 Hz

ρ2 = 320 units, α2 = 10 Hz.

The frequency ω2 is varied in the range [94,106] Hz to
show the effects of error in prior knowledge. We assume
that N = 512 time-domain samples are collected at a
sampling frequency of 1 KHz. The noise added is com-
plex white Gaussian with standard deviation σ. Figure 1
shows part of the FFT spectrum of the simulated signal
covering the doublet of interest. In all the simulations,
RobFKS uses ∆ = 80 Hz with ε = 6 Hz, i.e., it allows
for an uncertainty of ±6 Hz in the assumed spacing be-
tween the two peaks. We compare the results with the
FREEK algorithm that uses the prior knowledge ∆ =
80 Hz without allowing for any uncertainty. For each
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Figure 3: Frequency estimate RRMSE versus the dif-
ference between assumed and actual peak spacing, at
σ = 5, 15 and 30.

parameter, results of C = 500 Monte Carlo simulations
are used to calculate the relative root mean square error
(RRMSE)

RRMSE (%) � 100

√√√√ 1

C

C∑
q=1

(θ − θ̂q)2

θ2
, (38)

where θ represents the true value of the parameter and

θ̂q is the estimate from the qth Monte Carlo run. The
search region used for u was [-6,6] Hz (in 200 steps). In
order to avoid evaluating the eigenvalue decomposition
of Gu at each grid point, the search region was divided
into 20 equal intervals and the perturbation formula
given in (36) was applied to each interval separately.

Figures 2-6 show the RRMSE results for amplitudes
(absolute), damping constants and frequencies of the
two peaks versus the difference between the actual
and assumed spacing. Each figure shows results at
noise standard deviation of 5, 15 and 30. As expected,
RobFKS shows robustness to the error in the prior
knowledge at all noise levels. The performance of the
FREEK algorithm declines as the deviation of the
actual spacing from the assumed spacing increases.
The figures also show that the error in the assumed
knowledge affects the estimates of all the parameters
in case of FREEK. However, RobFKS does not suffer
from this limitation as it uses a robust estimate of the
spacing in the estimation of the remaining parameters.
Finally, we compare the computation time of RobFKS
with FREEK and KNOB-SVD. The CPU times for
the three knowledge-based estimators are shown in
Table 1. As is clear from these results, RobFKS
provides robustness at a nominally higher computation
cost than it’s non-robust counterpart, FREEK.
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Figure 4: Frequency estimate RRMSE versus the dif-
ference between assumed and actual peak spacing, at
σ = 5, 15 and 30.

FREEK RobFKS KNOB-SVD

0.062 0.421 10.6

Table 1: CPU times (seconds) for estimation of the dou-
blet parameters.

4. CONCLUSIONS

In this work, we extended a recently proposed
knowledge-based parameter estimation method to make
it robust to errors in the a priori information. The
proposed robust frequency-selective knowledge-based
parameter estimation method, herein termed RobFKS,
incorporates prior information typically available in
MRS applications, while allowing for uncertainty in
this information. Numerical investigations show that
the proposed approach provides significant performance
gains as compared to the existing non-robust version,
when mismatch between the actual and the assumed
parameter relations exists.
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