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ABSTRACT
This paper focuses on the cross-layer issue of resource al-
location for energy efficiency in the uplink of a multiuser
MIMO wireless communication system. Assuming that all
of the transmitters and the uplink receiver are equipped with
multiple antennas, the situation considered is that in which
each terminal is allowed to vary its transmit power, beam-
forming vector, and uplink receiver in order to maximize its
own utility, which is defined as the ratio of data throughput
to transmit power; the case in which non-linear interference
cancellation is used at the receiver is also investigated. Ap-
plying a game-theoretic formulation, several non-cooperative
games for utility maximization are thus formulated, and their
performance is compared in terms of achieved average util-
ity, achieved average SINR and average transmit power at
the Nash equilibrium. Numerical results show that the use of
the proposed cross-layer resource allocation policies brings
remarkable advantages to the network performance.

1. INTRODUCTION

The increasing demand for new wireless applications, and
the tremendous progress in the development of smartphones
and handheld devices with exceptional computing capabili-
ties requires wireless communication infrastructures capable
of delivering data at higher and higher data-rates. The use of
multiple antennas at both ends of a wireless link has proved
to be a key technology to improve the spectral efficiency of
wireless networks [1]. Likewise, intelligent resource allo-
cation procedures also will play a prominent role to ensure
reliability and efficiency in future wireless data networks.

This paper focuses on the uplink of a multiuser
multiple-input multiple-output (MIMO) communication sys-
tem, wherein both the mobile terminals and the common ac-
cess point (AP) are equipped with multiple antennas. We
are interested in the design of non-cooperative resource al-
location policies aimed at energy efficiency maximization,
which is defined here as the number of reliably delivered in-
formation symbols per unit-energy taken from the battery.
Energy-efficiency maximization is indeed a crucial problem
in mobile wireless communications, wherein mobile users
are interested in making a careful and smart use of the en-
ergy stored in their battery. Following a recent trend, we use
game theory tools [2] in order to obtain non-cooperative re-
source allocation procedures, maximizing each user’s energy
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efficiency with respect to its own transmit power, beamform-
ing vector and uplink receiver.

A game-theoretic framework for non-cooperative energy
efficiency maximization has been widely applied in the re-
cent past to design resource allocation policies for code divi-
sion multiple access (CDMA) systems [3, 4, 5] and for ultra-
wideband (UWB) systems [6]. On the other hand, MIMO
communication systems have received a great deal of at-
tention in the last decade (see, for instance, the references
in the recent textbook [1]). Among the studies addressing
joint transmitter and receiver adaptation for improved perfor-
mance, we cite the papers [7, 8], which consider transceiver
optimization for multiuser MIMO systems in cooperative en-
vironments, i.e. assuming that a central processor allocates
resources among active users, and neglecting the issue of
power control.

In this paper, we extend the game-theoretic framework,
surveyed in [9], to multiuser MIMO wireless systems. We
consider the case in which energy efficiency is to be maxi-
mized with respect to

a. the transmit power of each user, assuming matched filter-
ing at the receiver;

b. the transmit power and the choice of the uplink linear re-
ceiver for each user;

c. the transmit power, the beamforming vector and the
choice of the uplink linear receiver for each user; and

d. the transmit power and the choice of the non-linear serial
interference cancellation (SIC) uplink receiver for each
user.

Note that consideration of these games is not a trivial exten-
sion of the results reported in authors’ previous studies, since
the analysis of the Nash equilibrium (NE) points for some of
the above games, and in particular for the cases c. and d.
poses new mathematical challenges. More precisely, we will
see that problems a. and b. are somewhat equivalent to those
treated in [3] and [4] for a CDMA system, while, instead
proof of the existence of a NE for problem c. requires a new
and different approach. Finally, the consideration of problem
d., which assumes the use of a non-linear SIC receiver, has
not yet appeared in the open literature.

Results will show that the use of advanced resource allo-
cation policies brings remarkable improvements in terms of
achieved energy efficiency at the equilibrium thus enabling
the transmission of larger bulks of data for a given amount of
energy stored in the battery.
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2. PRELIMINARIES AND PROBLEM
FORMULATION

Consider the uplink of a K-user synchronous, single-cell,
MIMO multiuser system subject to flat fading. Denote by
NT the number of transmit antennas for each user, and by NR
the number of receive antennas at the common AP. Collect-
ing in an NR-dimensional vector, say r, the samples at the
output of the receiver front-end filter and corresponding to
one symbol interval, we have

r =
K

∑
k=1

√
pkHkakbk +n , (1)

wherein pk is the transmit power of the k-th user1, bk ∈
{−1,1} is the information symbol of the k-th user, and Hk
is the real2 NR ×NT matrix channel gain between the k-th
user’s transmitter and the AP; the entries of Hk depend on
both the distance of the k-th user’s terminal from the AP and
on the fading fluctuations. The NT -dimensional vector ak
is the beamforming vector of the k-th user; we assume that
aT

k ak = ‖ak‖2 = 1, with (·)T denoting transpose. Finally, n
is the ambient noise vector, which we assume to be a zero-
mean white Gaussian random process with covariance matrix
(N0/2)INR , with INR the identity matrix of order NR.

Assume now that each mobile terminal sends its data in
packets of M bits, and that it is interested both in having its
data received with as small as possible error probability at
the AP, and in making careful use of the energy stored in its
battery. Obviously, these are conflicting goals, since error-
free reception may be achieved by increasing the transmit
power, which of course comes at the expense of battery life.
A useful approach to quantify these conflicting goals is to
define the utility of the k-th user as the ratio of its throughput,
defined as the number of information bits that are received
with no error in unit time, to its transmit power [3] - [6], i.e.

uk = Tk/pk . (2)

Note that uk is measured in bit/Joule, i.e. it represents the
number of successful bit transmissions that can be made for
each energy-unit drained from the battery.

Denoting by R the common rate of the network (exten-
sion to the case in which each user transmits with its own
rate Rk is quite simple) and assuming that each packet of M
symbols contains L information symbols and M−L overhead
symbols, reserved, e.g., for channel estimation and/or parity
checks, denoting by γk the Signal-to-Interference-plus-Noise
Ratio (SINR) for the k-th user at the receiver output, and fol-
lowing the reasoning of [3, 4], a faithful and mathematically
tractable approximation for the utility uk in (2) is the follow-
ing

uk = R
L
M

f (γk)
pk

, ∀k = 1, . . . ,K . (3)

In the above equation, f (γk) is the so-called efficiency func-
tion, approximating the probability of successful (i.e. error-
free) packet reception. As an example, for BPSK modula-
tion, the choice f (γk) = (1−e−γk)M is widely accepted. The

1To simplify subsequent notation, we assume that the transmitted power
pk subsumes also the gain of the transmit and receive antennas.

2We assume here, for simplicity, a real channel model; generalization to
practical channels, with I and Q components, is straightforward.

results of this paper, however, hold not only for this particu-
lar choice, but for any efficiency function f (·) that is increas-
ing, S-shaped, approaching unity as γk →+∞, and such that
f (γk) = o(γk) for vanishing γk.

Now, based on the utility definition (3), many interesting
questions arise concerning how each user may maximize its
utility, and how this maximization affects utilities achieved
by other users. Game theory provides means to study these
interactions and to provide some useful and insightful an-
swers to these questions. It has been applied in this context
mainly as a tool to study non-cooperative resource allocation
procedures for CDMA systems and for UWB communica-
tions. In the following, instead, we address the problem of
non-cooperative energy efficiency maximization in multiuser
MIMO systems.

3. NON-COOPERATIVE RESOURCE
ALLOCATION: LINEAR RECEIVER

A linear receiver detects the data symbol bk, according to the
decision rule

b̂k = sign
[
dT

k r
]

, (4)

with b̂k the estimate of bk and dk ∈RNR the NR-dimensional
vector representing the receive filter for the user k (the set R
is the real field). It is easily seen that the SINR γk can be
written as

γk =
pk(dT

k Hkak)2

N0
2 ‖dk‖2 + ∑

i 6=k
pi(dT

k Hiai)2
. (5)

In the following, we consider non-cooperative resource allo-
cation games aimed at energy efficiency maximization with
respect to (a) the transmit power, assuming that a matched
filter is used at the receiver; (b) the transmit power and the
linear uplink receiver; and (c) the transmit power, the beam-
forming vector and the choice of the linear uplink receiver.

3.1 Transmit power control with matched filtering
Assume that the k-th user’s beamforming vector is taken par-
allel to the eigenvector corresponding to the maximum eigen-
value of the matrix HT

k Hk, and that a classical matched filter
is used at the AP, i.e. we have dk = Hkak. The k-th user
SINR is now expressed as

γk =
pk‖Hkak‖4

N0
2 ‖Hkak‖2 + ∑

i 6=k
pi(aT

k HT
k Hiai)2

. (6)

Considering the non-cooperative game

max
pk∈[0,Pk,max]

f (γk)
pk

, k = 1, . . . ,K , (7)

with Pk,max the maximum allowed transmit power for the k-th
user, the following result can be proven.
Proposition 1: The non-cooperative game defined in (7)
admits a unique NE point (p∗k), for k = 1, . . . ,K, wherein
p∗k = min{p̄k,Pk,max}, with p̄k the k-th user transmit power
such that the k-th user maximum SINR γ∗k equals γ̄ , i.e. the
unique solution of the equation f (γ) = γ f ′(γ), with f ′(γ) the
derivative of f (γ).
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Proof: The proof is here sketched as a lead-in to the exposi-
tion of the full MIMO case of the forthcoming Section 3.3.
According to theorem 11 in [3], a NE in a non-cooperative
game exists if the strategy set Sk is a nonempty, convex,
and compact subset of an Euclidean space, and if the utility
function of each player of the game is quasi-concave in its
own power (this means that there exists a point below which
the function is non-decreasing, and above which the func-
tion is non-increasing). In the considered game, we have
Sk = [0,Pk,max], so the former condition is obviously ful-
filled; to verify the latter condition, it suffices to show that
the utility function uk is increasing in an ε-neighborhood of
pk = 0 and that the first order partial derivative of uk with
respect to pk has only one zero for pk > 0. Note that the
utility uk equals zero for pk = 0, and is positive for pk = 0+,
thus implying that it is an increasing function for pk ∈ [0,ε].
Consider now the partial derivative of uk(·) with respect to
pk and equate it to zero; since, given Eq. (6), it is seen that
γk = pkdγk/d pk, each user’s utility is maximized if each user
is able to achieve the SINR γ̄ , that is the unique3 solution
of the equation f (γ) = γ f ′(γ). The existence of an NE is
thus proven. Given the uniqueness of the utility-maximizing
SINR γ̄ , and the bi-injective correspondence between the
achieved SINR and the transmit power for each user, the
above NE is also unique.

In practice, the above NE is reached through the follow-
ing iterative algorithm. Given any set of transmit powers,
the standard power control iterations as detailed in [10] are
used so that each user may either achieve its target SINR or,
should this be not possible, transmit at its maximum allowed
power.

3.2 Transmit power control and choice of the linear re-
ceiver
Consider now the following non-cooperative game:

max
pk∈[0,Pk,max],dk∈RNR

f (γk)
pk

, k = 1, . . . ,K . (8)

We have now

max
pk,dk

f (γk)
pk

= max
pk

f (maxdk γk)
pk

, (9)

i.e. we can first take care of SINR maximization with respect
to dk and then consider the problem of utility maximization
with respect to pk. It is well-known that, among linear re-
ceivers, the minimum mean square error (MMSE) receiver
is the one that maximizes the SINR. As a consequence, we
have the following result.
Proposition 2: The non-cooperative game defined in (8) ad-
mits a unique4 NE point (p∗k ,d

∗
k), for k = 1, . . . ,K, wherein

- d∗k =
√

pkM−1Hkak is the MMSE receiver for the k-th
user, with M = (∑K

k=1 pkHkakaT
k HT

k + N0
2 INR) the data

covariance matrix. Denote by γ∗k the corresponding
SINR.

- p∗k = min{p̄k,Pk,max}, with p̄k the k-th user transmit
power such that the k-th user maximum SINR γ∗k equals

3Uniqueness of γ̄ is ensured by the fact that the efficiency function is
S-shaped [3].

4Here and in the following uniqueness with respect to the receiver dk is
meant up to a positive scaling factor.

γ̄ , i.e. the unique solution of the equation f (γ) = γ f ′(γ),
with f ′(γ) the derivative of f (γ).

Proof: For the sake of brevity, we just sketch the key
parts of this proof. We have already discussed the fact
that SINR maximization requires that the receiver dk is the
MMSE detector. It is easy to show that, with MMSE de-
tection, the SINR for the k-th user is expressed as γk =
pkaT

k HT
k M−1

k Hkak, with Mk = M− pkHkakaT
k HT

K the co-
variance matrix of the interference seen by the k-th user. Note
that the relation γk = pkdγk/d pk still holds here, thus imply-
ing that the arguments of the proof of Proposition 1 can be
easily borrowed in order to show existence and uniqueness
of the NE for the game (8).

In practice, the above NE is reached through the follow-
ing iterative algorithm. Given any set of transmit powers,
each user sets its uplink receiver equal to the MMSE re-
ceiver. After that, users adjust their transmit power in order
to achieve the target SINR, using the standard power control
iterations of [10]. These steps are repeated until convergence
is reached.

3.3 Transmit power control, beamforming, and choice
of the linear receiver
Finally, let us now consider the more challenging case in
which utility maximization is performed with respect to the
transmit power, beamforming vector and choice of the uplink
linear receiver, i.e.

max
pk∈[0,Pk,max],dk∈RNR ,ak∈R

NT
1

f (γk)
pk

, k = 1, . . . ,K , (10)

with RNT
1 the set of unit-norm NT -dimensional vectors with

real entries. Note that

max
pk,dk,ak

f (γk)
pk

= max
pk

f (maxdk,ak γk)
pk

. (11)

Given the above equation, we have to consider first the prob-
lem of SINR maximization with respect to the vectors dk
and ak. Again, the SINR-maximizing linear receiver is the
MMSE receiver. Since, as already discussed, the k-th user
SINR for MMSE detection is γk = pkaT

k HT
k M−1

k Hkak, it is
easily seen that the SINR-maximizing beamforming vector
ak is the eigenvector corresponding to the maximum eigen-
value of the matrix HT

k M−1
k Hk. Of course, the question

now arises if, when such beamforming vector update is cycli-
cally performed by the active users, a stable equilibrium is
reached. The following result holds.
Theorem: Assume that the active users cyclically update
their beamforming vectors in order to maximize their own
achieved SINR at the output of a linear MMSE receiver. This
procedure converges to a fixed point.
Proof: Denote by a1, . . . ,aK the set of current beamformers
for the active users. The system sum capacity is well-known
to be expressed as

CSUM = 1
2 log(det(M))− 1

2 log
(

det
(

N0
2 INR

))
=

1
2 log(det(Mk + pkHkakaT

k HT
k ))− 1

2 log
(

det
(

N0
2 INR

))
.

(12)
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Exploiting the relation det(A + xyT ) = det(A)(1 +
yT A−1x) , the sum capacity is also written as

CSUM =
1
2

log

(
det(Mk)

(
2

N0

)NR
)

+

1
2

log
(

1+ pkaT
k HT

k M−1
k Hkak

)
.

(13)

The underlined term in the above equation is the k-th user
SINR at the output of its MMSE receiver. Accordingly, if the
k-th user updates its beamforming vector with the eigenvec-
tor corresponding to the maximum eigenvalue of the matrix
HT

k M−1
k Hk, the system sum capacity is increased. Iterating

this reasoning, it can be shown that every time that a user
updates its own beamforming vector this leads to an increase
of the system sum capacity. Since sum capacity is obviously
upper bounded, this procedure must admit a fixed point.

Equipped with the above result, and assuming5 that
the equilibrium SINR resulting for the non-cooperative
SINR maximization game with respect to the vectors dk
and ak is continuous with respect to the transmit powers
p1, p2, . . . , pK , we are now ready to state our result on the
game (10).
Proposition 3: The non-cooperative game defined in (10)
admits a NE point (p∗k ,d

∗
k ,a

∗
k), for k = 1, . . . ,K, wherein

- a∗k and d∗k are the equilibrium k-th user beamform-
ing vector and receive filter resulting from the non-
cooperative SINR maximization game. Denote by γ∗k the
corresponding SINR.

- p∗k = min{p̄k,Pk,max}, with p̄k the k-th user transmit
power such that the k-th user maximum SINR γ∗k equals
γ̄ , i.e. the unique solution of the equation f (γ) = γ f ′(γ),
with f ′(γ) the derivative of f (γ).

Proof: The complete proof is omitted due to lack of space.
Note that the considered game can be seen as the composition
of two separable games, namely the power control game and
the beamformer plus receive filter game. The former game
admits a unique NE based on Proposition 1, while the latter
game admits a NE based on the previous theorem on sum
capacity. Exploiting the results of [11], the existence of a NE
for the two subgames implies the existence of a NE for the
game (10).

4. NON-COOPERATIVE RESOURCE
ALLOCATION: NON-LINEAR SIC RECEIVER

Consider now the case in which a non-linear decision feed-
back receiver is used at the receiver. We assume that the users
are indexed according to a non-increasing sorting of their
channel-induced signatures, i.e. we assume that ‖H1a1‖ >
‖H2a2‖> .. . ,‖HKaK‖. We consider a SIC receiver wherein
detection of the bit from the k-th user is made according to
the following rule

b̂k = sign

[
dT

k

(
r−∑

j<k

√
p jH ja jb̂ j

)}
. (14)

Otherwise stated, when detecting a certain symbol, the con-
tribution from the information symbols that have been al-
ready detected is subtracted from the received data. If past

5Actually, this assumption has been numerically tested; its formal proof
however, appears a little involved and is the object of current investigation.
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Figure 1: Achieved average utility at the NE versus the users’
number for the proposed non-cooperative games.

decisions are correct, users that are detected later enjoy a
considerable reduction of multiple access interference, and
indeed the SINR for user k, under the assumption of correct-
ness of past decisions, is written as

γk =
pk(dT

k Hkak)2

N0
2 ‖dk‖2 + ∑

j>k
p j(dT

k H ja j)2
. (15)

Now, given receiver (14) and the SINR expression (15),
we consider here the problem of utility maximization with re-
spect to the transmit power, and to the choice of the receivers
d1, . . . ,dK , i.e.:

max
pk,dk

f (γk(pk,dk))
pk

, ∀k = 1, . . . ,K . (16)

The following result can be shown to hold.
Proposition 4: Define H̃k = [Hkak, . . . ,HKaK ], and Pk =
diag(pk, . . . , pK). The non-cooperative game defined in (16)
admits a unique NE point (p∗k ,d

∗
k), for k = 1, . . . ,K, wherein

- d∗k =
√

pk(H̃kPkH̃T
k + N0

2 IN)−1Hkak is the unique k-th
user receive filter6 that maximizes the k-th user’s SINR γk
given in (15). Denote γ∗k = maxdk γk.

- p∗k = min{p̄k,Pk,max}, with p̄k the k-th user transmit
power such that the k-th user maximum SINR γ∗k equals
γ̄ , i.e. the unique solution of the equation f (γ) = γ f ′(γ),
with f ′(γ) the derivative of f (γ).

Proof: The proof is omitted here due to lack of space. It
can be made along the same track that led to the proof of
Proposition 2.

5. NUMERICAL RESULTS

In this section we present some simulation results that give
insight into the performance of the proposed non-cooperative
resource allocation policies.

6Uniqueness is here up to a positive scaling factor.
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Figure 2: Average transmit power at the NE versus the users’
number for the proposed non-cooperative games.

We consider an uplink multiuser MIMO system using un-
coded BPSK and consider the corresponding efficiency func-
tion f (γk) = (1− e−γk)M . We consider NT = 4 transmit an-
tennas for each user, and assume that the packet length is
M = 120; for this value of M the equation f (γ) = γ f ′(γ)
can be shown to admit the solution γ̄ = 6.689 = 8.25dB. The
system data rate is R = 105bps. A single-cell system is con-
sidered, wherein users may have random positions with a dis-
tance from the AP ranging from 10m to 1000m. The chan-
nel matrix Hk for the generic k-th user is assumed to have
Rayleigh distributed entries with mean equal to d−1

k , with dk
being the distance of user k from the AP. We take the ambi-
ent noise level to be N0 = 10−9W/Hz, while the maximum
allowed power Pk,max is −25dBW. We present the results of
averaging over 3000 independent realizations for the users
locations and fading channel coefficients. The beamform-
ing vector of the generic k-th user is chosen as the eigen-
vector corresponding to the maximum eigenvalue of the ma-
trix HT

k Hk; this vector is then used as the starting point for
the games that include beamformer optimization, and as the
(constant) beamformer for the remaining games.

Figs. 1 - 3 show the achieved average utility (measured in
bits/Joule), the average user transmit power and the average
achieved SINR at the receiver output versus the number of
users, for the several considered games, and for a 4× 4 and
4× 8 MIMO system. Inspecting the curves, it is seen that
smart resource allocation algorithms may bring very remark-
able performance improvements. As an example, for K = 10
users and NR = 8 the utility achieved by the SIC-MMSE
game and by the MMSE+Beamforming game is about 660
and 330 times larger (!!) than the utility achieved by the
power allocation game coupled with a matched filter, respec-
tively. Interestingly, it is seen that the SIC-MMSE game out-
performs the MMSE+Beamforming game for low number
of users and for large number of users: indeed, in a lightly
loaded system beamforming may not yield substantial per-
formance improvements, while, for heavily loaded systems,
SIC processing is extremely beneficial. It is also seen from
Fig. 3 that in many instances receivers achieve on the aver-
age an output SINR that is smaller than the target SINR γ̄:
indeed, due to fading and distance path losses, achieving the
target SINR would require some users to a transmit at higher
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Matched Filter (Nr = 4)
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Figure 3: Achieved average SINR at the NE versus the users’
number for the proposed non-cooperative games.

power than the maximum allowed power Pk,max, and so these
users are not able to achieve the optimal target SINR. Of
course, the use of cross-layer resource allocation procedures
help reducing the gap between the average and target SINRs.
Finally, note that results confirm that increasing the number
of receive antennas improves the system performance.
Overall, it can be stated that the use of cross-layer resource
allocation policies brings very significant performance im-
provements to the energy efficiency of a multiuser MIMO
system.
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