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ABSTRACT

We present a method for dynamically integrating audio-
visual information for speech recognition, based on the esti-
mated reliability of the audio and visual streams. Our method
uses an information theoretic measure, the entropy derived
from the state probability distribution for each stream, as an
estimate of reliability. The two modalities, audio and video,
are weighted at each time instant according to their reliabil-
ity. In this way, the weights vary dynamically and are able to
adapt to any type of noise in each modality, and more impor-
tantly, to unexpected variations in the level of noise.

1. INTRODUCTION

Humans use visual information subconsciously to under-
stand speech, especially in noisy conditions, but also when
the audio is clean. The same integration can be performed
by computers to improve the performance of speech recogni-
tion systems, when dealing with difficult audio conditions.
Audio-visual speech recognition (AVSR) improves recog-
nition rates beyond what is possible with only audio. An
overview of AVSR can be found in [1].

Most approaches to AVSR use multi-stream hidden
Markov models (HMMs) as the choice recognizer, as they
consistently outperform uni-modal HMMs. A key issue in
building such models is the method of combining scores
from the different modalities, and a popular technique is
performing a weighted sum of stream log-likelihoods. The
method of choosing these weights is the focus of our paper.

There are many different possibilities to choose the
audio-visual weights. They can be time-varying or fixed, de-
pendent on the particular HMM state or independent of it.
However, in many systems, they are simply fixed by hand
for a particular environment and database [1]. The optimal
value of these static weights is found by seeking the best per-
formance on matched data. However, in a practical system,
the quality of each stream can change in time, making the ad-
justment of the weights at utterance level or frame level a re-
quirement. In some approaches, the weights are found based
on training or held-out data. This is the case in [2], where a
smooth function of the minimum classification error (MCE)
is minimized. However, in this case, the training is done at
the particular signal to noise ratio (SNR) at which the train-
ing data is available. This means that in different noise condi-
tions, the system’s performance will not be optimal. Another
approach is to derive the stream weights from the audio chan-
nel estimated signal to noise ratio, as in [3]. The problem
here is that the reliability of the video stream is not taken into
account. Yet other approaches use the dispersion of the class
posterior probabilities to model the stream confidences [4].

In [5], different frame-level confidence measures are inves-
tigated, among which the dispersion of the class posteriors
and their entropy. The maximum class posteriors are used as
reliability estimates at frame-level in [6].

Our proposed method is related to the last methods pre-
sented. We use the entropy of the state posteriors as a reli-
ability measure at frame-level. We propose several types of
mapping this entropy to stream weights. They all perform
well in different stable noise conditions and even when the
noise is changing in time. Our basic assumption is that the
noise level and type is unknown when the system is built, so
we are aiming to build a system that performs well under a
wide range of noise conditions.

The paper is organized as follows. First we review
the audio-visual speech recognition systems and the multi-
stream HMM framework. Then we present our weight esti-
mation methods. Finally, we present the details of our imple-
mentation and the database used, together with results and
discussion.

2. AUDIO-VISUAL SPEECH RECOGNITION

In this section we briefly present the structure of an audio-
visual speech recognition system. While all such systems
share common traits, they can differ in three major aspects.
The first one is the visual front-end; i.e., the part of the sys-
tem that tracks the region of the mouth and extracts the vi-
sual features. The second one is the audio-visual integration
strategy, that is, the way audio and visual information are put
together in order to reach a decision about the recognized
word. Finally, the type of speech recognition system can dif-
fer depending on the particular task (isolated-word recogni-
tion, continuous speech or large-vocabulary speech recogni-
tion). Our system recognizes sequences of words separated
by silence, from a small-vocabulary database.

The majority of speech recognition systems use hidden
Markov models [7] (HMMs) as the underlying classifiers
used to represent and recognize the spoken words. Our
audio-visual system also uses a particular kind of HMMs,
multi-stream HMMs, which are well-suited for multimodal
processing.

2.1 Visual front-end

All audio-visual speech recognition systems require the iden-
tification and tracking of the region of interest (ROI), which
can be either only the mouth, or a larger region, like the en-
tire face. This typically begins with locating the face of the
speaker, using a face detection algorithm. The second step is
locating the mouth of the speaker and extracting the region
of interest. This region can be scaled and rotated such that



the mouth is centered and aligned.
Once the ROI has been extracted, the useful information

that it contains needs to be expressed using as few features as
possible. This is because the high dimensionality of the ROI
impairs its accurate statistical modeling. The main types of
features that can be used for visual speech recognition [1] are
either appearance based features, extracted directly from the
pixels of the ROI, or shape based features, extracted from the
contour of the speaker’s lips.

In general, the use of shape features requires a good lip
tracking algorithm and makes the limiting assumption that
speech information is concentrated in the contour of the lips
alone. Several articles report that DCT features outperform
shape based ones [8, 9]. Features can be further refined
through the use of the linear discriminant transform (LDA),
a transform that improve the separation between the classes,
and this is our method of choice for feature extraction.

2.2 Audio-visual integration

The integration of audio and visual information [1] can be
performed in several ways. The simplest one is feature con-
catenation [4], where the audio and video feature vectors are
simply concatenated before being presented to the classifier.
Here, a single classifier is trained with combined data from
the two modalities.

Although the feature concatenation method of integra-
tion does lead to an improved performance, it is impossible
to model the reliability of each modality, depending on the
changing conditions in the audio-visual environment.

Using decision fusion, separate audio and video classi-
fiers are trained, and their output log-likelihoods are linearly
combined with appropriate weights. There are three possible
levels for combining individual modality likelihoods [1]:

• Early integration, in the case when likelihoods are com-
bined at the state level, forcing the synchrony of the two
streams.

• Intermediate integration, which uses models that force
synchrony at the phone or word boundaries.

• Late integration, which requires separate HMMs for each
stream. The final recognized word is selected based on
the n-best hypothesis of the audio and visual HMMs.

The method used in this paper is early decision fusion us-
ing a multi-stream HMM classifier [10], which will be briefly
presented in the next section.

2.3 The multi-stream HMM

Multi stream HMMs are actually parallel HMMs sharing the
same architecture, that is, having the same number of states
and the same transitions. This forces synchrony between
the modalities. The emission probability densities are mod-
eled with Gaussian mixtures, separately for each stream, and
the emission log-likelihood is computed as a weighted sum.
Let o(t) = (oa(t),ov(t)) be the audio-visual feature vector
(the observation) and b js the corresponding likelihood aris-
ing from the Gaussian mixture for state j and stream s. Then
the likelihood for stream s is [11]:

b js(os(t)) =
Ms

∑
m=1

c jsmN(os(t); µ jsm,Σ jsm) (1)

where N(o; µ ,Σ) is the value in os(t) of a multivariate gaus-
sian with mean µ and covariance matrix Σ. Ms gaussians

are used in a mixture, each weighted by c jsm. The combined
score bi is then computed as:

lnbi(o(t)) = ∑
s=a,v

λs lnbis(os(t)) (2)

This amounts to multiplying the likelihoods raised to
power λs. The product rule is one of the most widely used
probability combination rules, along with the sum rule, the
min rule or the max rule [12]. These rules are compared in
[13], with the purpose of combining the outputs of classifiers
trained on different types of audio-only features. The product
rule was found to be the best performer. The same weighted
product rule can be found in [4], integrating word-level prob-
abilities.

Typically the weights are chosen such that their sum is
1, λa + λv = 1, however, even in this case, b j does not de-
fine a probability density, and should be regarded as a score.
Finding the weights λs is the focus of our paper.

3. OUR PROPOSED METHOD

3.1 Entropy as a reliability estimate

We base our reliability estimate on the probability distribu-
tion of posterior probabilities for the HMM states Qi. The
posteriors are computed using Bayes’ rule:

Pis(t) = P(Qi|os(t)) =
bi(os(t))P(Qi)

∑ j b j(os(t))P(Q j)
(3)

where P(Qi) is the prior probability of being in state Qi, i be-
ing an index over all the states in all the HMMs representing
the vocabulary words.

We believe that the shape of this posterior distribution is
a good indicator of the reliability of its corresponding stream.
If one of the posteriors is much higher than the others, there
is a high probability that the classification is correct, that is,
we can have a high confidence in that particular stream. In
the opposite case, when the posterior distribution is flat, the
confidence will be low. This idea was used in [6], where
the maximum posterior probability is used to switch between
streams at each time instant, choosing at each moment the
most reliable one.

Our approach is to use the entropy of this posterior dis-
tribution as a reliability estimate. We compute the entropy
Hs(t) for stream s and time t as follows:

Hs(t) = −∑
i

Pis(t) log2 Pis(t) (4)

The entropy values Ha(t) and Hv(t) are estimates of the
confidence, or rather, the lack of confidence, that we have
in the respective streams. Indeed, if the entropy correspond-
ing to one of the streams is high, it means that the poste-
rior distribution is flat and the probability of error is high.
That is, a high entropy translates into low confidence, and
vice-versa. However, this intuition needs to be quantified by
finding a mapping function between the entropies Hs and the
corresponding stream weights λs. Several possibilities are
explored in the following subsections.
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Figure 1: A flexible mapping from entropy to weight.

3.2 Negative entropy weighting

The simplest way to map entropies to weights is a linear map-
ping, that is

λs(t) =
Hmax −Hs(t)

Hmax

(5)

where Hmax is the maximum theoretical entropy for a com-
pletely flat Pis distribution. The weights are afterwards scaled
such that their sum is 1.

3.3 Inverse entropy weighting

A simple non-linear function that can be used as a mapping
is the inverse:

λs(t) =
1/Hs(t)

∑z 1/Hz(t)
(6)

This method has been proposed for audio-only speech
recognition with multiple feature streams [14]. The differ-
ence between it and the previous linear mapping is that here
there is a bias towards lower values of the entropy, that is,
higher entropies are penalized more. But what would be the
right way to map entropies to weights?

3.4 Flexible weighting based on entropy

The non-linear mapping presented earlier has a drawback in
the fact that, for large entropy values, a large variation in en-
tropy translates into a small variation for the weights. The
mapping is less sensitive to variations in entropy where the
entropy is higher. Intuitively, the mapping should be more
sensitive for some entropy value intervals compared to oth-
ers, and those ”sensitive” intervals should be the ones that
include the entropy values that occur most often. This intu-
ition lead to the following method of selecting the mapping.

First, a histogram of past entropy values is built for both
streams. In our case, the histogram has 15 bins and com-
prises 150 past entropy values from both streams, for a total

of 300 samples. Then, a piecewise-linear function is built,
mapping low entropy values to high weights and vice-versa.
This is done in such a way that the slope of each piece is
proportional to the number of points contained in the corre-
sponding histogram bin. Figure 1 shows an example of such
a mapping and the histogram from which it was built.

This mapping is itself dynamic. It adapts to the particular
configuration of entropy values, with the purpose of having
the best discrimination power between the most occurring
ones.

4. IMPLEMENTATION DETAILS

For our experiments, we use sequences from the CUAVE
audio-visual database [15]. They consist of 36 speakers re-
peating the 10 digits. We use only the static part of the
database, that is, the first 5 repetitions.

The video sequences are filmed at 30 fps interlaced, so
we can effectively double this framerate through deinterlac-
ing. The average length of one video sequence is around 50
seconds (3000 deinterlaced frames).

Out of the 36 sequences, 30 are used for training, and 6
for testing. We use a six-fold crossvalidation procedure, that
is, we repeat training and testing 6 times, each time changing
the respective sets using a circular permutation. The perfor-
mance reported is the average on the 6 runs.

We start our visual feature processing by locating the re-
gion of the mouth, scaling and rotating it, such that all the
mouths have more or less the same size and position. The
temporal resolution of the video is then increased through
interpolation, to reach 100 fps, since synchrony between the
audio and the video streams is required by our integration
method.

The visual features that we use are even-frequency dis-
crete cosine transform (DCT) coefficients of the mouth im-
ages, since they contain the information related to the sym-
metrical details of the image, as detailed in [16]. From them,
the highest-energy 64 coefficients are selected, with their



first and second temporal derivatives, and LDA is applied on
them, to obtain a 40-dimensional feature vector.

On the audio side, the features extracted are 13 Mel Fre-
quency Cepstral Coefficients (MFCCs), together with their
first and second temporal derivatives. Audio features are ex-
tracted 100 times per second, at the same frequency as the
visual features. Different levels of white gaussian noise are
added in order to show how our dynamic weighting algo-
rithm performs across a large range of SNRs.

We use the HTK library [11] for the HMM implemen-
tation. Our word models have 8 states with one diagonal-
covariance gaussian per state. The silence model has 3 states
with 3 gaussians per state. Two streams are used, audio and
video. The grammar consists of any combination of digits
with silence in-between. The accuracy that we report is the
number of correctly recognized words minus insertions, di-
vided by the total number of test words.

There are two possible ways to train multi-stream
HMMs. The first one is separate training, where different
models are built and trained for each modality. The two re-
sulting HMMs are then merged into a multi-stream HMM,
containing the gaussian mixtures from both original models.
However, there is no guarantee that the models will be trained
on the same alignment of audio and video, so the states might
be poorly synchronized.

The second method of training ensures that each HMM
state will be trained on the same segment of speech in both
modalities. This can be achieved by using a joint multi-
stream model from the beginning. However, the problem that
arises here is the choice of the weights used in training. We
decided to use this second method in our experiments, with
both weights equal to 0.5 for training. We found that the ini-
tial choice of weight has little influence on the result, and
that, for low SNRs, the jointly trained models perform better
than the separately trained ones.

5. EXPERIMENTAL RESULTS AND DISCUSSION

In figure 2, we present our results with static weights, that is,
the optimal weights for a certain SNR. These optimal weights
were found by running the recognizer with a range of possi-
ble weight values and then choosing the one that gives the
best performance. However, this contradicts our initial as-
sumption that the noise level is unknown at the time of train-
ing, so these performance values are only given as an indica-
tor of what the performance could be, ideally.

Our results show that with optimally picked weights, the
audio-visual speech recognizer always outperforms both sin-
gle modality ones, and by a large margin. The visual-only
recognition rate is only 54.8%, and still, across all SNRs,
there is a significant gain from putting together the two
modalities. For example, while the audio-only recognition
rate at -10dB is only 38%, the audio-visual performance is
much higher, at 67.2%.

We performed tests with several dynamic weighting
strategies. We started with the negative entropy weighting
described in section 3.2 and the inverse entropy one from sec-
tion 3.3. We then tested our flexible entropy to weight map-
ping presented in section 3.4. We also performed tests with
another method from the literature, the maximum stream
posterior (MSP) method presented in [6], for comparison
purposes. We show our results in table 1 and figure 3.

Our results show more or less the same trends with all
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Figure 3: Audio-visual speech recognition performance with
static and dynamic weights.

SNR(dB) Audio-only static flexible inverse negative MSP
clean 97.31 98.66 96.93 96.82 96.88 96.76

25 96.91 98.44 96.99 96.65 97.10 96.54
20 96.12 97.93 96.71 96.48 96.65 96.15
15 95.62 96.81 95.53 95.02 95.93 94.47
10 91.92 95.02 93.46 93.35 94.30 92.12
5 86.22 92.34 90.37 90.15 91.39 89.61
0 77.54 87.65 85.53 85.20 86.71 84.41
-5 61.36 78.60 78.31 77.81 78.39 77.11

-10 38.04 67.17 67.33 66.60 65.87 65.86

Table 1: Speech recognition performance for audio-only
recognition and several audio-visual integration methods.

dynamic weighting strategies. First, the performance of the
dynamic weighting methods is quite close to that of the fixed
weighting strategy, with a maximum difference of around
2%. The worst loss of performance is incurred when the au-
dio is clean. This could be explained by the fact that the dy-
namic weights mean is never biased strongly enough in favor
of one modality. In the case of clean audio, the ideal fixed
weight is 0.9 for the audio, while the mean of the dynamic
weight is closer to 0.75. However, for lower SNRs, dynamic
weighting methods are edging closer to the performance of
the fixed weights, with the negative entropy method perform-



SNR(dB) static flexible negative inverse MSP
15 96.48 94.63 94.97 94.13 93.97
0 80.23 80.50 81.17 79.89 79.16

Table 2: Audio-visual speech recognition performance for
static and dynamic weighting methods, with time-varying
noise.

ing best. This trend continues all the way to -10dB, where,
nevertheless, the flexible weighting method outperforms all
the others. The constantly under-performing method is the
MSP, but, in the end, the differences are quite small.

The final experiment that we performed is with time-
varying noise. Here, the power of the noise signal was
changed randomly every one second. We imposed two SNR
levels on the final signal, 15dB and 0dB. The interval of vari-
ation of the SNR is around 10dB, above and below the mean.
This is intended as a more realistic testing scenario, since in
real life the SNR is not expected to remain constant.

The results are presented in table 2. As can be seen the
same trends as in the constant noise case are present. MSP
still performs worse than any of the entropy-based methods.
The negative entropy is the best-performing at 0dB, surpass-
ing even the static weights method. It should be mentioned
that with time-varying noise the error rate is much higher
than with constant noise. This is because the error rate does
not vary linearly with the SNR, that is, for the time intervals
where the SNR is really low, a lot more is lost with respect to
the average accuracy than it is gained where the SNR is high.

The time-varying noise results prove that using a dy-
namic weighting scheme can lead to good performance even
when the SNR changes unexpectedly. The weights are able
to adapt quickly to changes in the noise level, adjusting the
relative importance of each modality automatically.

6. CONCLUSIONS AND FUTURE WORK

We have presented several methods of audio-visual integra-
tion at the early stage of the recognition process, with HMMs
synchronized at state level. Our method of using the entropy
as a reliability estimate leads to good results across different
noise conditions, and better than those obtained with other
methods from the literature.

As future work, the application of state-dependent
weights might improve the recognition rates. It is well known
that some sounds are highly confusable in either the audio or
the video modalities. Adjusting the weights in such a way
that the modality with higher discriminative power is favored
for a certain HMM state should increase the overall perfor-
mance.
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