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ABSTRACT

Within ballroom dance music, tempo and rhythmic style are
strongly related. In this paper we explore this relationship, by using
knowledge of rhythmic style to improve tempo estimation in musi-
cal audio signals. We demonstrate how the use of a simple 1-NN
classification method, able to determine rhythmic style with 75%
accuracy, can lead to an 8% point improvement over existing tempo
estimation algorithms with further gains possible through the use of
more sophisticated classification techniques.

1. INTRODUCTION

The automatic extraction of tempo from musical audio forms a key
component in many aspects of rhythmic analysis and has received
wide attention in the music signal processing research community
[1, 2]. Perhaps the most common use for tempo is within the task
of beat tracking where the aim is to replicate human foot-tapping in
time to music. For this task, the tempo indicates the rate at which
the beats occur. Therefore to maintain a consistent beat output it is
imperative to have an accurate method for finding and tracking the
tempo. While considerable progress has been made in this field (see
[1, 2] for an overview of existing techniques) an ongoing difficulty
has been in identifying the tempo in a manner consistent with a hu-
man listener. The highest performing tempo estimation algorithms
are able to infer the tempo with 85% accuracy provided the evalu-
ation method used allows for the estimated tempo to be “correct”
if it can be related by a factor of two to the annotated tempo [1].
This double/half ambiguity is known as the tempo octave problem
[3]. When these related tempo octaves aren’t considered accurate,
the overall performance of the best performing algorithms drops by
approximately 20% points [1].

For certain applications, e.g. beat-dependent audio effects [4],
octave ambiguity may not be critical, but for others finding the an-
notated tempo becomes far more important. One such example is
the classification of ballroom dance music. Most existing work on
rhythmic style classification [5, 6, 7] has made use of the same ball-
room dance database. It contains 698 excerpts (each 30 seconds
in length) across 8 rhythmic styles: Jive, QuickStep, Tango, Waltz,
Viennese-Waltz, Samba, ChaCha and Rumba. Ballroom dances are
typically characterised by a repeating rhythmic pattern at a particu-
lar tempo [6]. The restriction of ballroom dances to small ranges of
tempi has meant that tempo has been identified as an important dis-
criminating feature for dance music classification; however tempo
alone is not sufficient to provide a perfect classification [8].

To avoid the issue of tempo octave ambiguity in automatic tempo
estimation, rhythmic style classification algorithms (e.g. [6, 7]) use
annotated tempo rather than automatically extracted values. The
tempo is then combined with multiple features extracted from rhyth-
mic pattern representations and passed to a classification algorithm
to return a style label for a given input signal. To characterise the
rhythmic properties Dixon et al [6] use a predominant bar length
pattern, where as Peeters [7] uses autocorrelation functions and
spectral rhythmic patterns.

In a more recent study, Seyerlehner et al [9] explore the relation-
ship between tempo and rhythmic style from a different perspective.

Again using the ballroom data they use rhythmic pattern match-
ing as means for identifying tempo. Given a periodicity pattern
for each musical excerpt and its ground truth tempo, they find the
tempo for an unknown excerpt by taking the average of the ground
truth tempi resulting from a k-NN (nearest neighbour) classification
(where k=5). They compare two rhythmic features: an autocorre-
lation function signal similar to that used in [7]; and a fluctuation
pattern which has been used in previous work on music similarity
[10]. For which they find the fluctuation pattern to be more the
successful feature.

We extend their approach by investigating a simple style-
dependent method for tempo estimation, where knowledge of musi-
cal style with a known nominal tempo is used to guide the range of
likely tempi within our existing tempo extraction algorithm [11]. In
contrast to the approach of Seyerlehner et al [9] which requires that
all 698 patterns from the ballroom set with associated tempo anno-
tations be stored, we simply store one pattern per musical style and
use a single nominal tempo value. For each unknown excerpt we
then perform a 1-NN classification and pass the nominal tempo of
the nearest neighbour to our existing tempo estimation algorithm.

Our results indicate that using this simple classification we can
achieve rhythmic style classification of 75% which in turn improves
the performance of our tempo estimation algorithm from 71% to
79%. With the use of a more sophisticated classification algorithm
(the Adaboost classifier, as used for this task in [6, 7] we can iden-
tify rhythmic style with 85% accuracy which leads to a tempo ac-
curacy of 86%.

The remainder of this paper is structured as follows. In section 2
we describe our simplified method for rhythmic style classification.
In section 3 we review our existing tempo extraction algorithm and
then illustrate the modifications necessary to encode knowledge of
rhythmic style. We evaluate our method for rhythmic style classifi-
cation and demonstrate its effect on the performance of our tempo
estimation algorithm in section 4. We present discussion and con-
clusions in section 5.

2. RHYTHMIC STYLE CLASSIFICATION

Our method for rhythmic style classification requires two compo-
nents: (i) a suitable feature derived from the musical audio which
maximises intra-style rhythmic similarity and minimises inter-style
similarity; and (ii) a classification method able to exploit the proper-
ties of the input feature. Our motivation is towards a simple solution
for each component - ideally one that can be incorporated into our
tempo extraction algorithm with minimal extra processing. To this
end, we derive a feature for rhythmic style classification directly
from the input to our tempo extraction algorithm and embed the
style classification method into the tempo calculation.

2.1 Classification feature

The input to our tempo extraction algorithm is the complex spectral
difference onset detection function [12] – a mid-level representa-
tion of the input audio signal which emphasises the locations of

note onsets. Given an input signal s(n) we calculate the mth sample



of the onset detection function Γ(m) by measuring the sum of the
Euclidean distance between an observed short term spectral frame

Sk(m) and a predicted frame Ŝk(m) for each bin, k:

Γ(m) =
K

∑
k=1

|Sk(m)− Ŝk(m)| (1)

where each detection function (DF) sample has a temporal resolu-
tion tDF=11.6ms. For a complete derivation see [12].

As the basis for rhythmic style classification, Dixon et al [6]
extract a predominant bar length pattern derived from an onset de-
tection function type representation. While a suitable feature for
describing the rhythmic properties of the input signal, its extraction
requires prior knowledge of the bar locations. Due to limitations
in the automatic detection of bar boundaries, Dixon et al [6] ex-
tracted them in a semi-automatic manner. Since our interest is in
performing a fully automatic style classification, we cannot make
use of such information. As an alternative to a temporal rhythmic
pattern, Peeters [7] and later Seyerlehner et al [9] adopted a peri-
odicity pattern based on the autocorrelation function (ACF) of an
onset detection function type representation. Because our tempo
extraction method [11] extracts a salient periodicity from the auto-
correlation function of the onset detection function we also follow
this approach.

To emphasise the peaks in the onset detection function (prior
to deriving the autocorrelation function) we calculate an adaptive
moving mean threshold:

Γ̄(m) = mean{Γ(q)} m− Q
2 ≤ q≤ m+ Q

2
(2)

where Q indicates the approximate width of a typical peak in Γ(m).
In earlier work we found Q=16 DF samples to be a suitable value.
We then subtract the adaptive threshold from Γ(m) to give a modi-
fied onset detection function:

Γ̃(m) = HWR(Γ(m)− Γ̄(m)) (3)

where HWR performs half-wave rectification such that HWR(x) =
(x+ |x|)/2. The autocorrelation function A(l) for lag l is calculated
using

A(l) =
∑L
m=1 Γ̃(m)Γ̃(m− l)

|l−L|
l = 1, . . . ,L (4)

where the denominator corrects for the bias which occurs as a func-
tion of lag.

The ACF used by Seyerlehner et al [9] includes lags up to 4
seconds. If the tempo of each excerpt is not constant, then the peaks
of the ACF at longer lags will be smeared. To reduce this effect
we use a smaller range of lags, by setting L=144 DF samples in
equation (4) as used by Dixon et al [6] as the duration of their bar
length feature.This corresponds to L.tDF=1.67 seconds.

In our approach the location of the peaks in A(l) are the impor-
tant features which we use to infer the style of the input. To empha-
sise the peaks of A(l) we employ a second thresholding processing.

We create a modified autocorrelation function Ã(l) by substituting
Γ(m) for A(l) and applying equations (2) and (3). In comparison to
Seyerlehner et al [9] our ACF feature covers a shorter range of lags
and has been subject to a peak-preserving adaptive threshold.

2.2 Classification methods

The ballroom dance database used in this work is comprised of
8 rhythmic styles: Jive (J), QuickStep (Q),Tango (T), Waltz (W),
Viennese-Waltz (V), Samba (S), ChaCha (C) and Rumba (R). We
use parameter X to refer to a generic rhythmic style and give the

following arbitrary ordering X = {J,Q,T,W,V,S,C,R}. For the zth ex-

cerpt of each rhythmic style X we calculate an ACF pattern ÃX ,z(l)
as described above.

The basis for our simple approach to style classification is to
define one ACF pattern, PX (l) per style. We follow the clustering
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Figure 1. Predominant periodicity patterns PX (l) with ground-truth

nominal tempi: Jive, QuickStep, Tango, Waltz, Viennese-Waltz,

Samba, ChaCha, Rumba. Each pattern has been normalised to sum

to unity.

approach of Dixon et al [6], who derive a predominant rhythmic pat-
tern by clustering the bar length patterns (using k-means) for each
excerpt and return the temporal average of the largest cluster. Our
ACF feature Ã(l) already summarises each excerpt in one signal,

therefore to summarise a rhythmic style, we cluster ÃX ,z(l) for all z
using k-means (with k=2), and find the predominant pattern for each
style PX (l) as the temporal average of the largest cluster. The pre-
dominant patterns for each style are shown along with the nominal
tempo for each rhythmic style in figure 1.

Given an incoming ACF pattern feature we employ a 1-NN
(nearest neighbour) classifier by measuring the Euclidean distance
D(X) between Ã(l) and each PX (l) where each signal has been nor-
malised to sum to unity

D(X) =
L

∑
l=1

∣

∣

∣
|PX (l)|2 −|Ã(l)|2

∣

∣

∣

(1/2)
(5)

where the classified style X̂ is found as

X̂ = argmin
X

(D(X)). (6)

While this 1-NN (nearest neighbour) approach is simple both
conceptually and in terms of implementation, in order to gauge how
accurate it is as a classifier we also explore the use of a more so-
phisticated classification algorithm. For this purpose, we select the
Adaboost classifier as used by Dixon et al [6] and Peeters [7] from
the open source data mining software WEKA [13].

3. TEMPO ESTIMATIONWITH RHYTHMIC STYLE

In section 2.1 we introduced the onset detection function and the
subsequent calculation of the autocorrelation function feature A(l).
In our existing tempo extraction algorithm [11, 2] we identify a
salient periodicity (the beat period) by passing the autocorrelation
function through a shift-invariant comb filterbank which is scaled
by a perceptually motivated weighting over possible beat periods.
The weighting function W (l) is derived from the Rayleigh distribu-
tion function which strongly attenuates very short lags while decays
more gently for longer lags

W (l) =
l

β 2
exp

(

−l2

2β 2

)

l = 1, . . . ,L (7)



where the constant β is set to 43 DF samples, which is equivalent
to 120 beats per minute (bpm) using the following relationship for
converting ACF lag into tempo

tempo =
60

l× tDF
. (8)

The beat period is then extracted as the index of the maximum value
of the output of the comb filterbank, which can be converted to
tempo using equation (8). For a complete description of our tempo
estimation algorithm including a graphical overview see [11, 2].

While the Rayleigh weighting W (l) is suitable when the rhyth-
mic style is unknown, once we know the style W (l) becomes too
broad and can leave the tempo estimation susceptible to octave er-
rors. To restrict the range of observable periodicities we employ a
style-dependent weighting WX̂ (l). The overall shape of WX̂ (l) was
not found to be critical; the principal requirement being that it it
should strongly attenuate periodicities at simple integer ratios of the
nominal periodicity for a given style. We therefore define WX̂ (l) as
a Gaussian centred on the nominal periodicity τX̂ for the classified

style X̂ with standard deviation set at τX̂/2

WX̂ (l) = exp

(

−
(

l− τX̂
)2

2(τX̂/2)2

)

l = 1, . . . ,L (9)

where τX can take values {29,25,40,59,29,52,40,50} DF samples
by applying equation (8) to the nominal tempi from figure 1 given
the arbitrary ordering X = {J,Q,T,W,V,S,C,R}. We can then identify
the beat period (and therefore the tempo) by finding the index of the
maximum value of output of the style-dependent weighted comb
filterbank.

4. RESULTS

We evaluate the performance of our style classification method and
subsequent tempo estimation on the 698 excerpt ballroom dance
database which has been used for both these tasks in previous work

[6, 9] and is publicly available1.

4.1 Style Classification

We calculate the accuracy of the simple 1-NN classifier and the Ad-
aboost classifier as the ratio of the number of correct classifications
to the total number of excerpts to classify. To maintain consistency
with the methods of Dixon et al [6] and Peeters [7] we undertake
a 10-fold cross validation, where there is 90%/10% split between
training and testing data, where each excerpt can only be in the test-
ing group once. For our 1-NN classifier we therefore generated a
new set of predominant patterns PX (l) for each fold of the valida-
tion rather than use a single global pattern for each style. The raw
decisions of each classification algorithm are shown figure 2. The
overall performance of our two classifiers in comparison with exist-
ing algorithms on the same dataset are summarised in Table 1.

Of the fully automatic style classification methods the 1-NN
classifier is the weakest at 75% but is still comparable to the other
classifiers. It is important to note that our 1-NN approach makes
use of a just single pattern PX (l) per cross-validation fold, where as
each of the other classifiers has access to all of the training exam-
ples. The 86% accuracy of our Adaboost classifier (which is able to
draw on all the training examples) actually exceeds the performance
of all existing fully automatic algorithms on this dataset (e.g. 81%
accuracy of Peeters [7]). This suggests that the extra processing ap-
plied to our ACF feature in section 2.1 had a positive effect on the
outcome. The Adaboost classifier is still less accurate than the best
performing semi-automatic approaches [6, 7] but each of these has
access to ground truth tempo annotations; data which our classifiers
cannot be permitted to use.

1http://mtg.upf.edu/ismir2004/contest/tempoContest/node5.html
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Figure 2. Raw decisions by rhythmic style classifiers. Top: Eu-

clidean distance classifier. Bottom: Adaboost Classifier.

Classification Accuracy

Feature(s) (%)

Dixon et al [6]: Pattern Only 50.1*

Automatic Features (62) 82.2

Auto+Semi-auto Features(79) 96.0*

Gouyon et al [5]: MFCC Features 79.6

Peeters [7]: Pattern Only 80.8

Pattern + Tempo 90.4*

DP Pattern Only (Euclidean) 75.3

Pattern Only (Adaboost) 85.0

Table 1. Accuracy of Rhythmic Style Classification. Accuracy val-

ues marked with * were calculated with access to ground truth an-

notated data.

4.2 Tempo Estimation

We now explore the effect of style classification on tempo estima-
tion. The performance of our tempo estimation algorithm is mea-
sured for four cases: (i) tempo estimation with no access to style in-
formation (our baseline system) [11, 2]; (ii) tempo estimation given
the output of the Euclidean distance classifier; (iii) tempo estimation
given the output of the Adaboost classifier; and (iv) tempo estima-
tion given hypothetical perfect style classification. Tempo accuracy
is calculated according to the two methods in [1]: T1 where the a
given tempo is accurate if it within is ±4% of the ground truth value
and T2 which allows for the tempo to be within ±4% of double or
half the annotated tempo. The results are summarised according to
rhythmic style in Table 2.

By inspection of the “Overall T1” row of Table 2 we can see that
knowledge of musical style can lead to an improvement in tempo
accuracy, even when the style classifier used is only 75% accurate
itself. It is interesting to note that while the knowledge of rhyth-
mic style leads to a drastic improvement for some styles (e.g. Jive,
QuickStep) the tempo accuracy for the Rumba is reduced by al-
most 50% when using the output of the Euclidean distance based
classifier. Referring back to figure 2, we can see that many of the
Rumba examples were mis-classified as QuickStep. This is not an
unexpected result given the predominant patterns in figure 1. The
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Figure 3. Effect of rhythmic style on tempo classification. Dotted lines indicate ±4% tolerance window for accurate tempo estimation

allowing for tapping at the notated tempo, double and half. (a) Tempo estimates without style information; (b) Tempo estimates with

Euclidean style classification; (c) Tempo estimates with Adaboost style classification; (d) Tempo estimates given perfect style classification.

No Euc. Ada. Perfect

Style Style Style Style

Rhythmic Style (%) (%) (%) (%)

Jive: 176 bpm 35.0 97.4 96.7 98.3

QuickStep: 204 bpm 13.4 83.2 76.8 95.1

Tango: 130 bpm 95.3 93.4 93.0 95.4

Waltz: 87 bpm 55.5 65.6 79.1 85.5

Viennese-W: 177 bpm 72.3 86.9 80.0 100.0

Samba: 100 bpm 93.0 85.6 89.5 93.0

ChaCha: 128 bpm 98.2 91.5 97.3 97.3

Rumba: 104 bpm 85.7 44.1 75.5 88.8

Overall T1 70.9 79.4 85.8 93.6

Overall T2 93.3 94.0 94.4 94.6

Table 2. Effect of style classification on tempo accuracy. Perfor-

mance is divided between each rhythmic style under conditions of

increasing style classification performance. Euc. refers to 1-NN

classifier by Euclidean distance. Ada. refers to the Adaboost clas-

sifier.

tempo of the QuickStep is approximately twice that of the Rumba,
therefore the peaks of PR are in very similar locations to those in
PQ, this leaves the Euclidean distance measure unable to rigorously
distinguish the two.

Comparing the “Overall T1” row to the “Overall T2” row we
can observe a steady convergence of T1 towards T2 as increasingly
accurate knowledge of rhythmic style is included. This can be con-
firmed visually by inspection of the scatter plots of ground truth
tempo against estimated tempo in figure 3. Looking in particular at
figure 3(d) we can see that, given perfect style information, very few
of the estimated values are related to the ground truth by a factor of
two. Also, the vast majority of accurate tempi (along the main diag-
onal) are contained within the ±4% allowance window, suggesting
it is an appropriate size for measuring tempo estimation.

4.3 Style vs. Tempo Relationship

Let us now examine the relationship in greater detail. We know the
tempo accuracy given the output of the Euclidean distance based
classifier (79%) and the tempo accuracy given perfect style infor-
mation (94%). We now examine the tempo accuracy when style
classification accuracy is controlled. We exercise control by forc-
ing a correct classification (i.e. by setting the Euclidean distance
to be zero for the known style) for each excerpt with probability
p. By allowing p to increase from 0 (where the Euclidean based
style classification accuracy is 75%) and 1 (where it is 100%) we
can observe how improvements in the classifier would affect tempo

accuracy. The relationship between probability of forced classifica-
tion and the resulting tempo accuracy is shown as the dashed line in
figure 4.

To discover whether the mis-classifications for the Euclidean
classifier help or hinder the style-dependent tempo estimation, we
repeat the controlled experiment but replace the Euclidean distances
with white noise. In this scenario when p=0, the style classification
will be totally random and when p=1 we will have perfect style
classification. This is shown as the solid line in figure 4.

Inspection of figure 4 reveals a number of interesting proper-
ties. First, given a completely random style classification, we can
still achieve a tempo accuracy of 57%. While less accurate than
our baseline tempo estimation algorithm (71%) this is comparable
with the “KEA” (63%) the best performing system on this dataset
from [1]. The tempo accuracy which uses the ACF pattern based
Euclidean distance classification is more accurate than both sys-
tems presented by Seyerlehner et al [9] which are marked “S1” and
“S2” and correspond to the accuracy using fluctuation patterns and
ACF patterns respectively. By comparing the tempo accuracy of S2
(74%) with that resulting from our Adaboost classifier (86%) we
can see that our ACF based feature offers better discrimination than
that of Seyerlehner et al [9].

The interpretation of the plots of forced classification probabil-
ity with tempo accuracy using random data (the solid line) and us-
ing Euclidean distance from ACF patterns (the dashed line) is less
intuitive. The dependent variable is the probability of forced cor-
rect classification not the style classification accuracy directly. The
ACF pattern plot covers the range of style classification from 75%
to 100% where as the random classification plot covers approxi-
mately 12.5% (the baseline rate for 8-way classification) to 100%.
Incrementing p by 0.01 for the ACF patterns leads to an increase in
style classification of 0.01(100%−75%) = 0.25%; but for the ran-
dom classification the increase is 0.01(100%− 12.5%) = 0.875%.
Using this relationship we can find the equivalent point on the
solid line to the starting point of the ACF plot; this occurs when
p = (75%−12.5%)/0.875 = 0.715. For this value of p, the corre-
sponding tempo accuracy is approximately 84%, and is higher than
the 79% from the ACF pattern classification. Examined in this way,
all points on the ACF plot are lower than the equivalent points on
the random classification plot.

In the context of our style-dependent tempo estimation, mis-
classifications for the Euclidean classifier are more harmful for
tempo accuracy than mis-classifying the rhythmic style in a random
fashion. We have already observed this limitation of our classifier
where many Rumba excerpts were classified QuickStep (see figure
2). This particular mis-classification will almost guarantee an in-
correct tempo assignment (or octave error), as the (true) periodicity
for a Rumba, which should be close to the nominal value τR, will be
outside of the range of WQ(l) from equation (9). Small Euclidean
distances in our classifier do not necessarily correspond to small
differences in tempo; they can be the result of octave related tempi.
The Adaboost classifier is not so susceptible to this problem.
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Figure 4. The effect of rhythmic style classification on tempo esti-
mation accuracy. The solid line represents the relationship between
style and tempo using random features. The dashed line shows the
relationship given our ACF pattern features. DP+Style (Ada.) show
the tempo accuracy resulting from the Adaboost classifier. The hor-
izontal dotted lines sown the performance of existing systems: KEA
[1], S1 and S2 are the fluctuation pattern approach and ACF pattern
approach respectively from [9] and DP – No Style is our baseline
tempo estimation algorithm.

5. DISCUSSION AND CONCLUSIONS

Through the results presented we have shown that improvements in
tempo estimation for ballroom dance music can be made through a
fully automatic classification of rhythmic style. Within the evalua-
tion our main focus has been on the Euclidean distance based clas-
sifier rather than the Adaboost classifier despite this being the more
successful for this task. We justify this emphasis in the wider con-
text of style-dependent rhythmic analysis. While it is reasonable
to perform a cross fold validation in terms of a proof of concept,
given a larger real-world collection (perhaps in the order of 10,000
tracks) we would not want to undertake the computational burden of
a large scale classification of this nature. We consider being able to
summarise particular rhythmic styles by a single ACF pattern with
only a small reduction in overall tempo accuracy to be an important
result.

It is important to note that this ballroom dataset has certain prop-
erties which allow this summarisation to be particularly successful,
for example the disjoint distribution of tempi between styles and the
constraint of approximately constant tempo for each excerpt. Nev-
ertheless we believe there is scope to extend this approach to a wider
variety of signals. The properties of the ballroom dataset allowed
us to present this task as one of using style to inform tempo, but in
fact we are performing a tempo classification – where the spacing
of the peaks of the ACF feature implicitly encode the tempo. There-
fore on a wider range of data, where the styles cannot be grouped
by tempo (e.g. Jazz or Rock songs cover a wide range of tempi),
we would use a several periodicity patterns to cover a small tempo
range. In this scenario the style label itself would not be important,
rather getting a match to a periodicity pattern close to the correct
tempo would be sufficient to improve tempo accuracy. We plan to
explore this one aspect of our future work.

Looking beyond tempo extraction we intend to investigate style-
dependent rhythmic analysis in a wider context. Collins [14] raises
the issue that universal solutions to rhythmic analysis problems do
not exist, and that next-generation systems should make greater use
of style-specific information. Within our current approach, there
is scope to use style related information to aid in the extraction of

time-signature (given that the two Waltzes are in 3/4 time, but the
remaining styles are in 4/4 time), bar boundaries by using temporal
bar patterns (e.g. from Dixon et al [6]) and given both of these
pieces of information, recovering style dependent beat locations.
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