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ABSTRACT
By exploring the orthogonal frequency-division multiplexing
(OFDM) signal structure to build a frequency model, a gen-
eralized likelihood ratio test is presented, together with sim-
ulations of probabilities of detection of an OFDM based pas-
sive radar. The new analytical model gives insight into sys-
tem components inter-dependence. It allows both the ana-
lyzis of Doppler shift rotation approximation and the study
of its effect on detection performance.

1. INTRODUCTION

The low-cost and undetectability properties of passive radar
systems render them very popular topics of research and
development. Capabilities of such radar systems based on
commercial telecommunications have been demonstrated
for frequency modulation (FM) [1], for global system
for mobile communication (GSM) [2] and for orthogonal
frequency-division multiplexing (OFDM) [3, 4]. Herein and
elsewhere, they have been shown to be alternatives and/or
complements of active radars dedicated to airports or cities
air spaces surveillance.

This paper brings further insight in OFDM based radar
by giving a frequency formulation of the signals received
by an array of sensors. This new compact model is used to
develop a Generalized Likelihood Ratio Test and to analyze
the loss incurred by pulse compression [5].

Let us remind that Pulse Compression (PC) is a typi-
cal radar approximation which consists in assuming that the
phase shift is constant along a pulse length. Then, target de-
tection relies on Doppler changes from one pulse to another.
PC results in a tradeoff between computational cost reduc-
tion and performance capabilities degradation.
For OFDM based radar, radar pulses can be related to the
OFDM symbols. In this paper, we show that pulse compres-
sion consists in approximating a Dirichlet function (a.k.a.
aliased sinc) at its central points. This Dirichlet function rep-
resents the spread of information between adjacent frequency
channels due to the Doppler shift.
In [5], study of the OFDM ambiguity function shows that
there is a range of allowed target speed limiting the compres-
sion loss. Our frequency formulation of the model allows to
complete this analysis. We extend and illustrate this result
with simulations based on Digital Audio Broadcasting [6, 7].
In this DAB context, five frequency channels are required to
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Figure 1: Transmitter block diagram of an OFDM system.
CP denotes the cyclic prefix and R is the real part.
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Figure 2: The receiver block diagram. LPF is a low pass
filter.

represent the Dirichlet function. Thus, in this radar scenario,
PC should reduce each OFDM symbol to five points to keep
a good tradeoff between computational burden and detection
performance.
Section 2 presents the signals mathematical models. Sec-
tion 3 describes the DAB based radar characteristics: reso-
lutions, ambiguity functions and pulse compression. Finally,
section 4 details target detection simulations with pulse com-
pression.
Let us begin with the OFDM radar signal representation.

2. SYSTEM DESCRIPTION

In this section, we give the general formulation of OFDM
signals and introduce our compact frequency formulation of
the OFDM based radar received signal.

2.1 OFDM model
Let us recall the basic OFDM model in figures 1 and 2. We
assume that the use of a cyclic prefix both preserves the or-
thogonality of the K tones and eliminates intersymbol inter-
ference between consecutive OFDM symbols. Further, the
channel is supposed to be slowly varying so that it is consid-
ered constant during Ns consecutive OFDM symbols.
Then, we can describe the system as a set of K parallel Gaus-
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sian channels, with attenuation hk,

yk,n = hk ak,n +bk,n , 0≤ k ≤ K−1 , 1≤ n≤ Ns .

The OFDM information symbols, the ak,n, are assumed to be
QPSK sequences. Each frequency component of the noise
bk,n is assumed independent identically distributed complex
zero-mean Gaussian, uncorrelated with the channel.
Next, we detail the time and frequency representations of the
delayed and Doppler shifted version of an OFDM symbol
without its cyclic prefix.

2.2 Doppler signal model
In this paragraph, we introduce the frequency representation
of the nth OFDM symbol of a Doppler echo. The general
case, for Ns OFDM symbols and M sensors, is given in the
next subsection.
OFDM signals are encoded and decoded with Discrete
Fourier Transform (DFT). We note

t =

 0
...

K−1

 Te and ω =
2π

K

 0
...

K−1

 Fe ,

where Te = 1/Fe is the sampling period. Then, W =
exp{ jtωT} is the DFT matrix, where exp{.} is the element-
wise exponential function. Also, when we sum up a vector
and a scalar, we assume that the scalar is summed with each
element of the vector.
The time representation of the nth OFDM symbol without its
cyclic prefix is given by Wan/K, where an is a column vec-
tor collecting K information symbols.
Now, when this signal is delayed by τD smaller than the
cyclic prefix duration, it becomes

WD (exp{− jτD [ω +ωc]}) an/K ,

where ωc is the carrier angular frequency and where D{.} is
diagonalization operator.
To take into account the Doppler effect, this vector has to be
element-wise multiplied by the following phase shift vector

exp{ jωD (t− τD +[P+(n−1)N]Te)} ,

where ωD is the Doppler angular frequency, P is the number
of points of the cyclic prefix, and N = K + P is the number
of points of an OFDM symbol plus its cyclic prefix. So, (n−
1)NTe is the duration of n−1 previous OFDM symbols with
their cyclic prefix.
Then, taking the DFT of the element-wise product of the two
preceeding vectors, we get the frequency representation

1
K

exp{− j(ωc +ωD)τD + jω̃D (P+(n−1)N)}

WH D{exp{ jωD t}}WD{exp{− jτDω}}an ,

where ω̃D = ωD/Fe. Finally, the kth frequency bin, 0 ≤ k ≤
K−1, is

e− j(ωc+ωD)τD e jω̃D (P+(n−1)N) dk D{exp{− jτDω}}an ,

where dk is the (k +1)th line of WH D{exp{ jωD t}}W/K.
We rewrite the kth frequency bin as

e jω̃DP exp
{
− jτD(ωT +ωD +ωc)

}
D{dk}ane jω̃D(n−1)N (1)

non−doppler echoes
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Figure 3: Radar scenario and OFDM signals received on an
array of M sensors.

to find the general model given in equation (3).
Next, we summarize those results to give the frequency
model of Ns OFDM symbols received on an array of M sen-
sors.

2.3 Radar model and pulse compression
Our scenario is sketched on figure 3. We suppose that Ns
OFDM symbols are received by a uniform linear array of M
sensors. We consider the presence of a moving target whose
delay is less than the cyclic prefix duration. After removing
the cyclic prefixes, we obtain the frequency matrix formula-
tion

Yk = hk aT
k +αD Sk +Nk , (2)

where 0≤ k ≤ K−1, and
• Yk ∈ CM,Ns is the received signal at frequency k,
• hk ∈ CM,1 contains the channel transfer function at fre-

quency k,
• ak ∈ CNs,1 contains the OFDM symbols at frequency k,
• αD is the complex amplitude of the Doppler signal,
• Sk ∈ CM,Ns is the target Doppler shifted signal at fre-

quency k,
• and Nk ∈ CM,Ns is the additive noise, assumed Circular

Complex Gaussian, i.e.,

vec{Nk} ∼ CNC(0,INs ⊗Rk) ,

where Rk ∈ CM is the noise spatial covariance matrix at
frequency k.

Note that the DFT length is assumed much longer than the
noise correlation length, so that the noise is uncorrelated
from one frequency to another frequency. Moreover, the
model assumes that the channel and the Doppler parameters
are constant during the illumination time.
Now, let us describe the Doppler signal at frequency k. From
equation (1), we have

Sk = exp{ jω̃D P}BDk AT DD , (3)

where

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP



• ωD is the Doppler angular frequency, ω̃D = ωD/Fe, and
Fe is the sampling frequency,
• P is the number of points of the cyclic prefix,
• B ∈ CM,K is the wideband beamforming matrix, ex-

pressed by

B = exp{− jrD (ωT +ωD +ωc)} ,

where exp{.} is the elementwise exponential function,
– rD ∈RM,1 is the vector of delays of the Doppler echo,

rD = τD +cM
d
c

sinθD , cM = [0, . . . ,M−1]T ,

where τD is the delay on the first sensor, d is the
inter-sensor spacing, c is the speed of light, θD ∈
[−π/2,π/2] is the angle of arrival,

– ω is the DFT angular frequency vector, ω =
[ω0, . . . ,ωK−1]T , and ωk = 2π k Fe/K,

– ωc is the carrier angular frequency,
• Dk ∈ CK is a diagonal matrix, Dk = D{dk}, containing

the Dirichlet function defined by: for 0≤ p≤ K−1

dk(p+1) =
1
K

K−1

∑
q=0

exp{ j q(ω̃D + ω̃p− ω̃k)} ,

where D{.} is the diagonalization operator,
• A ∈ CNs,K is the matrix of the OFDM symbols,
• DD ∈ CNs is a diagonal matrix containing the Doppler

shift from one symbol to the other, i.e., its entries are

exp{ jω̃D (n−1)N} , 1≤ n≤ Ns ,

where N = K + P is the number of points of an OFDM
symbol with its cyclic prefix.

The frequency dependence of the Doppler matrix Sk relies
only on Dk, which itself varies through a circular rotation
along frequencies (because dk is 2π-periodic). Thus, we
limit our study of the Dirichlet function to D0 = D{d} that
we rewrite as: for 0≤ p≤ K−1

d(p+1) =
1
K

e j(K−1)(ω̃p+ω̃D)/2 sin[K(ω̃p + ω̃D)/2]
sin[(ω̃p + ω̃D)/2]

, (4)

and d(p + 1) = 1 by continuous prolongation if ω̃p + ω̃D is
a 2π multiple. This vector represents the energy spreading
over adjacent Gaussian channels, see figure 4 for an illustra-
tion. Pulse compression to L terms approximates the Dirich-
let function to its L central points (and we note dL the asso-
ciated Dirichlet function).
Finally, remember that this model has been written for a
Doppler delay1 shorter than the cyclic prefix duration. Its
extension to a more general case is straightforward but bur-
densome.
Next, our frequency model is used to study the effect of pulse
compression on DAB based radar performance.

3. DAB RADAR AMBIGUITY FUNCTION

In this section, we present the attainable radar resolutions
with a passive system based on DAB. Then, we use the fre-
quency model defined by equations (2) and (3) to study pulse
compression (PC) loss on the radar ambiguity function.

1We call Doppler delay the delay of the Doppler-echoed signal.
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Figure 4: Absolute value of a Dirichlet function with a
Doppler effect (’+’ markers on the dashed line) and with-
out (in this case, the central point is one while other points
are zeros).

3.1 Radar resolutions with DAB
Based on the DAB characteristics, we consider an illumina-
tion signal made of
- Ns = 32 OFDM symbols,
- K = 1024 tones,
- B = Fe = KW = 1.024MHz bandwidth,
- P = K/4 points for the cyclic prefix,
- and Fc = 200MHz carrier frequency.
Received on M = 10 sensors, this signal consists of 320 thou-
sand sample. Such a system allows
- a spatial resolution of c/Fe ' 290m ,
- a temporal resolution of 1 µ s,
- an angular resolution of 2/(M− 1) rad ' 12.7◦ (with sen-

sor spacing d = λ/2' 0.75m),
- and a Doppler resolution of W/1.25/Ns = 25Hz .

Each OFDM symbol has 1.25ms duration. So, with one point
per OFDM symbol, i.e. L = 1 in PC, the Doppler band under
analyzis is [−400,400]Hz.
The total signal duration is 40ms. It corresponds to a distance
of 14m traveled by a plane at Mach 1. This validate our hy-
pothesis that the geometry of the experimental configuration
does not change. It also validates the first order approxima-
tion of the Doppler effect. Finally, let us remark that a plane
at Mach 1 creates a maximum Doppler shift of FD = 226Hz.
Next, we study pulse compression influence on the radar am-
biguity function.

3.2 Ambiguity function and PC
The general form of the ambiguity function takes into ac-
count the Doppler frequency shift: it is the correlation be-
tween the Doppler signal at a reference point S and the
Doppler signal along the parameter space Ŝ,

A(τ̂D, θ̂D, F̂D) = tr
(
SH Ŝ

)
=

K−1

∑
k=0

tr
(
SH

k Ŝk

)
.
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Figure 5: Doppler cut of the ambiguity diagram of an OFDM
signal for three values of L (pulse compression): L = 1 blue
dashed line, L = 5 green line and L = K red dotted line.

If we assume that the Doppler signals can be approximated
with only L non-zero terms in the Dirichlet function, the as-
sociated components are noted d̂L, D̂k,L and AL (if L = K,
there is no approximation). Let note E{.} the expectation
operator. Now, assuming the OFDM information symbols
are independent unit power random processes, our frequency
formulation leads to

|E{AL}| =

∣∣∣∣∣tr(D̂DDH
D

)
tr

(
BHB̂

K−1

∑
k=0

D̂k,LDH
k

)∣∣∣∣∣
=

∣∣∣tr(D̂DDH
D

)
tr
(
BHB̂

)
dH d̂L

∣∣∣ .
This expression offers many possibilities in waveform design
and pulse compression analysis. The most influent factor is
the Dirichet function∣∣∣tr(D̂DDH

D

)∣∣∣= ∣∣∣∣ sin[Ns N( ˆ̃ωD− ω̃D)/2]
sin[N ( ˆ̃ωD− ω̃D)/2]

∣∣∣∣ ,
which shapes the Doppler cut ambiguity function of figure 5.
There, zeros are modulo Fe/(N Ns) = W/(1.25Ns) = 25Hz.
Also, defining the loss due to pulse compression, noted LPC,
as the ratio of the ambiguity functions with and without com-
pression, we get

LPC =
|E{A}|
|E{AL}|

=

∣∣∣∣∣ dH d̂

dH d̂L

∣∣∣∣∣ .
At the main lobe of the ambiguity function, we have d = d̂.
As dHd = 1, the loss at the main lobe is 1/|dH dL|. Thus, if
L = 1, the loss at the main lobe is the inverse of the central
point of the Dirichlet function of equation (4), i.e.,∣∣∣∣K sin(ω̃D/2)

sin(Kω̃D/2)

∣∣∣∣2 =
∣∣∣∣K sin(ωD/(2KW ))

sin(ωD/2/W )

∣∣∣∣2 .

Using Taylor series representation, we get FD 'W/4 for the
limit of 1dB loss (20 log |LPC|), or 90% conservation, at the
main lobe. Thus, with W = 1kHz, the 1dB limit is 250Hz.
In conclusion, reducing the PC loss requires to increase the
tones bandwidth W . To do so while keeping a good Doppler
resolution, one has to increase Ns, the number of OFDM
symbols.
In the next section, we present the detector built from gener-
alized likelihood and we study its performance as a function
of the Doppler parameters and of the pulse compression.

4. PULSE COMPRESSION AND DETECTION

We assume that the noise cross spectral matrices, the Rk’s,
are known. Moreover, we suppose that OFDM information
symbols are known, which requires an error-free demodula-
tion of the DAB radio signal.

4.1 Maximum likelihood test
After estimating the channel coefficients and the Doppler
amplitude, the generalized likelihood ratio leads to

TL(τD,θD,FD) =

∣∣∣∑K−1
k=0 tr

(
YH

k R−1
k Sk,L P⊥a∗k

)∣∣∣2
∑

K−1
k=0 tr

(
SH

k,L R−1
k Sk,L P⊥a∗k

) , (5)

where P⊥a∗k
= INs − a∗k aT

k /‖ak‖2 , is the orthogonal projec-
tion onto the subspace perpendicular to the subspace defined
by the column vector a∗k .
The whitened noise R−1/2

k Nk is distributed as
CNC(0,IM Ns). Thus, the argument of the sum of the
numerator of equation (5) is

tr
(
YH

k R−1
k Sk,L P⊥a∗k

)
∼ CNC(mk,L,vk,L)

with mk,L = tr
(

α
∗
DDH

k R−1
k Dk,L P⊥a∗k

)
vk,L = tr

(
DH

k,L R−1
k Dk,L P⊥a∗k

)
.

and, frequency independence leads to

2TL : χ
2
(

2,
2|mL|2

vL

)
,

where mL = ∑
K−1
k=0 mk,L and vL = ∑

K−1
k=0 vk,L. Note that if L =

K, the bias parameter becomes 2|m|2/v = 2 |αD|2 v.
Finally, choosing µ such that PFA =

∫
∞

µ
p

χ2
2
(x)dx, we have

a detector while realizing the test TL
H1
≷
H0

µ

2 .

Next, we use this result to compute the detection probability
for different configuration parameters.

4.2 Detection probability (DP) simulation
For PFA = 10−2, we analyze the DP relatively to the noise
power and the Doppler parameters for three values of L: 1, 5
et K (no pulse compression).
OFDM information symbols are QPSK and independent
while the additive noise is white Gaussian complex circu-
lar. The channel coefficients are simulated from at least 10
echoes normalized so that the maximal amplitude is one.
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Figure 6: Detection probability versus noise power in dB for
three values of L (Dirichlet function approximation): L = 1
blue dashed line, L = 5 green line and L = K red dotted line.

Thus, the total non-Doppler channel response has a minimum
power of 10log10(K M Ns) = 55.15dB. The Doppler ampli-
tude is αD = 10−2 so that the total Doppler signal contribu-
tion is 10log10(K M Ns|αD|2) = 15.15dB.

4.2.1 DP versus white noise power

For FD = 200Hz, τD = 3/4TPC, and θD = π/4, we plot on
figure 6 the detection probability versus the noise power: the
blue dashed line corresponds to L = 1 (one point in the pulse
compression), the green line corresponds to L = 5 and the red
dotted line corresponds to L = K (no pulse compression). For
a noise power of 61dB, we add circles on the graph. Here, the
pulse compression represents a detection loss of 5%, which
can be regain if the noise is one half dB lower.

4.2.2 DP versus Doppler parameters

For a noise power of 61dB, we plot on figure 7 the detec-
tion probability obtained with different values of FD, τD, and
θD. Again, the blue dashed line corresponds to L = 1 (one
point in the pulse compression), the green line corresponds
to L = 5 and the red dotted line corresponds to L = K (no
approximation). For a Doppler frequency 200Hz, we add
circles on the graph. Here, we still find that the pulse com-
pression implies a loss of 5%. This loss goes up to 30% when
the Doppler frequency reaches 400Hz. The other Doppler pa-
rameters, angle and time of arrival, have almost no influence,
which confirms the result of subsection 3.2.

5. CONCLUSION

We have presented a new frequency formulation of the sig-
nals received by an array of sensors in OFDM based radar.
These equations have enlightened that the Doppler frequency
affects the pulse compression ambiguity function through a
Dirichlet function. We have shown that to limit pulse com-
pression loss, one may increase the bandwdith between carri-
ers. But, this decreases the prefix cyclic duration. Thus, one
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Figure 7: Detection probability versus FD in Hz for three
values of L (Dirichlet function approximation): L = 1 blue
dashed line, L = 5 green line and L = K red dotted line. These
results are obtained for different values of τD, θD and a noise
power of 61dB.

might keep the same waveform and limit the radar to use one
over two (or four) tones (while divising every OFDM symbol
in two or four). Our model assumes that the Doppler delay
is included in the cyclic prefix, which has for consequence
that this parameter does not influence the Doppler signal de-
tection. Future work will endorse the evaluation of a model
taking into account a Doppler delay bigger than the cyclic
prefix duration. We will also evaluate the Doppler parame-
ters influence on adaptive detectors.
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