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ABSTRACT

In this paper we present a novel not data aided gain con-
trol free frequency offset estimator for general Quadrature
Amplitude Modulated constellations along with its theoreti-
cal performance analysis. The estimator is based on apply-
ing a tentative frequency offset compensation by means of a
nonlinear transformation of the received signal samples and
on estimating an accumulation function in different angu-
lar windows. For perfect frequency offset compensation, the
measurements are suitably clustered and their accumulation,
named \Constellation Phase Signature" (CPS), is a function
of the window orientation made up by a set of pulses whose
locations depend on the constellation. If the constellation is
known, the CPS is known, and the estimated frequency offset
is the one such that the preliminary frequency compensation
of the non linearly transformed signal samples provides the
best match between the observed phase histogram and its
expected value corresponding to zero frequency offset. The
performance analysis is shown to match the numerical sim-
ulations for medium to high values of SNR.

Index Terms| Frequency estimation, Quadrature am-
plitude modulation.

1. INTRODUCTION
In general Quadrature Amplitude Modulated (QAM) trans-
mission, preliminary carrier phase and frequency offset esti-
mation needs to be performed at the output of the receiver, ei-
ther in a trained or in blind fashion. Although many standard
communication systems adopt trained transmission, great band-
width savings are achieved when the estimation is performed
using blind estimators. In [1], the authors introduce a family
of blind feed-forward nonlinear least-squares estimators for
joint carrier phase and frequency offset estimation, relying
on a constellation dependent nonlinear estimator that, after
automatic gain control, minimizes the asymptotic (large sam-
ple) error variance. In [2] nondata-aided carrier frequency
offset estimation for non-circular modulations in unknown
frequency-selective channels is described; the estimator ex-
ploits oversampling of the received waveform to induce un-
conjugated cyclostationary statistics on the samples, while in
[3] nondata-aided frequency offset estimation is performed
exploiting a suitable linear precoding. In [4], a frequency
estimator is developed, and its performance analyzed based

on the unique conjugate cyclic frequency of the received sig-
nal, which is equal to twice the frequency offset. In [5], an
estimator is derived by linearizing the Maximum-likelihood
cost function, both for preamble-based and blind acquisition.

In [6, 7] a novel blind frequency offset estimator for cross
QAM constellations has been introduced extending the phase
offset estimator presented in [8] and [9]. This estimator is
based on the observation that, when the frequency offset is
perfectly removed by preliminary compensation, a suitable
nonlinear transformation of the received signal samples ex-
hibits a particular phase distribution, named Constellation
Phase Signature (CPS). In ideal, noise-free QAM signalling,
the CPS is constituted by a discrete number of pulses whose
locations depend on the signal constellation, and retains a sig-
nificant peakness also in presence of channel noise. Hence,
the frequency offset can be estimated by searching the fre-
quency compensation that maximizes the peakness of the
CPS estimated on the compensated data. The resulting blind
frequency estimator does not need neither gain/SNR nor con-
stellation knowledge and performs well on cross constella-
tions for medium to high values of SNR. Here we present a
new constellation dependent estimator extending this latter.
Under the hypothesis of known constellation, the phase dis-
tribution is known. Hence, we devise a frequency estimator
such that the preliminary frequency compensation of the non
linearly transformed signal samples provides the best match
between the observed phase histogram and its expected value
corresponding to zero frequency offset.

This paper is organized as follows: In Sect.2 we intro-
duce the model of the received signal; in Sect.3 we present
the frequency the CPS estimator while in Sect. 4 we present
its performance analysis. Sect.5 shows results of both theo-
retical performance analysis and numerical simulations; for
comparison sake, results of selected state-of-the-art estima-
tors [1] are also reported.

2. DISCRETE-TIME SIGNAL MODEL
Let S[n] be the n-th transmitted symbol drawn from a power
normalized M -ary QAM constellation A = {S0, .., SM−1}.
Let us assume for the samples of the received signal extracted
at symbol rate X[n] the following analytical model:

X[n] = GC e
jθ+j2πfen S[n] +W [n] (1)
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where GC is the unknown overall gain, θ and fe are the un-
known phase and frequency offset, and W [n] is a realization
of a circularly complex Gaussian stationary noise process,
statistically independent of X[n]. The signal-to-noise ratio
(SNR) is defined as SNR def

=G2
C
/σ2

W
, being σ2

W

def
= E

{

|W [n]|2
}

the noise variance. We address here the estimation of the
carrier frequency offset fe given a sample of N consecutive
observations X[n], n = 0, · · · , N − 1. Due to the quad-
rant constellation symmetry, without loss of generality, the
frequency offset is limited to |fe| < 1/8 [1].

3. CPS BASED FREQUENCY OFFSET ESTIMATION
Let us consider the following nonlinear function [1, 8, 6]
of the received signal samples X[n] comprising a frequency
compensation of f0:

Y (f0)[n] = |X[n]| · ej4·arg{X[n]}e−j2π4f0n (2)

In the noise free case, and for equiprobable constellation
symbols, the pdf of the random variable Y (f0)[n] in polar
form (Y (f0)[n] = rne

jϕn) can be written as:

p
R,Φ

(rn, ϕn; f0) =
1

M

M−1
∑

m=0

δ(rn −GC|Sm|)

· δ(ϕn − 4θn − 4 argSm)

(3)

where θn = θ+2π(fe−f0)n is the time-variant phase-offset
due to the residual frequency offset fe − f0.

For perfect frequency compensation f0 = fe, the noise-
free pdf of the random variable Y (f0)[n] becomes:

p
R,Φ

(rn, ϕn; fe)=
1

M

M−1
∑

m=0

δ(rn−GC|Sm|)δ(ϕn−4θ−4 arg Sm)

(4)
From (3), (4), we see that for f0 6= fe the pdf of the random
variable Y (f0)[n] is cyclically shifted of 4θn with respect
to the variable ϕ, and p

R,Φ
(rn, ϕn; f0) = p

R,Φ
(rn, ϕn −

2π4(fe − f0)n; fe).
In presence of additive noise, the Dirac pulses appearing

in (3) become wider pulses whose shape depends on the
SNR and the noise pdf; however, we can still observe the
pdf cyclic shift by the time varying phase-offset θn due to
the residual frequency offset fe − f0.

Now let us consider the Magnitude Weighed Tomographic
Projection (MWTP)1 of the probability density function (pdf)
p
R,Φ

(rn, ϕn; fe) under the hypothesis of perfect frequency
compensation, namely:

g(A,θ)

Φ
(ϕn)

def
=

∫ +∞

0

rn · p
R,Φ

(rnϕn; fe) drn (5)

The MWTP g(A,θ)

Φ
(ϕn) behaves as an ordinary pdf; hence it

can be estimated by subdividing the phase interval [0, 2π) in
1The MWTP is first introduced in [9]where a closed form calculation of

the MWTP of a generic QAM signal can also be found.

K intervals and evaluating the normalized area of g(A,θ)
Φ

(ϕn)

in the k-th phase interval. At this aim, let us define

f (A,θ) (ψ)
def
=
K

2π
·

∫ ψ+2π/K

ψ

g(A,θ)

Φ
(ϕn) dϕn (6)

In the limit K → ∞, f (A,θ) (ψk) tends to g(A,θ)

Φ
(ψk) The

CPS f (A,θ) (ψ) depends on the constellation A and is typi-
cally made up by a finite set of pulses whose locations and
widths depend on the signal constellation and signal-to-noise
power ratio, respectively, and it is exploited in [8, 9] to de-
velop a blind phase offset estimator for general QAM sig-
nals2. For perfect compensation fe = f0 the CPS can be
estimated as:

f̂ (A,θ,fe)(ψk)
def
=

1

N

N−1
∑

n=0

|Y (fe)[n]|dkK

(

Y (fe)[n]
)

dkK (Y ) =
K

2π
rect2π/K(arg(Y ) − 2π(k + 1/2)/K)

k = 0, · · · ,K − 1

(7)

where ψk
def
= 2πk/K denotes the reference phase of the k-

th phase interval. For perfect frequency compensation, the
accumulation function f̂ (A,θ,fe)(ψk) is an unbiased estimator
of the CPS, in fact:

E
{

f̂ (A,θ,fe)(ψk)
}

=
1

N

N−1
∑

n=0

E
{

|Y (fe)[n]|dkK

(

Y (fe)[n]
)}

=
1

N

N−1
∑

n=0

∫ +∞

0

∫ 2π

0

rn p
R,Φ

(rn, ϕn; fe) d
k
K

(

rne
jϕn

)

drndϕn

= f (A,θ) (ψk) , k = 0, · · · ,K − 1,

For f0 6= fe, instead, we have

E
{

f̂ (A,θ,f0)(ψk)
}

=
1

N

N−1
∑

n=0

E
{

|Y (f0)[n]|dkK

(

Y (f0)[n]
)}

=
1

N

N−1
∑

n=0

∫ 2π (k+1)
K

2π k

K

∫ +∞

0

rnp
R,Φ

(rn, ϕn−2π4(fe−f0)n; fe)drndϕn

=
1

N

N−1
∑

n=0

f (A,θ) (ψk − 2π4(fe − f0)n)

Hence, the expected value of the function f̂ (A,θ,f0)(ψk) is a
temporal average of N suitably shifted versions of the per-
fectly compensated CPS, i.e. f(A,θ) (ψk). Based on this ob-
servation, we look for a frequency estimator f̂CPS that best
focalizes the sample function f̂ (A,θ,f0)(ψk) towards the per-
fectly compensated CPS f(A,θ) (ψk).

2We remark that both the MWTP and the CPS are cyclically shifted by 4θ

due to the residual phase offset θ, that is g(A,θ)

Φ
(ϕn) = g(A,0)

Φ
(ϕn − 4θ)

and f (A,θ) (ψk) = f (A,0) (ψk − 4θ) [9].
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If the constellation is known, the perfectly compensated
CPS f (A,θ) (ψk) is known, unless the unknown cyclic phase
shift due to the phase offset. Then, for every tentative com-
pensation frequency, the observed f̂ (A,θ,f0)(ψk) is matched
to the zero phase offset CPS. To properly take into account
the unknown phase offset, which is seen as a shift of the
observed f̂ (A,θ,f0)(ψk), the matching is performed by means
of a cross-correlation procedure. The maximum output of
the cross-correlation is evaluated according to

Ĉ(f0)
def
= max

ψk

f̂ (A,θ,f0)(ψk) ⊗ f (A,0) (ψk) (8)

and the frequency offset estimator is written as 3:

f̂KCCPS = arg max
f0

{Ĉ(f0)}

The estimator f̂KCCPS doesn't need any gain control but only a
coarse SNR estimate to evaluate the CPS, as deeply discussed
in [9].

Following the approach in [10], the maximization of the
gain function Ĉ(f0) of the sample function f̂ (A,θ,f0)(ψk) can
be performed in two steps, i.e. by first scanning the admis-
sible range of f0, i.e. [−1/8, 1/8], with step ∆f between
candidate frequencies to evaluate an intermediate coarse es-
timate f̂c, and then by interpolating the estimate f̂c around the
maximum to obtain the fine estimate f̂fine. Here, we adopt
a parabolic approximation for the gain function around its
maximum, yielding the following formula for the fine esti-
mate f̂fine:

f̂fine = f̂c +
1

8
∆f0

Ĉ(f̂c + ∆f) − Ĉ(f̂c − ∆f)

Ĉ(f̂c + ∆f) + Ĉ(f̂c − ∆f) − 2Ĉ(f̂c)

The parabolic approximation captures the local variations
of the gain function and allows the estimator performance
analysis to be carried out in closed form [10].

4. ANALYTICAL PERFORMANCE EVALUATION
In this Section we provide performance analysis for the CPS
based frequency offset estimator.

In evaluating the accuracy of the estimator (3), we ob-
serve that two error components appear. The first compo-
nent occurs when the coarse estimate f̂c is not correct, in
the sense that it does not maximize the expected value of
the gain function Ĉ(k∆f) over the index k. The second
error component is due to the sample peakness estimation
error and to the misfit of the parabolic approximation around
its maximum, and definitely limits the estimator accuracy.
Numerical simulations show that, for a large range of SNR
values, the coarse estimate is correct, and the first error com-
ponent is zero. Hence, following the approach indicated in
[10], the bias and the variance of f̂fine can be analytically

3Interestingly enough, when Ĉ(f0) is evaluated at the frequency f̂KC
CPS ,

the location of the cross-correlation maximum provides a coarse phase esti-
mate as described in [9].

evaluated as a function of the gain function mean, variance
and covariances.

Let us denote Ef0
def
= Ĉ(f0)− E

{

Ĉ(f0)
}

and let us pose

X = E
{

Ĉ(fc + ∆f)
}

Y = E
{

Ĉ(fc − ∆f)
}

Z =E
{

Ĉ(fc)
}

and c = X − Y d = X − 2Z + Y .
Then, resorting to the following first-order approximation

of (3):

f̂c − f̂fine ≈
∆f

8

( c

d
+
d− c

d2
Efc+∆f

−
d+ c

d2
Efc−∆f −

2c

d2
Efc

)

the following results hold [10]:

bias(f̂fine)=−
∆f

2

2

d3
·
[

(Y − Z) Var (Ĉ(fc + ∆f))

+ (Z −X) Var (Ĉ(fc−∆f))−2 (X−Y ) Var (Ĉ(fc))

− (Y + 2Z − 3X) Cov (Ĉ(fc − ∆f), Ĉ(fc))

+ (Y + 2Z − 3X) Cov (Ĉ(fc), Ĉ(fc + ∆f))

− (X − Y ) Cov (Ĉ(fc + ∆f), Ĉ(fc − ∆f))
]

− bpm

where the term bpm = (fe − fc) + ∆f/2 · c/d accounts for
the parabolic misfit [10]. As long as the variance of the
estimator f̂fine is concerned, we have

aVar(f̂fine)
def
= lim
N→∞

N · Var (f̂fine)

=
∆f2

64

[

(

d− c

d2

)2

Var (Ĉ(fc + ∆f))

+

(

d+ c

d2

)2

Var (Ĉ(fc − ∆f)) +

(

2c

d2

)2

Var (Ĉ(fc))

−

(

d2 − c2

d4

)

Cov (Ĉ(fc + ∆f), Ĉ(fc − ∆f))

+

(

2dc+ 2c2

d4

)

Cov (Ĉ(fc), Ĉ(fc − ∆f))

+

(

2dc− 2c2

d4

)

Cov (Ĉ(fc + ∆f), Ĉ(fc))
]

Since the constellation the CPS f (A,θ) (ψk) can be evaluated
in close form, unless an unknown cyclic phase shift. Then,
for every tentative compensation frequency, the gain function
Ĉ(f0) is evaluated as

Ĉ(f0) = max
k

f̂ (A,θ,f0)(ψk) ⊗ f (A,0) (ψk)

=

K−1
∑

k=0

f̂ (A,θ,f0)(ψk − ψkmax
) f (A,0) (ψk)

≈
K−1
∑

k=0

f̂ (A,θ,f0)(ψk − θ) f (A,0) (ψk)

(9)
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Fig. 1. Frequency estimator MSE vs. SNR for 64-QAM (right) and 128 QAM (left) constellations; CPS-based estimator for
known constellation (theoretical, solid line black, and numerical, circle black) and optimal NLS estimator in [1] (WA03)
(theoretical, solid line gray, and numerical, diamond gray). The dashed line represents the MCRB [11].

Fig. 2. Frequency estimator MSE vs. SNR for 256-QAM (right) and 512 QAM (left) constellations; CPS-based estimator
for known constellation (theoretical, solid line black, and numerical, circle black) and optimal NLS estimator in [1] (WA03)
(theoretical, solid line gray, and numerical, diamond gray). The dashed line represents the MCRB [11].

where in (8) we disregard the influence of the coarse phase
estimate error θ − ψkmax

on the estimated gain function. To
proceed, let us introduce the zero mean random process εf0k :

εf0k
def
= f̂ (A,θ,f0)(ψk) − F̂ (A,θ,f0)(ψk)

F̂ (A,θ,f0)(ψk)= E
{

f̂ (A,θ,f0)(ψk)
} (10)

Based on this assumption the gain function in (9) can be
written as:

Ĉ(f0) =

K−1
∑

k=0

(F̂ (A,θ,f0)(ψk)+ εf0k )f (A,0) (ψk) (11)

With this position, the moments of Ĉ(f0) can be ex-
pressed as a function of the expected value of f̂ (A,θ,f0)(ψk)

and of the moments of the error process εf0k . More specifi-
cally we have:

E{Ĉ(f0)} =
1

K

K−1
∑

k=0

F̂ (A,θ,f0)(ψk)f
(A,0) (ψk)

and

E{Ĉ(f0)
2} =

1

K2

K−1
∑

k1

K−1
∑

k2
(

F̂ (A,θ,f0)(ψk1)f
(A,0) (ψk1) F̂

(A,θ,f0)(ψk2)f
(A,0) (ψk2) +

f (A,0) (ψk1) f
(A,0) (ψk2)m

(2)
f0

[k1, k2]
)
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and
E{Ĉ(f0)Ĉ(f1)} =

1

K2

K−1
∑

k1

K−1
∑

k2
(

F̂ (A,θ,f0)(ψk1)f
(A,0) (ψk1) F̂

(A,θ,f1)(ψk2)f
(A,0) (ψk2) +

f (A,0) (ψk1) f
(A,0) (ψk2)m

(1,1)
f0 ,f1

[k1, k2]
)

where we adopted the following notations:

m
(r)
f0

[k]
def
= E

{(

εf0k

)r}

m
(r,s)
f0

[k1, k2]
def
= E

{(

εf0k1

)r (

εf0k2

)s}

m
(r,s)
f0,f1

[k1, k2]
def
= E

{(

εf0k1

)r (

εf1k2

)s}

(12)

Closed form for the moments in (12) have been derived,
based on the expectation of the accumulation function (7).
Without loss of generality here we report only the final ex-
pressions:

m
(2)
f0

[k] =
1

N2

N−1
∑

n=0

(

F̂ (A,f0,2)
(

ψk − θ(f0)
n

)

−

F̂ (A,θ,f0)
(

ψk − θ(f0)
n

)

2
)

m
(2)
f0

[k, j] =
1

N2

N−1
∑

n=0

(

F̂ (A,f0,2)
(

ψk − θ(f0)
n

)

δkj−

F̂ (A,θ,f0)
(

ψk − θ(f0)
n

)

F̂ (A,θ,f0)
(

ψj − θ(f0)
n

))

m
(1,1)
f0 ,f1

[k, j]=
1

N2

N−1
∑

n=0

(

F̂ (A,f0,2)
(

ψk−θ
(f0)
n

)

δk(j−L(f0−f1)n)

− F̂ (A,θ,f0)
(

ψk − θ(f0)
n

)

F̂ (A,θ,f1)
(

ψj − θ(f1)
n

))

where δkj is the Kronecker delta and where we adopted the
compact notations:

F̂ (A,f0,2)
(

ψk − θ(f0)
n

)

def
=E

{

|Y (f0)
n |2 dkL

(

Y (f0)
n

)}

θ(f0)
n

def
= 2π4(fe − f0)n

Finally, in the limit in which the sample error is asymptoti-
cally (large N ) described by a normal distribution, we have:

m
(2,2)
f0

[k, j] = m
(2)
f0

[k]m
(2)
f0

[j] + 2
(

m
(1,1)
f0

[k, j]
)2

m
(2,2)
f0 ,f1

[k, j] = m
(2)
f0

[k]m
(2)
f1

[j] + 2
(

m
(1,1)
f0 ,f1

[k, j]
)2

(13)

Let us remark that we used the approximation f(A,0) (ψk) ≈
g(A,0)

Φ
(ψk) for the numerical evaluation of the above reported

first and second order moments.

5. NUMERICAL EXPERIMENTS
Here, we present numerical results assessing the theoretical
and experimental performance of the estimator introduced in

Sect.3. Each experiment consists of 1000 Monte Carlo trials,
each one with sample size N = 2000 for cross constellations
and N = 512 for square constellations; the value assumed
for the frequency offset to be estimated is fe = 0.05+∆f/4
being ∆f = 1.4 · 10−6. The experimental and theoretical
Mean Square Error (MSE) of the frequency estimator f̂CPS
introduced in Sect.3 versus SNR is shown in Figs.1 - 2 for 64-
QAM, 128-QAM, 256-QAM and 512-QAM constellations.
We observe a good agreement between the analytical and
the numerical performance for medium to high SNR. For
comparison sake, we report also the results obtained using the
optimal NLS estimator [1]. We remark that both the CPS and
the NLS estimator require the knowledge of the constellation
and of the SNR. The results shown here assume perfect gain
and SNR knowledge. The NLS estimator requires also the
knowledge of the gain while the CPS estimator is gain control
free. A performance degradation is expected for estimated
gain. For reference sake we also report the Modified Cramer
Rao lower bound (MCRB) [11], which well approximates
the Cramer Rao Bound for high values of SNR.

All the figures shows a substantial performance gain for
all the constellations at medium-high SNR values; the gain is
more pronounced for complex constellations and it accounts
for the facts that the CPS allows to jointly exploit measure-
ments corresponding to all the constellation points.
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