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ABSTRACT

With the advent of a single-pixel camera, compressive imaging ap-
plications have gained wide interests. However, the designof effi-
cient measurement basis in such a system remains as a challenging
problem. In this paper, we propose a highly sparse and fast sampling
operator based on the scrambled block Hadamard ensemble. Despite
its simplicity, the proposed measurement operator offers universal-
ity and requires a near-optimal number of samples for perfect re-
construction. Moreover, it can be easily implemented in theoptical
domain thanks to its integer-valued elements. Several numerical ex-
periments show that its imaging performance is comparable to that of
the dense, floating-coefficient scrambled Fourier ensembleat much
lower implementation cost.

Index Terms— Compressed sensing, random projections, spar-
sity,Hadamard transform

1. INTRODUCTION

Over the past few years, there have been increased interestsin the
study of compressed sensing (CS)—a new framework for simulta-
neous sampling and compression of signals. In CS, the bandlimited
model in the classical Nyquist sampling theorem is replacedby the
sparse model, assuming that a signal can be efficiently represented
using only a few significant coefficients in a certain transform do-
main. The groundbreaking work by Candeset al.[1] and Donoho [2]
showed that such a signal can be precisely reconstructed from only
a small set of random linear measurements (much lower than the
Nyquist rate), implying the potential of dramatic reduction of sam-
pling rates, power consumption and computation complexityin dig-
ital data acquisitions.

Due to the large amount of data in image and video signals, CS
is very attractive in imaging applications, especially forlow-power
and low resolution imaging devices or when the measurement is
very costly (e.g., Terahertz applications). Since the discovery of the
CS theory, several compressive imaging algorithms have been de-
veloped for Fourier transform domain measurements in applications
such as the MRI [3]. For spatial domain measurement, a singlepixel
camera [4] has been built that it is applicable for sparse signals in
any transform domain. Besides, with only one photon detector, it is
quite promising for imaging applications at wavelength where cur-
rent CMOS and CCD cameras are impossible [4].

Despite the above-mentioned works, there still exists a huge gap
between the CS theory and imaging applications. In particular, it
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is still unknown how to construct a fast and efficient sensingopera-
tor, especially when the measurement is taken in the spatialdomain.
Note that in the single-pixel camera, the sampling operatoris based
on therandombinary pattern, which requires huge memory and high
computation cost. For example, to get a512 × 512 image with 64k
measurements (i.e., 25% sampling rate), a random binary operator
requires nearly gigabytes storage and giga-flop operations, which
makes the recovery almost impossible. A popular choice in exist-
ing compressive imaging research is the scrambled Fourier ensem-
ble (SFE) [5]. Although it is much more computationally efficient
than the binary random operator, it still requires huge memory and
expensive implementation cost.

In this paper, we propose a new fast measurement operator for
compressive imaging by taking advantages of random permutations
and block Hadamard transform. The development is based on our
recent work of structurally random matrix in [6]. The proposed sam-
pling operator offers several attractive features. From the theoreti-
cal perspective, the sampling operator isuniversalwith a variety of
sparse signal and the number of measurements required for exact re-
construction isnearly optimal. From the practical perspective, the
block Hadamard transform can be easily implemented in the opti-
cal domain (e.g, using the single pixel camera). It also offers fast
computationalong with verysmall memory requirement. In fact, we
shall demonstrate that a32× 32 scrambled block Hadamard ensem-
ble can offer comparable compressive imaging performancesto the
dense and floating-coefficient SFE at much lower cost.

The rest of this paper is organized as follows. Section 2 provides
a brief review of the CS principle. Section 3 describes our proposed
sensing operator and presents the theoretical analysis by exploit-
ing the combinatorial central limit theorem [7] and Bernstein-type
bounds for random permutations [8]. Simple scrambling algorithms
are also proposed for practical considerations. Section 4 reports the
simulation results followed by conclusions in Section 5.

2. BACKGROUND

Consider a length-N , real valued signalx1 and suppose that the ba-
sisΨ provides aK sparse representation ofx. In terms of matrix
notation, we havex = Ψf , in which f can be well approximated
using onlyK � N non-zero entries andΨ is called as thesparse
basis matrix[2]. For images, typical choices ofΨ include the DCT
and the wavelet. The CS theory states that such a signalx can be re-
constructed by taking onlyM = O(K log N) linear, non-adaptive

1For 2D images, we usex to denote the 1D ordering ofN pixels through
raster scan.



measurements as follows [1,2]:

y = Φx = ΦΨf, (1)

wherey represents anM × 1 sampled vector andΦ is anM × N
measurement matrix that isincoherentwith Ψ, i.e., the maximum
magnitude of the element inΦΨ is small [9].

Although the sampling process is simply linear projection,the
reconstruction algorithm is highlynon-linear. The l1 optimizer is
widely used to minimize‖f‖l1 under the constraint of (1) [5, 10,
11]. For 2D images, another popular reconstruction algorithm is
through the minimization of total variation (min-TV) [1,5,11], which
offers reconstructed images with better visual quality at much higher
computational cost. Several fast greedy algorithms have also been
proposed, such as the orthogonal matching pursuit (OMP) [12] and
iterative thresholding [13,14].

In this paper, we focus on the construction of fast sampling op-
erator for imaging applications. Below, we compile a wishlist for the
measurement matrixΦ.

• Near optimal performance: The number of measurements
for perfect reconstruction is close to the theoretical bound
O(K log N);

• Universality: Φ can be paired with a variety of sparse basis
matrixΨ for natural images;

• Fast computation: Due to the large data size in imaging ap-
plications, a fast computableΦ is desirable for both sensing
and reconstruction algorithms;

• Memory efficient: The storage ofΦ requires small memory
size;

• Hardware friendly : Φ can be easily implemented in the op-
tical and analog domain;

None of existing measurement operators can meet all of abovemen-
tioned properties. Specifically, the Gaussian or Bernoullii.i.d matri-
ces [1] offer optimal performance and universality. But, they need
huge memory requirement and high computational complexity. In
[15], a fast Johnson-Lindenstrauss transform was proposed. How-
ever, it still requires the storage of a sparse Gaussian matrix, which is
impractical for imaging applications. In existing compressive imag-
ing research, the scrambled Fourier ensemble (SFE) [5, 13] is often
employed because of its fast computation structure. However, since
SFE is a dense matrix, it still needs large buffer size. In addition, the
optical domain implementation is expensive and it cannot beused
for devices such as the single-pixel camera. Recently, by exploiting
combinatorial algorithms, several researchers have developed binary
sparse measurement matrices [16] with low complexity and near op-
timal performance. Unfortunately, these operators are notuniversal
since they are only incoherent with the identity matrix. As aresult,
they can only be used for measurement in a certain transform domain
(e.g.,the wavelet), rather than the spatial domain.

3. SCRAMBLED BLOCK HADAMARD ENSEMBLE

In this paper, we develop a new sampling operator calledscram-
bled block Hadamard ensemble(SBHE). Simply speaking,Φ takes
the partial block Hadamard transform and randomly permuting its
columns, i.e.,

Φ = QMWPN , (2)

where theN × N matrixW is a block diagonal matrix that can be
written as

W =
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(3)

in which WB represents theB × B Hadamard matrix,PN is a
scrambling operator which randomly reorders theN columns ofW
andQM is an operator which picks upM rows ofWPN uniform
at random. Note that (2) replaces the Fourier matrix in SFE with
the blocked Hadamard matrixW. As the elements ofWB are bi-
nary,Φ given in (2) can be easily implemented in the optical domain.
Besides, the block diagonal structure ofW enables fast and paral-
lel computation at the complexity ofO(N log B) along with small
memory requirement. In the rest of this section, Sections 3.1-3.2 fo-
cus on the theoretical analysis ofΦ while Section 3.3 discusses the
practical design of the scrambling operatorPN .

3.1. Gaussian behavior ofΦΨ

It is obvious that smallB is advantageous for computational and
storage purposes. But how small couldB be if we want to get com-
parable reconstruction performance as that of the SFE? Later in Sec-
tion 4, we shall demonstrate thatB = 32 already works well even
for an image with one mega pixels (N = 220). To explain this result,
let us consider the equivalent sampling operator in the frequency do-
main Φf = ΦΨ. We shall show thatΦf behaves like a Gaussian
matrix under some mild conditions:

Proposition 1 For the SBHE sampling operatorΦ given in (2) and
a sparse basis transformΨ, let Φf = ΦΨ. Then, each element
Φf (i, j) is asymptotically normal with zero mean and variance of
1
N

, i.e.,Φf (i, j) ∼ N (0, 1
N

) if the following conditions are met:

1. maxi,j |Ψ(i, j)| ≤ α0√
N

for a constantα0;

2. The block dimensionB → ∞ asN → ∞;

The proof of this theorem is based on the combinatorial central limit
theorem in [7]. Details are omitted here due to lack of space.Note
that in the above proposition, Condition 1 requires thatΨ be a dense
matrix, whose elements’ magnitudes are almost evenly distributed.
Examples of suchΨ include the 2D FFT (α0 = 1) and the 2D DCT
(α0 ≤ 4). While Condition 2 statesB → ∞ asN → ∞, it is
important to point out thatB can be much smaller thanN , e.g., on
the order of

√
N or evenlog N . As a quick demo, Figure 1 shows

the quantile-quantile plot forΦf (4, 200) whenB = 16 andN =
5122 = 262144 with Ψ corresponding to the 2D DCT. In this case,
B is on the order oflog N . But Φf (4, 200) already behaves like a
Gaussian random variable. In our opinion, such a normal behavior is
one of the primary reason for excellent imaging performanceof the
SBHE even whenB is small.

However, it should be pointed out that the entriesΦf (i, j) are
not independentas they are derived from the same scrambling oper-
ator. It is thus difficult to analyze exactly the minimum number of
samples required. Fortunately, we can give a bound underl1 recon-
struction, as shown in the next subsection.

3.2. Performance bound of thel1 reconstruction

Assume thatΨ is an orthogonal basis sparse matrix and defineU as

U = WPΨ, (4)

whereW andP are the same as in (2). Note thatΨf = QMU is a
uniform random subset ofU. It is clear thatU is an orthonormal ma-
trix if W is normalized. According to [9], the performance bounds
of l1 reconstruction depends onµ = maxi,j |U(i, j)|. To get a
bound ofµ, we took advantage of the recent result on Bernstein-type
inequality for random permutations [8], as stated in the following
theorem:
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Fig. 1. Quantile-quantile plot ofΦf (4, 200). Here,B = 16, N =
5122 = 262144 andΨ corresponds to the 2D DCT.

Theorem 1 Let αk,l be a collection of numbers from [0,1] and de-
fineS =

∑N

k=1 αkπ(k), whereπ is drawn from the uniform distri-
bution over the set of all permutations of1, ..., N . Then [8],

P{|S − E(S)| ≥ ε} ≤ 2 exp

(

− ε2

4E(S) + 2ε

)

for anyε > 0.

Based on the above theorem and the union bound for supreme of
random variables, we can show that if Conditions 1 in Proposition 1
is met, thenµ = maxi,j |U(i, j)| satisfies

P

{

µ ≤ O
(√

log N
4
√

NB

)}

= 1 − O

(

1

N

)

. (5)

We omit details here due to lack of space. Finally, combined with
the result in [9], we arrive at the following theorem:

Theorem 2 Suppose that the sampling operatorΦ is constructed
from the SBHE in (2) and assume that the sparse basis matrixΨ is
orhornormal sastisfying Conditions 1 in Proposition 1. Fora given
signalx = Ψf , if f is supported on a fixed (but arbitrary) setT with
K none zero entries, thel1 optimizer can recoverx exactly with high
probability if the number of measuremensM satisfies

M ≥ C
(

K
√

N/B(log N)2
)

. (6)

for some constantC.

Proofs of Eq.(5) and Theorem 2 will be reported in the journalver-
sion of this paper. Note that whenB = N , M is nearly optimal
except for thelog N factor. WhenB < N , (6) implies thatM is in-
verse to

√
B for a strictly sparse signal. For a compressible (weakly

sparse) signal, this bound can be further improved as our simulations
showed thatB can be actually very small (B = 32) for imaging ap-
plications. Also, just as Proposition 1, Theorem 2 needsΨ to be
a dense matrix. We found that this restriction could be removed in
practice as well.

3.3. Practical scrambling operator

In the ideal case,PN needs to scramble the input signal in a chaotic
way so that the sampling operatorΦ is incoherent with the spare

basis matrixΨ. However, in practice, due to limitations of buffer
size and optical devices,PN cannot be selected as a pure random
operator. Here, we will consider the design of two simple scrambling
operators.

Linear congruential permutation(LCP) is a simple pixel level
scrambler. For an input signalx, it outputsxp with xp(i) = x(π(i))
for 1 ≤ i ≤ N , whereπ(i) can be expressed asπ(i) = [A(i −
1) mod N ] + 1 andA is a positive integer relative prime withN
andA < N . Note that as there is only one parameterA, an LCP can
be easily stored and implemented. It can be used for optical device
such as the single-pixel camera, where pixel-by-pixel scrambling is
allowed andPN needs to be efficiently stored.

In applications when pixel-level scrambling is not allowed(e.g.,
conventional analog-TV systems), we propose to userow permuta-
tion and row inversion(RPRI) scrambler. Specifically, the operator
P randomly permuted the rows of a 2D image, and reverse the even-
numbered rows. Note that this kind of scrambling was widely used
for commerical secure analog video broadcast sytems, e.g.,[17].
Section 4 will demonstrate that for some images, the RPRI is as ef-
ficient as an ideal scrambler.

4. SIMULATION RESULTS

The performance of the SFE and our proposed SBHE have been eval-
uated and compared using the following reconstruction algorithms
and software packages: (1) min-TV solver in thel1 magic pack-
age [11]; (2)l1-optimization solver using the gradient projection for
sparse reconstruction (GPSR) algorithm [10]; (3) Iterative threshold-
ing proposed by us in [14]. The sparse basis matrices in the GPSR
and iterative thresholding are the Daubechies-8 wavelet and its un-
decimated version, respectively. All experiments have been carried
out in Matlab 7.4 on a 2.66GHz dual-core desktop computer. For the
SBHE, we will only present results withB = 32, but other larger
values like 64, 128 and 512 usually yield similar results. For prac-
tical considerations, the random scrambling operatorPN has been
implemented using the LCP and the RPRI methods, as mentioned
in Section 3.3. For the SFE, the random permutation is based on
Matlab’s “randperm” function.

Table 1 tabulates the PSNR values for four256×256 (N = 216)
natural imagesLena, Cameraman, PeppersandBoats. We also in-
clude results reported in [13] as benchmarks, where random Fourier
sampling matrices were applied directly in the wavelet domain. For
each image and eachM in Table 1, we highlighted the best result in
bold letters. Figure 2 further shows the reconstructedBoatsimages
with M = 20000 measurements. Note that for these images, the per-
centage of nonzero elements in our SBHE is only32

256×256
= 1

211 !
But Table 1 indicates that a highly sparse SBHE with an LCP scram-
bler produces similar imaging performance as that of a denseSFE
with an ideal scrambler, regardless of the reconstruction algorithms.
In most cases, results of the SBHE are even slightly better. The vi-
sual qualities of reconstructed images are also comparable, as can be
seen in Figure 2. The RPRI scrambler is generally worse than the
LCP. But when combined with our proposed iterative thresholding
method [14], it still offers comparable performance to thatof [13].

Finally, to demonstrate the practicality of the SBHE for large
dimensional images, we applied it for a1024 × 1024 imageMan
with M = 105 measurements and reconstructed it with the itera-
tive thresholding algorithm [14]. Figure 3 shows the reconstructed
images. As one can observe, even for this one-mega pixel image,
an SBHE withB = 32 and an LCP scrambler works as well as the
dense SFE, both in terms of objective PSNR and the visual qual-
ity, which suggests that the SBHE is very promising in compressive



Table 1. Objective coding performance (PSNR in dB)
No. of l1 optimization [10] min-TV optimization [11] Iterative thresholding [14]

Samples [13] SFE SBHE (B = 32) SFE SBHE (B = 32) SFE SBHE (B = 32)
M Randperm LCP RPRI Randperm LCP RPRI Randperm LCP RPRI

Lenna
10000 26.5 21.5 21.1 20.7 27.5 28.0 27.6 27.2 27.7 26.2
15000 28.7 23.9 23.7 23.0 29.7 30.0 28.9 30.4 30.6 29.4
20000 30.4 26.0 26.0 25.5 31.4 31.8 30.7 33.1 33.1 31.9
25000 32.1 28.2 27.9 27.7 32.9 33.3 32.6 35.5 35.3 34.3

Cameraman
10000 26.2 20.9 20.7 20.1 27.0 27.1 26.1 26.5 26.8 25.3
15000 28.7 23.2 23.0 20.8 29.3 29.5 26.6 29.5 29.7 26.2
20000 30.9 25.3 25.1 23.6 31.0 31.3 29.3 31. 8 31.9 29.7
25000 33.0 27.3 27.0 25.4 32.2 33.3 31.1 34.4 34.3 31.7

Peppers
10000 21.6 20.3 20.0 20.3 28.6 29.0 26.2 28.1 28.2 24.8
15000 25.3 22.7 22.4 22.6 31.2 31.7 29.8 31.2 31.6 30.1
20000 27.5 25.7 25.3 25.3 32.9 33.4 30.8 33.9 33.9 31.1
25000 29.4 28.1 27.6 28.1 34.3 34.9 31.6 36.0 35.8 31.3

Boats
10000 26.7 21.6 21.4 20.9 27.7 28.0 27.2 27.2 27.4 26.1
15000 29.8 23.9 23.8 23.5 29.7 30.3 29.8 30.4 30.9 30.3
20000 31.8 26.0 25.9 25.5 31.5 32.0 31.4 33.1 33.7 32.6
25000 33.7 28.1 28.1 27.6 33.1 33.6 32.9 35.7 36.2 34.9

imaging applications.

5. CONCLUSIONS

This paper has proposed the scrambled block Hadamard ensemble
(SBHE) as a new sampling operator for compressive imaging appli-
cations. The SBHE is highly sparse and fast computable alongwith
optical-domain friendly implementations. Both theoretical analysis
and numerical simulation results have been presented to demonstrate
the promising potential of the SBHE. In particular, we showed that a
highly sparse SBHE can produce similar compressive imagingper-
formance as that of a dense scrambled Fourier ensemble at much
lower implementation cost.
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Fig. 2. Reconstructed256 × 256 Boatswith M = 20, 000 samples. First row: min-TV reconstruction [11]. Second Row: Iterative
thresholding reconstruction [14]. In each row, left: results of the dense SFE and ideal random permutation; middle: results of the SBHE with
B = 32 and an LCP scrambler; right: results of the SBHE withB = 32 and an RPRI scrambler;

Fig. 3. Portions of reconstructed1024 × 1024 image Man using iterative thresholding. Left: SFE with ideal random permutation,
PSNR=27.6dB; Middle: SBHE withB = 32 and LCP scrambler, PSNR=27.8dB; SBHEB = 32 and RPRI crambler: PSNR=26.5dB.


