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ABSTRACT

With the advent of a single-pixel camera, compressive inpgip-
plications have gained wide interests. However, the desfigffi-
cient measurement basis in such a system remains as a diradien
problem. In this paper, we propose a highly sparse and fagilsay
operator based on the scrambled block Hadamard ensemtspit®e
its simplicity, the proposed measurement operator offargeusal-
ity and requires a near-optimal number of samples for periec
construction. Moreover, it can be easily implemented indpgcal
domain thanks to its integer-valued elements. Several rinatex-
periments show that its imaging performance is comparalitet of
the dense, floating-coefficient scrambled Fourier ensesttieuch
lower implementation cost.

is still unknown how to construct a fast and efficient sensipgra-
tor, especially when the measurement is taken in the stain.
Note that in the single-pixel camera, the sampling opetiatbased
on therandombinary pattern, which requires huge memory and high
computation cost. For example, to geil® x 512 image with 64k
measurements (i.e., 25% sampling rate), a random binamatmpe
requires nearly gigabytes storage and giga-flop operatiwhgch
makes the recovery almost impossible. A popular choice istex
ing compressive imaging research is the scrambled Foumnisme-
ble (SFE) [5]. Although it is much more computationally effiat
than the binary random operator, it still requires huge nmyrand
expensive implementation cost.

In this paper, we propose a new fast measurement operator for
compressive imaging by taking advantages of random petiooga

Index Terms— Compressed sensing, random projections, sparand block Hadamard transform. The development is based on ou

sity,Hadamard transform

1. INTRODUCTION

Over the past few years, there have been increased intanebis
study of compressed sensing (CS)—a new framework for simult
neous sampling and compression of signals. In CS, the Ivaitelt
model in the classical Nyquist sampling theorem is repldnethe

recent work of structurally random matrix in [6]. The propdsam-
pling operator offers several attractive features. Froenttteoreti-
cal perspective, the sampling operatouigversalwith a variety of
sparse signal and the number of measurements requiredsictr rex
construction isnearly optimal From the practical perspective, the
block Hadamard transform can be easily implemented in thie op
cal domain (e.g, using the single pixel camera). It alsorsffast
computatioralong with verysmall memory requiremenin fact, we
shall demonstrate that3 x 32 scrambled block Hadamard ensem-

sparse modelassuming that a signal can be efficiently representegyje can offer comparable compressive imaging performarwtse

using only a few significant coefficients in a certain transfao-
main. The groundbreaking work by Candagsl.[1] and Donoho [2]
showed that such a signal can be precisely reconstructeddnty

a small set of random linear measurements (much lower than t

Nyquist rate), implying the potential of dramatic reduatiof sam-
pling rates, power consumption and computation compléitjig-
ital data acquisitions.

dense and floating-coefficient SFE at much lower cost.
The rest of this paper is organized as follows. Section 2igesv
brief review of the CS principle. Section 3 describes ooppsed

a
hSensing operator and presents the theoretical analysixigite

ing the combinatorial central limit theorem [7] and Beristgy/pe
bounds for random permutations [8]. Simple scrambling rtigms
are also proposed for practical considerations. Secti@pdrts the

Due to the large amount of data in image and video signals, Cgjnjation results followed by conclusions in Section 5.

is very attractive in imaging applications, especially li@v-power

and low resolution imaging devices or when the measurensent i

very costly (e.g., Terahertz applications). Since thealisty of the
CS theory, several compressive imaging algorithms hava Hee
veloped for Fourier transform domain measurements in egidins
such as the MRI [3]. For spatial domain measurement, a spig
camera [4] has been built that it is applicable for sparseadggin
anytransform domain. Besides, with only one photon detecdtds, i
quite promising for imaging applications at wavelength weheur-
rent CMOS and CCD cameras are impossible [4].

Despite the above-mentioned works, there still exists & lyagp
between the CS theory and imaging applications. In pagtrcui

*This work has been supported in part by the National Scienoadration
under Grant CCF-0728893.

2. BACKGROUND

Consider a lengthV, real valued signat® and suppose that the ba-
sis U provides aK sparse representation of In terms of matrix
notation, we haver = W f, in which f can be well approximated
using only K < N non-zero entries and is called as thesparse
basis matrix{2]. For images, typical choices df include the DCT
and the wavelet. The CS theory states that such a sigoah be re-
constructed by taking only/ = O(K log N) linear, non-adaptive

1For 2D images, we useto denote the 1D ordering d¥ pixels through
raster scan.



measurements as follows [1, 2]:
y=odxr =0Uf, Q)

wherey represents afl/ x 1 sampled vector an® is anM x N
measurement matrix that iscoherentwith ¥, i.e., the maximum
magnitude of the element W is small [9].

Although the sampling process is simply linear projectithe
reconstruction algorithm is highlgon-linear Thel; optimizer is
widely used to minimizd| f||;, under the constraint of (1) [5, 10,
11]. For 2D images, another popular reconstruction allgorits
through the minimization of total variation (min-TV) [1,Bl], which
offers reconstructed images with better visual quality acimhigher
computational cost. Several fast greedy algorithms hase laéen
proposed, such as the orthogonal matching pursuit (OMR)d1@
iterative thresholding [13, 14].

In this paper, we focus on the construction of fast sampling o
erator for imaging applications. Below, we compile a wistior the
measurement matrik.

e Near optimal performance: The number of measurements

for perfect reconstruction is close to the theoretical lbun
O(K log N);

in which W g represents thé3 x B Hadamard matrixPy is a
scrambling operator which randomly reorders fie€olumns of W
and Q) is an operator which picks up/ rows of WP 5 uniform

at random. Note that (2) replaces the Fourier matrix in SF& wi
the blocked Hadamard matriW. As the elements oW 5 are bi-
nary,® given in (2) can be easily implemented in the optical domain.
Besides, the block diagonal structureVdf enables fast and paral-
lel computation at the complexity @ (N log B) along with small
memory requirement. In the rest of this section, Sectiohs33 fo-
cus on the theoretical analysis ®fwhile Section 3.3 discusses the
practical design of the scrambling operaldy;.

3.1. Gaussian behavior ofbw

It is obvious that smalB is advantageous for computational and
storage purposes. But how small coldbe if we want to get com-
parable reconstruction performance as that of the SFE? ineB®c-
tion 4, we shall demonstrate th&t = 32 already works well even
for an image with one mega pixeld’(= 22°). To explain this result,
let us consider the equivalent sampling operator in thaugaqy do-
main®; = ®W¥. We shall show thaf; behaves like a Gaussian

e Universality: ® can be paired with a variety of sparse basis matrix under some mild conditions:

matrix ¥ for natural images;

e Fast computation Due to the large data size in imaging ap-

plications, a fast computabke is desirable for both sensing

and reconstruction algorithms;

e Memory efficient: The storage of® requires small memory
size;

e Hardware friendly : ® can be easily implemented in the op-
tical and analog domain;

None of existing measurement operators can meet all of abeve
tioned properties. Specifically, the Gaussian or Bernaulli matri-

ces [1] offer optimal performance and universality. Bugytmeed
huge memory requirement and high computational complexity
[15], a fast Johnson-Lindenstrauss transform was propobiesv-

ever, it still requires the storage of a sparse Gaussianxnatrich is

impractical for imaging applications. In existing comgies imag-
ing research, the scrambled Fourier ensemble (SFE) [5s1d#{en
employed because of its fast computation structure. Homvsirece
SFE is a dense matrix, it still needs large buffer size. Iritamd the

optical domain implementation is expensive and it cannotised
for devices such as the single-pixel camera. Recently, pio#ing

combinatorial algorithms, several researchers have deedlbinary
sparse measurement matrices [16] with low complexity atad op-

timal performance. Unfortunately, these operators arainiersal
since they are only incoherent with the identity matrix. A®sault,

they can only be used for measurement in a certain transfomaih

(e.g.,the wavelet), rather than the spatial domain.

3. SCRAMBLED BLOCK HADAMARD ENSEMBLE

In this paper, we develop a new sampling operator cadleram-
bled block Hadamard ensemkI8BHE). Simply speakingp takes
the partial block Hadamard transform and randomly pernguitis
columns, i.e.,

d=QuWPy, 2
where theNV x N matrix W is a block diagonal matrix that can be
written as
Wg

Wg
3

Wg

Proposition 1 For the SBHE sampling operatdr given in (2) and

a sparse basis transforn¥, let ®; = ®W¥. Then, each element
(i, ) is asymptotically normal with zero mean and variance of
+.i.e.,®y(i, ) ~ N(0, %) if the following conditions are met:

Qo
—— for a constaniu;

VN

2. The block dimensioB — co asN — oo;

1. max;; |¥(4,5)| <

The proof of this theorem is based on the combinatorial eéhitnit
theorem in [7]. Details are omitted here due to lack of spatate
that in the above proposition, Condition 1 requires thdte a dense
matrix, whose elements’ magnitudes are almost evenlyiloligéed.
Examples of sucl include the 2D FFTd, = 1) and the 2D DCT
(ao < 4). While Condition 2 state3 — oo asN — oo, it is
important to point out thaB can be much smaller thaN, e.g., on
the order ofy/N or evenlog N. As a quick demo, Figure 1 shows
the quantile-quantile plot foi;(4,200) whenB = 16 and N =
5122 = 262144 with ¥ corresponding to the 2D DCT. In this case,
B is on the order ofog N. But ®;(4,200) already behaves like a
Gaussian random variable. In our opinion, such a normahbehis
one of the primary reason for excellent imaging performasfahe
SBHE even wherB is small.

However, it should be pointed out that the entries(s, j) are
not independenas they are derived from the same scrambling oper-
ator. It is thus difficult to analyze exactly the minimum nweniof
samples required. Fortunately, we can give a bound uhdercon-
struction, as shown in the next subsection.

3.2. Performance bound of thd; reconstruction

Assume thatl is an orthogonal basis sparse matrix and de€inas
(4)

whereW andP are the same as in (2). Note thiy = QU is a
uniform random subset @f. Itis clear thafU is an orthonormal ma-
trix if ' W is normalized. According to [9], the performance bounds
of I1 reconstruction depends gn = max; ; |U(4,7)|. To get a
bound ofy, we took advantage of the recent result on Bernstein-type
inequality for random permutations [8], as stated in théofeing
theorem:

U = WPV,



QQ Plot of Sample Data versus Standard Normal basis matrix¥. However, in practice, due to limitations of buffer
‘ ‘ ‘ ‘ ‘ ‘ ‘ size and optical device® cannot be selected as a pure random
operator. Here, we will consider the design of two simplasdsling
operators.

Linear congruential permutatighCP) is a simple pixel level
scrambler. For an input signa| it outputsz,, with =, (7) = (7 (7))
for1 < ¢ < N, wheren(i) can be expressed agi) = [A(i —

1) mod N]+ 1 andA is a positive integer relative prime with

andA < N. Note that as there is only one parametean LCP can
be easily stored and implemented. It can be used for opt@ate
such as the single-pixel camera, where pixel-by-pixelrabtang is

allowed andP y needs to be efficiently stored.

In applications when pixel-level scrambling is not allowed.,
e R P S S—] conventional analog-TV systems), we propose torosepermuta-

Standard Normal Quantiles tion and row inversio(RPRI) scrambler. Specifically, the operator
Fig. 1. Quantile-quantile plot of;(4, 200). Here,B = 16, N = P randomly permuted the rows of a 2D image, and reverse the even
5122 = 262144 and¥ corresponds to the 2D DCT. numbered rows. Note that this kind of scrambling was widelgdu
for commerical secure analog video broadcast sytems, [@.4.,
Section 4 will demonstrate that for some images, the RPR &fa
Theorem 1 Letay,;, be a collection of numbers from [0,1] and de- ficient as an ideal scrambler.

fineS = fo:l Qkr(k), Wherer is drawn from the uniform distri-

Quantiles of Input Sample

bution over the set of all permutations 1of..., N. Then [8], 4. SIMULATION RESULTS
2
P{|S — E(S)| > €} < 2exp (_57) The performance of the SFE and our proposed SBHE have belen eva
4E(S) + 2¢ uated and compared using the following reconstructionrityos

and software packages: (1) min-TV solver in themagic pack-
age [11]; (2)I;-optimization solver using the gradient projection for

Based on the above theorem and the union bound for supreme gparse reconstruction (GPSR) algorithm [10]; (3) Iteathreshold-

- . o : . Ing proposed by us in [14]. The sparse basis matrices in tHeRGP
ir: r;;}l;rntr\]/;r;lage;,avzg _ﬁ?&%ﬁ?ﬁ;‘éﬁondmons Lin Prajposl and iterative thresholding are the Daubechies-8 waveltitarun-
' - ’ decimated version, respectively. All experiments havenleried
VIog N 1 out in Matlab 7.4 on a 2.66GHz dual-core desktop computartteo
P {M <O ( IND ) } =1-0 (N) . (5)  SBHE, we will only present results witB = 32, but other larger
NEB values like 64, 128 and 512 usually yield similar resultsr pi@c-
We omit details here due to lack of space. Finally, combinét w tical considerations, the random scrambling oper&ar has been
the result in [9], we arrive at the following theorem: implemented using the LCP and the RPRI methods, as mentioned
in Section 3.3. For the SFE, the random permutation is based o
Theorem 2 Suppose that the sampling operatéris constructed ~Matlab’s “randperm” function.
from the SBHE in (2) and assume that the sparse basis miitisx Table 1 tabulates the PSNR values for fai6 x 256 (N = 2'°)
orhornormal sastisfying Conditions 1 in Proposition 1. Fogiven  natural images.ena CameramanPeppersandBoats We also in-
signalz = W f, if f is supported on a fixed (but arbitrary) sEtwith clude results reported in [13] as benchmarks, where randmmid
K none zero entries, tHe optimizer can recover exactly with high ~ sampling matrices were applied directly in the wavelet domgor

foranye > 0.

probability if the number of measuremehs satisfies each image and eadW in Table 1, we highlighted the best result in
bold letters. Figure 2 further shows the reconstru®edtsimages
M>C (K« /N/B(log N)2) . (6) with M = 20000 measurements. Note that for these images, the per-
centage of nonzero elements in our SBHE is ogh2 - = 17!
for some constant. But Table 1 indicates that a highly sparse SBHE with an LCErBer

bler produces similar imaging performance as that of a d&kde
Proofs of Eq.(5) and Theorem 2 will be reported in the jounmeat with an ideal scrambler, regardless of the reconstructigorsghms.
sion of this paper. Note that wheB = N, M is nearly optimal In most cases, results of the SBHE are even slightly betteg. vi-
except for thdog N factor. WhenB < N, (6) implies thatM is in- sual qualities of reconstructed images are also comparablzan be
verse toy/B for a strictly sparse signal. For a compressible (weaklyseen in Figure 2. The RPRI scrambler is generally worse then t
sparse) signal, this bound can be further improved as oudations ~ LCP. But when combined with our proposed iterative thredingl
showed thaf3 can be actually very smalF = 32) for imaging ap- method [14], it still offers comparable performance to thifl3].

plications. Also, just as Proposition 1, Theorem 2 ne&d® be ~ Finally, to demonstrate the practicality of the SBHE forgiar
a dense matrix. We found that this restriction could be resddm  dimensional images, we applied it forla24 x 1024 imageMan
practice as well. with M = 10° measurements and reconstructed it with the itera-

tive thresholding algorithm [14]. Figure 3 shows the re¢ored
images. As one can observe, even for this one-mega pixelemag
an SBHE withB = 32 and an LCP scrambler works as well as the
In the ideal caseél® y needs to scramble the input signal in a chaoticdense SFE, both in terms of objective PSNR and the visual qual
way so that the sampling operat@r is incoherent with the spare ity, which suggests that the SBHE is very promising in corapiree

3.3. Practical scrambling operator



Table 1. Objective coding performance (PSNR in dB)

No. of [, optimization [10] min-TV optimization [11] Iterative thresholding [14]
Samples| [13] SFE SBHE (B = 32) SFE SBHE (B = 32) SFE SBHE (B = 32)
M Randperm| LCP | RPRI Randperm| LCP | RPRI Randperm| LCP | RPRI
Lenna
10000 | 26.5 215 211 20.7 275 28.0 27.6 27.2 27.7 26.2
15000 | 28.7 23.9 23.7 23.0 29.7 30.0 28.9 30.4 30.6 294
20000 | 30.4 26.0 26.0 255 314 318 30.7 331 33.1 31.9
25000 | 32.1 28.2 279 27.7 329 333 32.6 35.5 35.3 34.3
Cameraman
10000 | 26.2 20.9 20.7 20.1 27.0 271 26.1 26.5 26.8 25.3
15000 | 28.7 232 23.0 20.8 29.3 29.5 26.6 29.5 29.7 26.2
20000 | 30.9 25.3 25.1 23.6 31.0 31.3 29.3 31.8 31.9 29.7
25000 | 33.0 27.3 27.0 254 32.2 333 31.1 34.4 34.3 317
Peppers
10000 | 21.6 20.3 20.0 20.3 28.6 29.0 26.2 28.1 28.2 24.8
15000 | 25.3 22.7 22.4 22.6 31.2 31.7 29.8 31.2 31.6 30.1
20000 | 27.5 25.7 25.3 25.3 32.9 334 30.8 33.9 33.9 311
25000 | 29.4 28.1 27.6 28.1 34.3 34.9 31.6 36.0 35.8 313
Boats
10000 | 26.7 21.6 21.4 20.9 27.7 28.0 27.2 27.2 27.4 26.1
15000 | 29.8 23.9 23.8 235 29.7 30.3 29.8 30.4 30.9 30.3
20000 | 31.8 26.0 25.9 255 315 32.0 31.4 33.1 33.7 32.6
25000 | 33.7 28.1 28.1 27.6 33.1 33.6 32.9 35.7 36.2 34.9

imaging applications.

This paper has proposed the scrambled block Hadamard elesemb

5. CONCLUSIONS

(SBHE) as a new sampling operator for compressive imagipi-ap
cations. The SBHE is highly sparse and fast computable akting
optical-domain friendly implementations. Both theoratianalysis
and numerical simulation results have been presented torgnate

the promising potential of the SBHE. In particular, we shdwat a
highly sparse SBHE can produce similar compressive imagang
formance as that of a dense scrambled Fourier ensemble & muc

lower implementation cost.
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Fig. 2. Reconstructe@56 x 256 Boatswith M = 20,000 samples. First row: min-TV reconstruction [11]. Second Rdterative
thresholding reconstruction [14]. In each row, left: réswolf the dense SFE and ideal random permutation; middlaltsesf the SBHE with
B = 32 and an LCP scrambler; right: results of the SBHE with= 32 and an RPRI scrambler;

Fig. 3. Portions of reconstructeti024 x 1024 image Man using iterative thresholding. Left: SFE with ideal randomrmutation,
PSNR=27.6dB; Middle: SBHE witl3 = 32 and LCP scrambler, PSNR=27.8dB; SBHE= 32 and RPRI crambler: PSNR=26.5dB.



