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ABSTRACT

Large system analysis of a randomly spread direct-sequence
code-division multiple-access system in a frequency-selective chan-
nel is considered. The receiver uses iterative channel estimation
and multiuser detection (MUD) with soft feedback from single-user
decoders to refine both the decisions of the linear minimum mean
square error (LMMSE) MUD, and the initial pilot-based estimates
of the LMMSE channel estimator. Replica method, a tool from
statistical physics, and density evolution with Gaussian approxima-
tion are used to obtain the asymptotic performance of the LMMSE
MUD with soft parallel interference cancellation. The results indi-
cate that as the channel coherence time grows, the performance of
corresponding single-user system having perfect channel state in-
formation can be approached even in an overloaded multiuser sys-
tem using channel estimation and vanishing pilot overhead.

1. INTRODUCTION

In this paper, we consider large system analysis of a direct-sequence
code-division multiple-access system (DS-CDMA) operating over a
multipath fading channel. To mitigate the multiple-access interfer-
ence (MAI) causing severely degraded performance with linear re-
ceivers [1], we take the factor-graph approach proposed in [2,3] and
combine the linear data estimation with soft parallel interference
cancellation (PIC). Instead of assuming perfect channel state infor-
mation (CSI), the impact of CSI mismatch on the data estimation is
also considered. To reduce the pilot overhead and improve the con-
vergence behavior of the multiuser detector (MUD), we utilize the
feedback from the single-user decoders iteratively in refining the
initial pilot-based channel estimates. In contrast to hard decision
based schemes analyzed by Li et al. [4], we consider the soft feed-
back framework proposed in [5, 6]. This avoids error propagation
and accurate initialization usually required in hard decision based
schemes. We also remark that in [4] the authors consider least-
squares channel estimator and a single-user matched filter with hard
PIC. It should be noted that our analysis differs from [7] since we
consider also the problem of updating the channel estimates itera-
tively, and our treatment of CSI mismatch differs from assumptions
made in [7, Sec. 2.2].

To assess the performance of iterative data and channel estima-
tion, we combine density evolution with Gaussian approximation
(DE-GA) [2, 8] and the replica method, a standard tool from sta-
tistical physics. Although the assumptions made in replica method
are heuristic and their rigorous justification is still an open prob-
lem in mathematical physics, it has been applied recently with great
success to a multitude of problems in telecommunications (see,
e.g., [9–14]). The replica method allows for the analysis of general-
ized posterior mean estimators (GPME) [10, 12, 14] that include as
special cases both the linear and non-linear minimum mean square
error (MMSE) estimators. Due to the space constraints and for the
interest of practical implementation, however, this contribution con-
siders only linear MMSE (LMMSE) data and channel estimators.
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We specialize our numerical results for a system operating over
a channel with three equal power paths and channel coherence time
of 100 symbols. For a finite size system this corresponds approx-
imately to a data rate of 120 kbps, spreading factor L = 32, and
mobile speed 120 km/h in a Universal Mobile Telecommunica-
tions System (UMTS) network. For the average signal-to-noise
ratio (SNR) per information bit γb = 6 dB, fixed load α = 1.2,
half-rate (753,561)8 convolutional code and Gray encoded quar-
ternary phase shift keying (QPSK), we find that the iterative system
achieves at large system limit a multiuser efficiency (ME) η ≈ 0.95
at pilot overhead of 1%. For varying load and fixed code rate, the
spectral efficiency, taking into account the pilot overhead, at target

bit error rate (BER) ≤ 10−5 shows a maximum degradation of 1 dB
for the iterative receiver compared to perfect CSI.

Throughout this paper, we write x0 ∼P and x∼Q for a random
vector (RV) drawn according to the true and postulated probability
measure (or distribution), respectively. If x is a zero-mean proper
complex Gaussian RV with covariance matrix R, we write x ∼
CN(0,R). Calligraphic symbols denote for sets and boldface low-
ercase and uppercase symbols for (column) vectors and matrices,
respectively. For a M ×N matrix A =

[

a1 a2 · · · aN

]

, vec(A) =
[

aT
1 aT

2 · · · aT
N

]T
and operator ⊗ is the Kronecker product. For pos-

itive definite matrix A we abbreviate A > 0, eM = [1,1, . . . ,1]T ∈
RM , and ~x is a 1×N row vector. E{x} denotes for statistical ex-

pectation and Cov{x} = E
{(

x−E{x}
)(

x−E{x}
)H}

.

2. SYSTEM MODEL AND ASSUMPTIONS

Consider a synchronous uplink DS-CDMA system operating over
M-path block fading channel [15]. Following the framework of [1],
we assume that the delay spread of the channel is small compared to
the symbol time and neglect the effects of intersymbol interference.

Assume the transmission takes place over fading blocks c =
1,2, . . . ,C, each having a coherence time of Tc symbols. The users
transmit information independently using binary code C . The code
words are interleaved and modulated by using Gray mapping onto

the standard QPSK signal set M = {± 1√
2
± j√

2
}. We denote the

QPSK modulated code word for the user k = 1, . . . ,K by x0k =
vec
([

x0k[1] · · · x0k[C]
])

,∈ M N , where x0k[c] ∈ M τd , and assume

that E
{

x0k

}

= 0 and Cov{x0k} = I. In addition, τp = Tc − τd in-

dependent identically distributed (IID) pilot symbols pk[c] ∈ M τp ,
are drawn uniformly from M and placed in each block for initial
channel estimation. In the limit N = τdC → ∞, with τd fixed, due
to random bit-interleaving (cf. Remark 1) the channel can thus be
considered to be ergodic over the entire code word.

The received signal within the cth fading block reads [1]

[

y
p
l
[c]

yd
l [c]

]

=
1√
L

K

∑
k=1

[

pk[c]
x0k[c]

]

~sklh0k[c]+σ0wl [c] ∈ CTc , (1)

where l = 1, . . . ,L is the chip index, y
p
l
[c] ∈ Cτp , yd

l [c] ∈ Cτd , are
the received signals during the pilot and data transmission phases,
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respectively, and wl [c] ∼ CN(0,I) denotes for the additive white

Gaussian noise. We write Y =
{

y
p
l
[c],yd

l [c] |∀l,c
}

, and let the
set of all channel coefficients, pilot symbols, data symbols and
spreading sequences be denoted by H0 =

{

h0k[c] |∀k,c
}

, Xp =
{

pk[c] |∀k,c
}

, X0 =
{

x0k[c] |∀k,c
}

and S =
{

~skl |∀k, l
}

, respec-

tively, where~skl = [s1
kl · · · sM

kl ] ∼ CN(0,IM) are IID (cf. [1, Theo-
rems 3 and 4]) RVs for all k = 1, . . . ,K, l = 1, . . . ,L. In the following
we assume that for c = 1, . . . ,C and k = 1, . . . ,K, the channel vec-

tors h0k[c] =
[

h1
0k[c] · · · hM

0k[c]
]T ∼ P(h0k[c]) = CN(0, p

M IM), are

IID and the average received signal-to-noise ratio is γ = p/σ2
0 for

all users k and fading blocks c.

Remark 1. In the following, it is implicitly assumed that the system
fulfills the following assumptions (cf. [2, Ch. IV-A]):

• Bit-interleaved coded modulation [16] with trellis termination
is used for error correction coding. Each user has the same
basic code C , but the random uniform bit and symbol-level in-
terleavers are chosen independently for each user.

• Phase randomization is introduced by the transmitters, letting
us to concentrate on all-ones code word in the DE-GA analysis.

We omitted the phase randomization in (1) for convenience.

2.1 Iterative Estimation and Detection

Consider the general framework of [5, 6], and let I =
{

Y ,Xp,S
}

. At iteration i = 0, channel estimation based on I

is first performed 〈〈hm
k [c]〉〉(0) =

∫

hm
k [c]Q

(

dH (0)|I
)

, where we

denoted H (0) =
{

hm
k [c] |∀k,c,m

}

. The information at MUD is

I and distribution Q
(

H (0) |I
)

, provided by the channel esti-
mator. In our case, the MUD performs then LMMSE data es-
timation and PIC based on extrinsic information obtained by the
single-user decoders [2, 3]. The soft estimates of the transmitted
symbols based on the a posteriori probabilities from the decoders

are X̃ (0) =
{

x̃
(0)
k

[c] |∀k,c
}

where x̃
(0)
k

[c] =
[

x̃
(0)
kτp+1[c] · · · x̃

(0)
kTc

[c]
]T

,

x̃
(0)
kn

[c] =
∫

x
(0)
kn

[c]QAPP

(

dX
(0)

k
|I
)

, and X
(0)

k
=
{

x
(0)
kn

[c] |n = τp +
1, . . . ,Tc,c = 1, . . . ,C}. The feedback from MUD to channel esti-

mator for i = 1 is then QAPP

(

X (0)|I
)

, that is used to postulate a

new measure Q
(

H (1)|I
)

.

2.2 LMMSE Channel Estimation With Soft Information

Let us drop the block index and concentrate on one fading block.
We postulate a channel model at ith iteration for l = 1, . . . ,L

[

y
p
l

yd
l

]

=
1√
L

K

∑
k=1

[

pk

x̃
(i−1)
k

]

~sklhk +
M

∑
m=1

sm
kl

[

0

hm
k ∆x̃

(i−1)
k

]

+σwl ,

where ∆x̃
(i−1)
k

= x0k − x̃
(i−1)
k

∈ Cτd , is the error in data estimation,

and hk =
[

h1
k · · · hM

k

]T ∼ Q(hk) = CN(0, p
M I). Since the chan-

nel was assumed to be ergodic over the code word, we treat hk

and ∆x̃
(i−1)
k

as being statistically independent, which simplifies the
analysis considerably. Unfortunately, due to the multiplicative error

term ∆x̃
(i−1)
k

, letting σ2 = σ2
0 does not yield an LMMSE estimator.

Our solution is to assume that QAPP

(

X (i−1)|I
)

is a product
of K distributions whose mean and covariance are given by DE-GA

[8], and postulate that vector ∆w
(i−1)
km

= vec
{[

0,hm
k ∆x̃

(i−1)
k

]}

∈
CTc conditioned on I is a zero-mean complex Gaussian RV1. De-

noting ∆W (i−1) =
{

∆w
(i−1)
km

|∀k,m
}

, the GPME for user k and path
m is then given by

〈〈hm
k 〉〉(i) =

E
H ,∆W (i−1)

{

hm
k Q
(

Y
∣

∣I ,H ,X̃ (i−1),∆W (i−1)
)}

E
H ,∆W (i−1)

{

Q
(

Y
∣

∣I ,H ,X̃ (i−1),∆W (i−1)
)} .

(2)

1We interpret x∼ CN(0,0) ⇐⇒ x = 0.

It can be shown, that for σ2 = σ2
0 , 〈〈hm

k 〉〉(i) corresponds to the

LMMSE estimator proposed, e.g., in [17].

3. PERFORMANCE ANALYSIS

Let Q
(

H (i) |I
)

, where h
(i)
k
|I ∼ ∏M

m=1 CN
(

〈〈hm
k [c]〉〉(i),ξ

(i)
c

)

are IID2 and ξ
(i)
c = ξ

(i)
km

[c],∀k,m are the per-path mean squared er-
rors (MSEs) [1], be the information provided by the channel estima-
tor at ith iteration, and consider estimation of data symbols x01[c].

Proposition 1. Let first N = τdC → ∞ and then K = αL → ∞ with
α and τd finite and fixed. The multiuser efficiency of the first user
for the LMMSE MUD with soft-PIC converges then almost surely to

η
(i)
1 [c] =

M

∑
m=1

∣

∣〈〈hm
1 [c]〉〉(i)

∣

∣

2
[

γ
(

ξ
(i)
c +1/β

(i)
d

)]−1
,

at ith iteration, where β
(i)
d is the unique solution to the fixed point

equation given in (3) at the top of the next page, in which γmax is
the upper bound for the truncated SNR distribution, µ is a function

µ
(

γη(i−1)[c]
)

=
[

Q−1
(

ε
(

γη(i−1)[c]
))

]2
,

where Q(x) =
∫ ∞

x Dz, Dz = (2π)−1/2 exp(−z2/2)dz, and ε(·) is the
bit error probability of the extrinsic bits of a channel code in ergodic

Rayleigh fading channel with average SNR γη(i−1)[c].

Proposition 1 provides the ME of the MUD, given the MSEs
{

ξ
(i)
c

}

. This is used in turn in DE-GA analysis to derive the statis-

tics for the channel estimator. The next proposition obtains
{

ξ
(i)
c

}

.

Definition 1. Consider the system model (1) and let us define a
corresponding flat fading single-user channel

zkm = x
p,d
0k

hm
0k + w̃m

0k, x
p,d
0k

= vec
([

pk x0k

])

,

where w̃m
0k ∼CN

(

0,Σ
(i)
0

)

, for all m = 1,2, . . . ,M. Let us also define
a postulated measure Q based on the channel

zkm = x
(i−1)
k

hm
k +∆w

(i−1)
km

+ w̃
(i)
km

, x
(i−1)
k

= vec
([

pk x̃
(i−1)
k

])

,

where ∆W
(i−1)

k
= {∆w

(i−1)
km

|∀m}, and w̃
(i)
km

∼ CN
(

0,Σ(i)
)

,∀k =
1, . . . ,K,m = 1, . . . ,M. The corresponding single-user GPME reads

〈hm
k 〉(i) =

E
hk,∆W

(i−1)
k

{

hm
k ∏M

m=1 Q
(

zkm

∣

∣hm
k ,pk, x̃

(i−1)
k

,∆w
(i−1)
km

)}

E
hk,∆W

(i−1)
k

{

∏M
m=1 Q

(

zkm

∣

∣hm
k
,pk, x̃

(i−1)
k

,∆w
(i−1)
km

)}

,

(4)
that can be shown to be equivalent to the LMMSE estimator in [17].
The true and postulated effective noise covariance matrices are
given by the solutions to the coupled fixed point equations

Σ
(i)
0 = σ2

0 ITc
+α lim

K→∞

1

K

K

∑
k=1

M

∑
m=1

Ekm

(

Σ
(i)
0 ,Σ(i)

)

, (5)

Σ(i) = σ2ITc
+α lim

K→∞

1

K

K

∑
k=1

M

∑
m=1

Vkm

(

Σ
(i)
0 ,Σ(i)

)

, (6)

respectively. Denote also v
(i−1)
km

= x
(i−1)
k

hm
k +∆w

(i−1)
km

, so that

Ekm

(

Σ
(i)
0 ,Σ(i)

)

= Cov
{

x0khm
0k −

〈

v
(i−1)
km

〉∣

∣X0,Xp,X̃
(i−1)

}

,

Vkm

(

Σ
(i)
0 ,Σ(i)

)

= Cov
{

v
(i−1)
km

−
〈

v
(i−1)
km

〉∣

∣X0,Xp,X̃
(i−1)

}

,

are the error covariance and covariance matrices of the estimator
〈

v
(i−1)
km

〉

, respectively.

2This is not true in general even though the channel coefficients are IID

for all k. We make this assumption to keep the problem tractable.

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP



1

βd
= σ2

0 +α(M−1)
ξ

(i)
c

1+ξ
(i)
c βd

+α
∫ γmax

0
dp

pM−1

∫ γmax

0 pM−1 exp
(

−p/
(

p/M−ξ
(i)
c

)

)

dp
exp

(

− p

p/M−ξ
(i)
c

)

×
∫

R2

p
2

[

2− tanh2

(

z1

√

µ
(

γη(i−1)[c]
)

+ µ
(

γη(i−1)[c]
)

)

− tanh2

(

z2

√

µ
(

γη(i−1)[c]
)

+ µ
(

γη(i−1)[c]
)

)]

+ξ
(i)
c

1+βd

{

p
2

[

2− tanh2

(

z1

√

µ
(

γη(i−1)[c]
)

+ µ
(

γη(i−1)[c]
)

)

− tanh2

(

z2

√

µ
(

γη(i−1)[c]
)

+ µ
(

γη(i−1)[c]
)

)]

+ξ
(i)
c

}Dz1Dz2

(3)
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  Ψ = η

Figure 1: Mapping function Ψ for the LMMSE MUD with PIC.
Three equal power paths, coherence time of Tc = 100 symbols,
γb = 6 dB, system load α = 1.2, rate-1/2 convolutional code with
generators (753,561)8 and Gray encoded QPSK. Dotted line for
perfect CSI, solid line for iterative channel estimation (τp = 1) and
dashed line for non-iterative channel estimation (τp = 10).

Proposition 2. Assuming the distribution of the feedback is given

by the DE-GA, conditioned on {X0,Xp,X̃
(i−1)} the distribution

of 〈hm
k 〉(i) is identical to that of 〈〈hm

k 〉〉(i) in the large system limit.

Corollary 1. Let ζ
(i)
0 be the solution to the fixed point equation

ζ
(i)
0 I = σ2

0 + αME
{

Ek,m

(

ζ
(i)
0 I,ζ

(i)
0 I
)}

in the large system limit.

The MSE ξ
(i)
km

for user k and path m of the iterative LMMSE channel

estimator (2) satisfies then ξ
(i)
km

I = E
{

Ek,m

(

ζ
(i)
0 I,ζ

(i)
0 I
)}

.

4. NUMERICAL EXAMPLES

Let us consider a half-rate convolutional code with generator poly-
nomials (753,561)8. With QPSK the average SNR per information
bit is then γb = γ . A coherence time of 100 symbols is assumed,
corresponding roughly to a mobile user moving at the speed of
120 km/h and with bit-rate 120 kbps and L = 32 in the UMTS net-
work. We remark that the numerical examples given here are based
on the asymptotic results N = τdC → ∞,K = αL → ∞ obtained in
Section 3 and for finite systems they are only approximations. In
general, however, the large system analysis yield good predictions
already for small system sizes [1, 12] and, thus, we feel the insight
gained from this analysis is valuable also in practice.

Figure 1 shows the mapping function [2, Eq. (55)]

η(i) = Ψ(η(i−1),α ,γ,ξ (i),M)
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Perfect CSI and MUD with PIC

Iterative channel estimation and MUD with PIC

Non−iterative channel estimation and MUD with PIC

Linear MMSE−based receiver from Evans & Tse  [2]

Iterative LMMSE−based data
estimation and soft PIC

Figure 2: Spectral efficiency vs. γb at target BER ≤ 10−5. Three
equal power paths, coherence time of Tc = 100 symbols, rate-1/2
convolutional code with generators (753,561)8 and Gray encoded
QPSK. For iterative MUD and channel estimation τp = 1. To guar-
antee early convergence and positive throughput also with non-
iterative channel estimators, τp = 15 pilots were used for them.

for the receiver with iterative channel estimation and MUD with
PIC. Note that the MSEs ξ (i) implicitly depend on the coherence
time, number of pilots, average received SNR and the reliability of
the feedback. Curves for perfect CSI and non-iterative channel es-
timator with τp = 10 pilots are reported for comparison. At load
α = 1.2 and γb = 6 dB, the iterative system converges to η ≈ 0.95
using only a single pilot symbol. Note that the iterative channel
estimation changes the shape of the DE curve so that the MUD con-
verges to high ME even with a very low starting point at η ≈ 0.04.
This behavior comes from the use of a posteriori probabilities in the
feedback, which helps improving the MSEs even in regions where
the PIC based MUD has not yet started converging. This is in con-
trast to the results in [4] where a good initialization was found to be
critical. With extrinsic information based channel estimation (curve
not shown) eight pilots are needed in order to converge similar per-
formance, and with non-iterative channel estimation a maximum
ME of η ≈ 0.27 is achieved.

Spectral efficiency, taking into account the loss in information

rate due to adding pilot symbols, versus γb at target BER ≤ 10−5 is
shown in Figure 2. With perfect CSI, the threshold SNR for positive
spectral efficiency is 6.16 dB and for iterative channel estimation
with Tc = 100 and τp = 1, γb = 6.24 dB. With channel estimation,
however, there is no “jump”, and the slope of the curve is finite
everywhere. We note that by using soft feedback based iterative
channel estimator the threshold value for the positive rate is shifted
to left and the shape of the curve changed at low γb compared to the
estimator in [1]. At high SNR, the slope of the spectral efficiency
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curve seems to be the same with that of perfect CSI, and the loss in
spectral efficiency is about 1 dB for the iterative and 3 dB for the
non-iterative channel estimation.

5. SKETCH OF PROOF OF PROPOSITION 2

Let us consider ith iteration for the LMMSE channel estimator (2),
The denominator in (2) is denoted by Z(·) in the following. Hence-
forth we omit the iteration index for clarity.

Assumption 1 (Self-averaging property and replica continuity).
The free energy at thermodynamic equilibrium can be written as

F = lim
u→0

∂

∂u
lim

K=αL→∞

1

K
log Ξ

(u)
K ,

where Ξ
(u)
K =E

{

Zu(Y ,H ,S ,Xp,X̃
(i−1),∆W ) |X0,Xp,X̃

(i−1)
}

is evaluated for positive integers u and analytic continuity
in the vicinity of 0 is assumed to hold. In the following

Ec{·} = E{· |X0,Xp,X̃
(i−1)}.

Due to random spreading, the L channels are IID, and thus,

Ξ
(u)
K =Ec

{[

E
S̃

{

u

∏
a=0

1

(πσ2
a )Tc

exp

(

− 1

σ2
a

∥

∥y−
√

αva

∥

∥

2
)

∣

∣

∣

∣

{Ha}u
a=0,{Xa}u

a=0

}

dy

]L}

,

where the elements of the set S̃ = {sm
k |k = 1, . . . ,K,m = 1, . . . ,M}

are IID and have the same distribution as {sm
kl}. We also de-

noted Xa =
{

xak

}K

k=1
,Ha =

{

hm
ak |k = 1, . . . ,K,m = 1, . . . ,M

}

and

∆Wa =
{

∆wm
ak |k = 1, . . . ,K,m = 1, . . . ,M

}

for all a = 0,1, . . . ,u,

and wrote σ2 = σ2
a for replica indices a = 1,2, . . . ,u. The random

vectors {va}u
a=0 are given by

v0 =
1√
K

K

∑
k=1

M

∑
m=1

sm
k hm

0kx
p,d
0k

,

va =
1√
K

K

∑
k=1

M

∑
m=1

sm
k (hm

akxak +∆wm
ak) ,

where we denoted x
p,d
0k

= vec
([

pk, x0k

])

, xak = vec
([

pk, x̃k

])

,a =
1, . . . ,u. By the central limit theorem, conditional on
{

{Ha}u
a=0,{Xa}u

a=0,{∆Wa}u
a=0

}

, as K → ∞ the vector v =
vec(v0,v1, . . . ,vu) converges to zero-mean Gaussian random vec-
tor with conditional covariance matrix

Q = lim
K→∞

QK = lim
K→∞

1

K

K

∑
k=1

M

∑
m=1

vec(Ωkm)vec(Ωkm)H

where Ωkm =
[

x
p,d
0k

hm
0k + ∆wm

0k, . . . , xukhm
uk + ∆wm

uk

]

∈ CTc×(u+1).
Following [10, Appendix II] it can be shown that

Ξ
(u)
K = Ec

{

exp
[

Kα−1
(

Gu(QK)+O(K−1)
)]}

,

where Gu(QK) is given in (7) at the top of the next page. Applying
a vector form complex Gaussian integral

∫

e−yHAy+2ℜ{bHy}dy =
πTc

det(A)
eb

HA−1b, A > 0,

first for the integral with respect to y in (7), rearranging terms, and

using it again for the expectation over v ∼ CN(0,QK) gives

Gu(QK) = −uTc log(πσ2)−Tc log

(

1+u
σ2

0

σ2

)

− logdet
(

I(u+1)Tc
+AQK

)

,

where

A =
α

σ2 +uσ2
0

[

u −eT
u

−eu (1+u
σ 2

0

σ 2 )Iu − σ 2
0

σ 2 eue
T
u

]

⊗ ITc
.

We define next a new probability measure

µQK
(J) = Ec

{

1J

[

QK ({Ha}u
a=0,{Xa}u

a=0)
]}

(8)

where J is a convex set in V , a space of (u+1)Tc×(u+1)Tc positive
definite matrices, so that

Ξ
(u)
K =

∫

exp
[

Kβ−1Gu(QK)
]

µQK
(dQ)+O(K−1). (9)

Applying Gärtner-Ellis theorem and Varadhan’s lemma to (9) and
neglecting the vanishing terms yields

F = lim
u→0

∂

∂u
sup
Q∈V

{

α−1Gu(Q)− Iu(Q)
}

, (10)

where the rate function Iu of (8) reads

Iu(Q) = sup
Q̃∈V

{

tr
(

Q̃Q
)

− lim
K→∞

1

K
log

K

∑
k=1

M
(u)
k

(

Q̃
)

}

, (11)

and the corresponding kth moment generating function is

M
(u)
k

(Q̃) = Ec

{

exp

[

M

∑
m=1

vec(Ωkm)H Q̃vec(Ωkm)

]}

.

From (10) and (11) we get

Q∗ = lim
K→∞

1

K

K

∑
k=1

1

M
(u)
k

(Q̃∗)
Ec

{

M

∑
m=1

vec(Ωkm)vec(Ωkm)H

× exp

[

M

∑
m=1

vec(Ωkm)HQ̃∗vec(ΩH
km)

]}

(12)

Q̃∗ = −α−1
(

I(u+1)Tc
+AQ∗

)−1
A. (13)

Assumption 2 (Replica symmetry). The saddle-point solution to
(12) – (13) is invariant to the permutations of replica indices,

Q∗ =

[

R −eT
u ⊗M

−eu ⊗MH Iu ⊗ (P−U)+eue
T
u ⊗U

]

Q̃∗ =

[

C −eT
u ⊗D

−eu ⊗DH Iu ⊗ (G−F)+eue
T
u ⊗F

]

where {U,P,G,F,R,C} are Tc ×Tc Hermitian matrices.

From (13) we get with Assumption 2,

C = 0, G = F−D, D = Σ−1, F = Σ−1Σ0Σ
−1,

where we denoted

Σ0 = σ2
0 ITc

+α
(

R− (M+MH)+U
)

, (14)

Σ = σ2ITc
+α (P−U) . (15)

The moment generating function under Assumption 2 is given in
(16) at the top of the next page. Since Σ0 is positive definite, we
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exp
(

Gu(QK)
)

= Ev

{

(πσ2
0 )−Tc

∫

exp



−
(

1

σ2
0

+
u

σ2

)

‖y‖2 +2ℜ







√
α

(

1

σ2
0

v0 +
1

σ2

u

∑
a=1

va

)H

y









dy

× (πσ2)−uTc exp

[

− α

σ2
0

‖v0‖2 − α

σ2

u

∑
a=1

‖va‖2

]

∣

∣

∣

∣

∣

QK

}

, v ∼ CN(0,QK)

(7)

M
(u)
k

(

Q̃
)

= Ec

{

M

∏
m=1

exp

[

u

∑
a=1

(

xakhm
ak +∆wm

ak

)H
G
(

xakhm
ak +∆wm

ak

)

+2ℜ
{

(

x
p,d
0k

hm
0k

)H
D
(

xakhm
ak +∆wm

ak

)

}

+
u

∑
b=1,b6=a

(

xakhm
ak +∆wm

ak

)H
F
(

xbkhm
bk +∆wm

bk

)

]} (16)

can write F =
√

F
√

F
H

, where
√

F = Σ−1
√

Σ0. Re-introducing

the iteration index and denoting x
(i−1)
k

= vec
([

pk, x̃
(i−1)
k

])

, an ap-

plication of the Hubbard-Stratonovich transform3 gives

M
(u)
k

(

Q̃
)

= Ec

{(

∫ M

∏
m=1

dzkm

)

M

∏
m=1

f
(

zkm

∣

∣x
p,d
0k

hm
0k ; Σ0

)

×





E
hk,∆W

(i−1)
k

{

∏M
m=1 f

(

zkm

∣

∣x
(i−1)
k

hm
k +∆w

(i−1)
km

; Σ
)}

∏M
m=1 f

(

zkm

∣

∣0 ; Σ
)





u
}

,

where we used the fact that replicated RVs are IID and denoted

∆W
(i−1)

k
= {∆w

(i−1)
km

|m = 1, . . . ,M}, and

f (z |y;R ) =
[

πTc det(R)
]−1

exp
(

−(z−y)HR−1(z−y)
)

.

As u → 0, M
(u)
k

(

Q̃
)

→ 1, and (12) can be written as

Q∗ = lim
K→∞

1

K

K

∑
k=1

M

∑
m=1

Ec

{(

∫ M

∏
m=1

dzkm

)

×E
h0k,∆W

(i−1)
k

{

ΩkmΩH
km

M

∏
m=1

f
(

zkm

∣

∣x
p,d
0k

hm
0k ;Σ0

)

×





∏M
m=1 f

(

zkm

∣

∣x
(i−1)
k

hm
k +∆w

(i−1)
km

;Σ
)

E
hk,∆W

(i−1)
k

{

∏M
m=1 f

(

zkm

∣

∣x
(i−1)
k

hm
k

+∆w
(i−1)
km

;Σ
)}





}

.

(17)

We get from (5) and (17), along with (14) – (15) the proposition.
The formal proof of decoupling via convergence of the joint mo-
ments [12, Sec. IV-B], [14] is omitted due to space constraints.
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