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ABSTRACT

The subspace intersection method (SIM) provides asymptotically
unbiased bearing estimates of multiple acoustic sources in a range-
independent shallow ocean using a one-dimensional search without
prior knowledge of source ranges and depths. The original formula-
tion of this method is based on deployment of a horizontal linear ar-
ray of hydrophones which measure acoustic pressure. In this paper,
we extend SIM to an array of vector sensors which measure acous-
tic pressure as well as all components of particle velocity. Use of
vector sensors reduces the minimum number of sensors required by
a factor of 4, and also eliminates the constraint that the intersensor
spacing should not exceed half wavelength. The performance en-
hancement due to the additional information provided by the vector
sensors is illustrated through simulation results.

1. INTRODUCTION

High-resolution bearing estimation or direction-of-arrival (DOA)
estimation is one of the important steps in localization of acoustic
sources in the ocean. Several methods have been used to solve
this problem with MUSIC [1] and ESPRIT [2] algorithms being
the prominent ones. These algorithms, however, assume plane-
wave propagation leading to biased bearing estimates due to the
multimode nature of acoustic propagation in the ocean. The bias
increases with increasing number of propagating modes in the
ocean. Matched field processing (MFP) techniques [3] overcome
this problem at the expense of computational complexity, since
MFP replaces the one-dimensional search of the above mentioned
methods by a three-dimensional search in the bearing-range-depth
space. The subspace intersection method (SIM) presented in [4]
attempts to alleviate the problem of both bias and computational
complexity. Bias is eliminated by replacing the invalid plane-wave
propagation model by a more appropriate normal mode propaga-
tion model. SIM involves a one-dimensional search without any
prior knowledge of the range and depth, thereby decreasing the
computational complexity.

The above-mentioned methods make use of the conventional
scalar sensors which measure only the acoustic pressure. Nehorai
and Paldi [5] presented a method of source localization using an
array of acoustic vector sensors (AVS), which can simultaneously
measure acoustic pressure and the three Cartesian components of
particle velocity at a point. The additional information provided
by an AVS can be utilized for better localization. But most
AVS array processing techniques including [5] consider a plane
wave acoustic propagation model which is not valid for shallow
ocean. A maximum likelihood estimation method, which was
proposed recently [6], uses a valid model of shallow ocean
acoustic propagation. But this method does not have the high reso-
lution capability of SIM, and also it is highly computation intensive.

In this paper we attempt to unify the two frameworks - sub-
space intersection method and vector sensors, for high-resolution

bearing estimation of multiple sources in shallow ocean. No
assumption is made on the prior knowledge of source ranges and
depths. We compare the performance of SIM with vector and scalar
sensor arrays, and show that the use of vector sensors leads to a
reduction in the number of sensors, lower rms estimation errors,
elimination of spacing constraints, and improved localization
performance in the end-fire direction.

The outline of the paper is as follows. In Section 2, we
present the AVS array data model for a horizontally stratified
ocean. The structure of the noise covariance matrix and a whitening
transformation are discussed in Section 3. The subspace intersec-
tion method for a vector sensor array is presented in Section 4.
Simulation results are presented in Section 5. Section 6 concludes
the paper.

2. AVS ARRAY DATA MODEL

The shallow ocean is modeled as a horizontally stratified water layer
of constant depth & overlying a horizontally stratified fluid bottom.
The variation of its acoustic properties in the horizontal direction is
assumed to be negligible in the range of interest. Consider J mu-
tually uncorrelated narrowband point sources of center frequency
/2w located at depths z; and ranges r; with respect to the ref-
erence sensor (first sensor) of a horizontal linear array of acoustic
vector sensors, also known as vector hydrophones. Source azimuth
angles ¢;(j = 1,...J) are measured with respect to the axis of the
array. The array has M equispaced sensors at a spacing of d meters,
all lying at a depth of z meters below the ocean surface. Assum-
ing the sensor array to be in the far field region with respect to all
sources, the expressions for pressure and particle velocity at the m'"
sensor due to the j™ source are given by [6, 7]
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N is the number of normal modes in the oceanic waveg-
uide, [6,; n=1,..,N] are the attenuation co-efficients,
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[Wn(z); n=1,...,N] are the eigenfunctions and [k,; n=1,...,N]
are the eigenvalues obtained by solving the Sturm-Liouville type
characteristic differential equation (with appropriate boundary
conditions at z =0 and z = h):

2
LI [P - ] n(0) =0,

k(z) = ®/c(z), h is the depth of the water layer, c(z) is the sound
speed in water at depth z, ¢,(z) is the sound speed in bottom at
depth z, p(z) and py(z) are the densities of water and ocean bot-
tom, respectively, at depth z, py,; is the acoustic pressure at the mh
sensor due to the j’h source, (vxmj,vymj,vzmj) are the x, y and z-
components respectively of the particle velocity at the m” sensor
due to the j™* source, s ;(t) is the slowly varying envelope of the
signal from " source with variance

o? = E[ls;(0)2); j=1,....J. ©)

We define the array signal vector as

x(1) = Ps(r) € C*¥M*1 @)
where
s(t) = [s1(0), .5, ()] € ! )
is the source signal vector, and P is the matrix defined as,
P = [p(¢1,71,21)-p(9s,77,27)] € CM, ©)

where each p(¢;,7,z;) € C*M*1

tor defined as

is the array signal amplitude vec-

P().75,2)) = [P1j Pt} Py1j Vot P P j Pymj Papaj]’ s (10)
with
Vemj = PC(2)Vamjs Vymj = PC(2)Vymj, Vzmj = Pc(2)vzmj  (11)

form =1,...,M. The particle velocity components are multiplied
by pc(z) to render the elements of P dimensionally uniform. The
elements of p(¢;,7;,z;) can be obtained from (1) - (4). Each vector
p(9;,7;j,z;) can further be written as

P(¢j,7),2j) = A(¢;)b(r;;2;), (12)
where
T ,
b(rj,zj) = [b1j,.bnj] €CV Y j=1,. (13)
are the mode amplitude vectors with b, given by (5).
A(9)) = [a(9),k1)-.a(9),ky)] € CHN (14)
is a matrix whose columns are the steering vectors defined as
T
a(0),kn) = [a] (). k)l (95 k0)] €CHM =1, N (15)
and

kncosd; knsing;
k(z) k(z)

—iy(2) 1" oim=1)dk,cos0;
) .

(9, ky) = {1 k(z)Wn(z

(16)
The function y;,(z) is the derivative of Y, (z). The array data vector,
including additive noise, can be written as

y(t) =Ps(t) +n(r). (17)

The array noise vector n(z) is given by

n(t) = [n{(z)...nﬁ(z) T e, (18)
where
n, (1) = [”p.,m(t) pe(@)yxm(t) pe(2)nvym(t) pe(z)nvym(t) ]T
(19)

is the 4 x 1 vector of noise components at the m"”* sensor.

3. WHITENING TRANSFORMATION

We assume that (i) the elements of the source signal vec-
tor s(¢) are mutually uncorrelated, and (ii) the noise vectors
[, (¢); m=1,...,M] are identically distributed, mutually uncorre-
lated, and also uncorrelated with the signal vector s(z). However,
there exists correlation among the elements of each noise vector
n,, (7). Hence, using (17), the array data covariance matrix can be
written as

C, = E[y(0)y" (1)) = PC,P7 4 C,, (20)

where

C, = E[s(1)s" (1)) = diag (6127...7612) @1
is the source signal covariance matrix and

C, = E[n(:)n! (t)] = 6°diag (T, ..., Y) (22)

is a 4M x 4M block diagonal array noise covariance matrix where
Y is a 4 X 4 noise covariance matrix at each vector sensor. We as-
sume that noise is predominantly wind-generated noise, for which
the covariance matrix can be shown to be [6]

&(2) (z)
Y(z) = & (@) £(2) ectt (23
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The array noise vector n(z) can therefore be whitened through the
transformation n,, () = Wn(¢) where

W = diag (r*1/27...7r*1/2> 28)

is a depth-dependent 4M x 4M whitening matrix. The whitened
array data vector is given by

Yu(t) = WPs(t) + Wn(7), 29)

and the whitened array data covariance matrix is
Cyy=E [yw(z)yf{ (z)] —WPCPIWH 1621 (30)

4. SUBSPACE INTERSECTION METHOD

In (30), C; is a diagonal matrix of rank J, and W is an invertible
square matrix of rank 4M. It can be shown following an approach
similar to that in reference [4] that the J columns of the 4M x J ma-
trix P are linearly independent for every set of J distinct source posi-
tions if 4M > NJ. In the following analysis, we assume that the con-
dition 4M > NJ is satisfied. It follows that the matrix WPC,P7 WH
is of rank J. The signal subspace S is defined as

S =span{uy,...,u;} = span {Wp(¢17r1711)7....7Wp(¢17rj7z8}1»)
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where uy, ..., uy are the ‘signal’ eigenvectors of Cy,, corresponding
to the J largest eigenvalues. We define the modal subspace M (¢)
for azimuth ¢ as

M(¢) = span{Wa(¢,k1),..., Wa(¢,ky)}, (32)

where a(¢,k,) is the modal steering vector defined in (15) and
(16). Tt is evident that M(¢) # M(§) for ¢ # ¢. It follows from
(12) and (32) that Wp(¢;,7},z;) € M(q)j) for j=1,...,J. We also
have Wp(¢;,7;,z;) € S for j = 1,...,J. It follows that S and M(¢)
intersect if ¢ € {91, ¢,...,¢;5}.

Finally, we note that S and M(¢) intersect only if a nontriv-
ial linear combination of the linearly independent basis vectors of
S and M(¢) is a null vector. Consider a linear combination with
N +J —1 complex numbers cy,...,cy4+7—1 and a real number ¢

such that
J N-1
Y eip(9),rjz))+ Y, crina(9,kn) +a(g,ky) =0.  (33)
j=1 n=1

This set comprises 4M complex equations with N +J — 1 complex
unknowns cy,...,cy4j—1 and one real unknown. For 4M > N 4 J,
the number of equations exceeds the number of unknowns and a
solution for (33) exists only if ¢ € {@y,...,¢;}. It follows that S
and M (¢) intersect if and only if ¢ € {¢y,...,9s}.

We now proceed to perform the bearing estimation of sources
in shallow ocean using the acoustic vector sensor array. The
procedure is similar to the subspace intersection method for a scalar
sensor array. Let us construct a 4M x (N +J) matrix D(¢) defined
as follows:

D(¢) = oyWa(¢,ky) up...us].  (34)

where «j,...,0y are normalizing constants. Further, the first M
columns of D(¢) are linearly independent basis vectors of the modal
subspace M(¢) and the remaining J columns are the orthonormal
basis vectors of the signal subspace S. We then perform a QR de-
composition to factorize the matrix D(¢) as

D(¢) = Q(9)R(9). 35)

[alwa((f),kl)....

Here,
Q(9) =[q(9)-...ay+s(9)] (36)

is an 4M x (N 4 J) matrix whose columns q;(¢) are orthonormal
vectors and R(¢) is a (N +J) x (N +J) upper triangular matrix
whose diagonal elements are the eigenvalues of the matrix D(¢).
The columns of D(¢) are related to the columns of Q(¢) through
the equations

N+J (37)

=Y ru(@)ax(9), i=1,...,
k=1

where d;(¢) is the i’ column of D(¢) and ry;(¢) is the (ki)™ el-
ement of R(¢). The elements ry;(¢) and the vectors q;(¢) can be
determined recursively using the relations

r11(0) = [|[di()]l5, (38)
1
q(9) = mdl(d’)y 39
ni(9) = al (9)di(9), 1 <k <i—1;i=2,.,(N+J)  (40)
i—1
rii(9) = =Y ni@)a(@)| :i=2,...(N+J)  (41)
k=1 2
qi((P) _ dz((P) Zkzlrk1(¢)qk(¢); i:27...7(N+J) (42)

rii(9)

where || . |2 denotes the Euclidean norm. A diagonal element
rii(¢) of the matrix R(¢) is zero if and only if d;(¢) € span
{dy(9), ..., d;_1(¢)}. This property will be exploited during the
formulation of the bearing estimation algorithm.

Assuming that 4M > NJ and 4M > (N +J), we know that
the subspaces M(¢) = span {d;(¢),...,dy(¢)} and S = span
{dy+1,-..,dy+y} intersect if and only if ¢ € {¢1,02,...,9s}.
Therefore, it follows that ¢ € {¢;,9,,...,¢;} if and only if one of
the following conditions is satisfied:

d; € span{d;(¢),...,dN(¢)}; i€ {N+1,....N+J} 43)
ordyyy € span{d(9),....dy1s-1(9)} (44)

Thus, we have the following result: d; € span {d;(9),...,d;_1(9)}
for some i € {N+1,...,N+J}if and only if ¢ € {¢1,...,¢;}.

Since r;;(¢) = 0 if and only if d;(¢) € span {d;(9),....,d;—1(9)},
it follows that r;;(¢) = 0 for some i € {(N+1),...,(N+J)} if and
only if ¢ € {¢,...,¢;}. Hence, the SIM response function

-1

Bsi(¢) = [ 7ii(9) | 45)

min
N+1<i<N+J
has sharp peaks at ¢ = ¢1, ¢, ..., ¢;.

5. RESULTS AND DISCUSSION

We consider a Pekeris model of the ocean [7], so that ¢(z), ¢p(2),
p(z) and pp(z) are independent of z. All simulations have been per-
formed with the following values of channel parameters: ¢ = 1500
m/s, ¢, = 1700 m/s, pp/p = 1.5, and attenuation in the ocean bot-
tom is 0 = 0.5 dB/A, where A is the free space wavelength. An ar-
ray of vector sensors is assumed to be at a depth z = 25 m below the
surface of the ocean. The ocean depth /4 is 100 m and the source sig-
nal frequency f is SOHz. For this choice of parameters, the number
of modes is N = 6. Independent samples of uniformly distributed
random phases were added to the signal from each source to render
the sources noncoherent. Independent samples of a zero-mean com-
plex Gaussian random vector with covariance matrix 2diag (Y...Y)
were used to generate the noise vector n(t). The parameter o2 was
adjusted to yield the desired signal-to-noise ratio (SNR), defined as

Z IZ 10-/2|pmj|2

SNR = 10log,, Mo2E ,

(46)

where sz is the source power given by (6), & is defined in (24), and

o2& is the variance of pressure component of noise.

The covariance matrix Cy, was estimated from the whitened
data vector y,,(t) by averaging y,, ()yZ () over L snapshots

1

éyw = z y (t)yfvl'(t)' (47)

\|ML~

Eigenvectors of Cyw corresponding to the J largest eigenvalues
provide estimates of the signal eigenvectors uy,...,uy. Simulations
have been performed by considering data obtained using both
conventional scalar sensors and vector sensors to localize the
sources. The sources are located at equal ranges r; = 5000 m and
equal depths z; = 37.5 m. The spacing between sensor elements is
d =A/2 =15 m, unless otherwise stated. The number of snapshots
is L = 350 unless otherwise stated. All results have been generated
by averaging over 250 simulations.

A comparative performance analysis of SIM with AVS and
scalar sensor arrays is presented in Figs.1-10. A typical SIM
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Figure 1: SIM ambiguity function for AVS array with M=10,
SNR=20dB. Three sources are at 30°,35%,1200.

response function Bg;(¢) is shown in Fig.1, which corresponds to
a 10-sensor AVS array when the source bearing angles are 300,
350 and 120°. Figures 2 and 3 show respectively the plots of bias
and root mean square error (RMSE) versus SNR. The Cramer-Rao
bound (CRB) for a 20-sensor AVS array is also shown in Fig.3.
It is seen that (i) the AVS array performs significantly better than
a scalar sensor array, and (ii) the RMSE of SIM for the AVS
array is quite close to the CRB. Similar conclusions can be drawn
from Fig.4 which shows the variation of RMSE with the number
of sensors M. The bias and rms error seen in Figs.2-4 are due
to the error in estimation of the covariance matrix C,, using a
finite number of snapshots L. Figures 5 and 6 indicate that both
bias and RMSE approach zero asymptotically with increasing L.
Figure 7 shows the plots of RMSE versus the bearing angle ¢ for
both AVS and scalar sensor array and the plot of CRB versus ¢
for the AVS array. For the scalar sensor array, the dimension of
the N—dimensional modal subspace M(¢) collapses to unity at
¢ =90°. Hence, the RMSE of SIM for the scalar sensor array
rises rapidly as ¢ approaches 90° (broadside direction). Since the
dimension of M(¢) for the AVS array is N for all ¢ including
¢ =900, the RMSE of SIM for the AVS array remains low in
the vicinity of broadside. For both arrays RMSE is high near the
endfire direction (¢ = 0°). Figure 8 shows the plot of probability
of detection of two closely spaced sources versus the angular
separation 0¢ for the AVS and scalar sensor arrays, illustrating the
superior resolving capability of the AVS array.

For unambiguous bearing estimation, the
have to satisfy the condition

a(¢,ky) =a(¢' ky)onlyif g =¢', n=n'. (48)

steering  vectors

For a scalar sensor array, the vector
. ) T
a(¢,k,) = [1 e’dk"m‘“z’,,,gl(Mfl)dk,.mx(P}

may not satisfy condition (48) if d > w/k; = A;/2. For an AVS
array, a(@,k,) € C*M*1 has a more complex structure as seen
from (15) and (16), and hence condition (48) is always satisfied
even if d > A; /2. The absence of any constraint on the intersensor
spacing d can be exploited to enhance the resolution of an AVS
array by choosing a larger value of d. Figures 9 and 10 show
the SIM response function for AVS array and scalar sensor array
respectively for d = 3A ~ 3, when two sources are located at 80°
and 82°. The AVS array resolves the two sources and estimates
their bearing angles unambiguously. For a scalar sensor array,
unambiguous estimation is not possible due to the presence of a
large number of sidelobes.

—— scalar sensors,M=20
o6l ——— AVS,M=10
——— AVS,M=20

bias (degree)

A =S
5 10 15
SNR (dB)

Figure 2: Variation of bias with SNR for AVS array with M=10,20
and scalar sensor array with M=20. The source is at 60°.
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Figure 3: Variation of RMSE with SNR for AVS array with
M=10,20 and scalar sensor array with M=20. CRB for AVS array

with M=20 is also shown. Source is at 60°.
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Figure 4: Variation of RMSE with M for AVS and scalar sensor
arrays. CRB for AVS array is also shown. SNR=20dB. Source is at

60°.
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Figure 5: Variation of bias with the number of snapshots for scalar
and AVS arrays. M=10, SNR=10dB. Source is at 600.
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Figure 6: Variation of RMSE with the number of snapshots for
scalar and AVS arrays. CRB for AVS array is also shown. M=10,
SNR=10dB. Source is at 60°.
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Figure 7: Variation of RMSE with the bearing angle for AVS and
scalar sensor arrays. CRB for AVS array is also shown. M=10,
SNR=20 dB
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Figure 8: Probability of detection versus angular separation be-

tween 2 sources. Source 1: 60°. Source 2: 60° + §¢. M=10,
SNR=20dB.
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Figure 9: SIM Response function of AVS array with d = 374 for 2
sources at 80° and 820. M=20, SNR=20dB.
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Figure 10: SIM Response function of scalar sensor array for the
same conditions as in Fig. 9.

6. CONCLUSIONS

In this paper, we have presented the subspace intersection method
(SIM) of high-resolution bearing estimation in a range-independent
shallow ocean using a horizontal linear array of acoustic vec-
tor sensors (AVS). The bearing angles are estimated using a
one-dimensional search algorithm which does not assume prior
knowledge of source ranges and depths. The minimum number of
sensors required by the SIM algorithm reduces by a factor of 4 if
scalar sensors are replaced by vector sensors; the requirement is
M > NJ for scalar sensors and M > %NJ for vector sensors. For an
AVS array there is no constraint on interelement spacing d, while
for a scalar sensor array d cannot exceed A;/2. Hence, with an
AVS array, resolution can be enhanced by increasing the spacing
d. The performance of SIM with a scalar sensor array degrades
drastically for sources near the broadside direction, but SIM with
AVS array does not suffer from this drawback. Simulation results
show that the bias and rms error for an AVS array are significantly
lower than those for a scalar sensor array, especially at low SNR.
The AVS array also provides greater resolution than the scalar
sensor array.
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