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ABSTRACT

This paper presents a novel framework to learn sparse represen-
tations for audiovisual signals. An audiovisual signal is modeled
as a sparse sum of audiovisual kernels. The kernels are bimodal
functions made of synchronous audio and video components that
can be positioned independently and arbitrarily in space and time.
We design an algorithm capable of learning sets of such audiovi-
sual, synchronous, shift-invariant functions by alternatingly solving
a coding and a learning procedure. The proposed methodology is
used to learn audiovisual features from a set of bimodal sequences.
The basis functions that emerge are audio-video pairs that capture
salient data structures.

1. BACKGROUND AND SIGNIFICANCE

Everyday tasks involve complex interactions between different sen-
sory modalities. Indeed, a variety of cross-modal integration phe-
nomena occur at various processing levels in our brain [1, 2]. Re-
cently, cross-modal integrating strategies inspired by experimental
results in human subjects begin to be successfully used in many sig-
nal processing and computer vision problems involving mutually
related signals. Examples include speech-speaker recognition [3]
and detection [4] aided by video, audio filtering and enhancement
based on video [5], or audiovisual sound source localization [6–13].

Typically, audiovisual fusion algorithms exploit the correlation
across modalities by looking for structures showing a certain de-
gree of synchrony. In their pioneering work, Hershey and Movel-
lan [6] assessed the interdependency between audio and video sim-
ply measuring the correlation coefficient between acoustic energy
and the evolution of single pixel values. Since then, more sophisti-
cated audio-video features and audiovisual fusion models have been
developed. Audio features are based on audio energy [8, 9, 11] or
cepstral representations [4, 7, 10], while video features are pixel in-
tensity values [8, 11] or descriptors of visual changes [4, 7, 9, 10].
Audiovisual interplay is modeled using techniques based on Canon-
ical Correlation Analysis (CCA) [7, 9] or on the estimation of the
joint distributions of audiovisual features [4, 8, 10, 11]. In our pre-
vious work [5, 12] we propose an audiovisual analysis technique
based on sparse features that allows to intuitively define and detect
synchronous audiovisual patterns.

All these models make use of hand-designed audio and video
features that are correlated using some statistical measure of in-
terdependency. In contrast to previous studies, here we propose a
model that learns sparse signal representations. The goal is to build
codes adapted to the audiovisual signal and that allow to represent
relevant data structures in an intuitive and natural way.

This idea has been first explored in our earlier work [13], where
audiovisual signals are modeled as sparse sums of audiovisual basis
functions. An example of audiovisual basis is depicted in Fig. 1. It
is composed of an audio and a video component: the audio part ex-
presses a digit in English, while the corresponding video part shows
a moving edge that could represent the lower lip during the utter-
ance of the digit. The two components share a common temporal
axis and thus they exist in the same temporal interval even though

Figure 1: An audiovisual function composed of an audio [Top] and a
video part [Bottom] sharing a common temporal axis. Video frames
are represented as a succession of images.

they are sampled at different temporal resolution. In [13], a method
to learn collections of such multimodal kernels is proposed as well.

In this work we propose a new model where bimodal signal
structure is captured by a sparse generative model [14]. The bi-
modal signal structure is the audiovisual signal component that is
informative for sensor fusion. Conversely, signal structure that ex-
clusively resides in single modalities is incompletely encoded. An
audiovisual signal is thus represented as a sparse sum of audiovisual
kernels. Such kernels are bimodal functions like the one shown in
Fig. 1 that can be positioned independently and arbitrarily in space
and time. We design an algorithm capable of learning sets of such
audiovisual, synchronous, shift-invariant features by alternatingly
solving a coding and a learning procedure. This work improves our
previous audiovisual learning algorithm in two important aspects:
1. We extend the model in [13] in order to represent audiovisual

signals in terms of kernels that are invariant not only to temporal
but also to spatial translations.

2. In [13], the learned multimodal dictionaries are collections of
frequently re-occurring patterns, but the learning does not take
into account the sparse coding problems. Here the coding and
the learning procedures are alternatingly solved to form sparse
audiovisual signal representations.

The paper is structured as follows: Sec. 2 describes the proposed
audiovisual signal model. Sec. 3 presents the coding and learning
algorithms for audio-video signals. In Sec. 4 experimental results
based on synthetic and natural audiovisual data are shown. Sec. 5
concludes the paper with a summary of the achieved results and of
the possible developments of this research.

2. CONVOLUTIONAL MODEL FOR AUDIOVISUAL
SIGNALS

Audiovisual data structures are made up of two different modalities
(audio and video) and they can be represented as couple s = (a,v).
The two components a and v are not homogenous in dimensional-
ity: the audio signal is a 1-D stream a(t) and the video sequence
is a 3-D signal v(x,y, t) with (x,y) the pixel position. An audio-
visual signal can be represented as a sum of audiovisual atoms
φk = (φ (a)

k (t),φ (v)
k (x,y, t)) like the one shown in Fig. 1, taken from

a multimodal dictionary D = {φk} [13]. Each atom consists of an
audio and a video component with unitary `2 norm.

Audiovisual signals share a common temporal dimension, and
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Figure 2: Schematic representation of the audiovisual code. The
signal s = (a(t),v(x,y, t)) is modeled as a linear sum of kernels
φk = (φ (a)

k ,φ (v)
k ), φ (a)

k being a 1-D audio function as in Fig. 1 [Top]

and φ (v)
k a video function as in Fig. 1 [Bottom]. Each kernel is lo-

calized in space and time and may be applied at any spatio-temporal
position T within the signal.

temporal synchrony between audio and video stimuli is a very im-
portant feature, tightly linked to the physics of the problem. Sound
in the audio time series is in fact usually linked to the occurrence of
events in the video at the same moment. If for example the sequence
contains a character talking, sound is synchronized with lips move-
ments. Let φ = (φ (a)(t),φ (v)(x,y, t)), be an audiovisual function
whose modalities φ (a) and φ (v) share a common temporal dimen-
sion t ∈R. A modality is temporally localized in the interval ∆⊂R
if φ (a)(t) = 0 and φ (v)(x,y, t) = 0, ∀t /∈ ∆. We will say that the
modalities are synchronous when φ (a) and φ (v) are localized in the
same time interval ∆.

Most natural signals exhibit characteristics that are shift-
invariant, meaning that they can occur at any instant in time and
space. Think once again of an audio track: any particular frequency
pattern can be repeated at arbitrary time instants. In order to ac-
count for this natural shift-invariance, we need to be able to shift
patterns on modalities. Let φ be an audiovisual function localized
in an interval centered on t = 0. The operator T(p,q,r) acts on φ in a
straightforward way:

T(p,q,r)φ =
(

φ (a)(t− r),φ (v)(x− p,y−q, t− r)
)

. (1)

This translation is homogeneous in time across channels and thus
preserves synchrony. With these definitions, it becomes easy to ex-
press a signal as a superposition of synchronous multimodal pat-
terns φk, occurring at various time instants and in different spatial
positions:

s≈
K−1

∑
k=0

nk

∑
i=1

cki T(p,q,r)ki
φk, (2)

where the pair cki = (c(a)
ki

,c(v)
ki

) specify the coefficients of the i-th in-
stance of kernel φk. The index nk indicates the number of instances
of φk, which need not be the same across kernels. In general, the
audio and video modalities are weighted by different coefficients,
c(a)

ki
and c(v)

ki
, since the same audio-video pattern may occur along

a sequence with different relative intensities: for example the same
mouth movement may produce the same sound but with different
acoustic intensity. The model is schematically illustrated in Fig. 2.

3. LEARNING SPARSE AUDIOVISUAL CODES

Our goal is to design a model for preferentially learning bimodal
signal structures that are informative in sensor fusion. This can be

done alternatingly solving two tasks:
I Sparse Coding, i.e. finding the optimal translations T(p,q,r)k

and

coefficients ck = (c(a)
k ,c(v)

k );
I Learning, i.e. finding the optimal basis functions φk =

(φ (a)
k (t),φ (v)

k (x,y, t)).
Given a certain dictionary, there are many different methods to find
an encoding of a signal, while in general, finding the optimal sparse
representation of arbitrary signals using a generic dictionary is a
very hard problem, which turns out to be NP-hard. For this reason
approximate feasible solutions have to be considered. Here we use
an extension of the Matching Pursuit (MP) algorithm [15] to find
the values of T(p,q,r)k

and ck. MP has been used in some recent
work to compute sparse codes of audio signals [16] and images [17],
showing to yield efficient and robust representations. In the next
section we recall the basic concepts of MP and we introduce an
extension of the method to audiovisual signals.

3.1 Sparse Coding: the Audiovisual Matching Pursuit
The goal of the sparse coding step is to find the values of T(p,q,r)k

and
ck to represent bimodally informative audiovisual structures accord-
ing to the sparse model (2). We extend MP to multimodal data as
inspired by the Simultaneous Orthogonal MP (S-OMP) algorithm of
Tropp and colleagues [18]. Our aim is to represent the audiovisual
signal s in terms of functions φk taken from a redundant dictionary
D , as expressed by (2). Since audio and video signals have in gen-
eral different dimensionality and different temporal sampling rates,
S-OMP has to be extended to account for those differences. To this
end we introduce the Audiovisual Matching Pursuit algorithm (AV-
MP) described in this section.

Since we will deal with digital audio and video signals, in order
to proceed we first need to define the time-discrete version T(p,q,r),
p,q,r ∈ R of the synchronous translation operator (1). Different
modalities are in general sampled at different rates over time. In
order to preserve their temporal proximity, the operator T must
shift in time the signals on the two modalities by a different integer
number of samples. We define T as

T(p,q,r) =
(
T

(a)
r ,T

(v)
(p,q,r)

)
:=

(
Tρ (a) ,Tp,q,ρ(v)

)
,

where Tρ(a) translates an audio signal by ρ(a) ∈ Z samples and

Tp,q,ρ (v) translates a video signal by ρ(v) time samples and p and q
pixels. Therefore T(p,q,r), p,q,r ∈ R, is defined with discrete time
translations ρ(a) := nint(r/ν(a)) ∈ Z and ρ(v) := nint(r/ν(v)) ∈ Z,
where nint(·) is the nearest integer function. In the experiments that
we will conduct at the end of this paper, ν(a) = 1/8000 for audio
signals sampled at 8 kHz and ν(v) = 1/29.97 for videos at 29.97
frames per second (fps).

The Audiovisual Matching Pursuit algorithm iteratively ap-
proximates the multimodal signal s = (a,v) with successive pro-
jections onto the audiovisual dictionary made of the functions φk =
(φ (a)

k (t),φ (v)
k (x,y, t)). The first step of the AV-MP algorithm decom-

poses s as

s = R0s =
(

R0a,R0v
)

=
(
〈a,φ (a)

0 (t−ρ(a)
0 )〉φ (a)

0 ,〈v,φ (v)
0 (x−p0,y−q0, t−ρ(v)

0 )〉φ (v)
0

)
+R1s ,

where R1s is the residual component after projecting s in the sub-
space described by φ0. The selection of the function φ0 to use and
its position (p,q,r)0 are chosen such that the sum of projections
|〈a,T

(a)
r φ (a)〉|+ |〈v,T (v)

(p,q,r)φ
(v)〉| is maximal [18]. The projections

(|〈a,T
(a)

r φ (a)
0 〉|, |〈v,T (v)

(p,q,r)φ
(v)
0 〉|) represent the pair of coefficients

ĉ0 = (ĉ(a)
0 , ĉ(v)

0 ). Recursively applying this procedure, after N itera-
tions we can approximate s with ŝ as
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Figure 3: Synthetic example. The top plot is the spectrogram of the audio part, consisting of three sine pulses at different frequencies.
The bottom plot shows the video part consisting of 30 video frames. The clip shows four black geometric shapes on a white background.
Five events are present in this sequence, one audio-only structure (Red dashed box), two visual-only structures (Green dotted) and two
audio-visual structures (Blue).

ŝ =
N−1

∑
n=0

(
ĉ(a)

n φ (a)
n (t−ρ(a)

n ), ĉ(v)
n φ (v)

n (x−pn,y−qn, t−ρ(v)
n )

)
, (3)

where ĉ(m)
n = 〈Rnm,T (m)φ (m)

k 〉, m = a,v. The algorithm can be
stopped either after a fixed number N of iterations either when the
value of the projection ĉ drops below a certain threshold.

Please note that by separating the sum over n into two sums, one
over k (the kernel functions) and one over i (the number of instances
of each kernel), we find again the sparse signal model (2):

ŝ = ∑
k

∑
i

ĉkiT(p,q,r)ki
φk .

3.2 Learning
The AV-MP algorithm provides a way to encode signals given a
set of audiovisual kernel functions, but the efficiency of this code
depends on how well the kernel functions capture the structure of a
given class of signals. To optimize the kernel functions we use unsu-
pervised learning based on gradient descent [14]. Gradient descent
algorithms have been successfully employed in recent years for
learning sparse signal representations, showing to be able to find bi-
ologically plausible codes for acoustic [16] and visual data [14, 17].

We start from the observation [14] that one can rewrite (2)
in probabilistic form as p(s|D) =

∫
p(s|D ,c)p(c)dc, with p(c) a

sparse prior on the usage of dictionary elements. It is common
to approximate the integral by the maximum of the integrant (its
mode), i.e.

p(s|D) =
∫

p(s|D ,c)p(c)dc≈ p(s|D ,c?)p(c?) . (4)

Here the optimal code c? is approximated by the AV-MP decompo-
sition of the signal, ĉ. Assuming the noise in the likelihood term,
p(s|D , ĉ), to be Gaussian with variance σ2

N , the kernel functions can
be iteratively updated taking the gradient ascent of the approximate
log probability [14]:

∂
∂φk

log(p(s|D)) ≈ ∂
∂φk

{log(p(s|D , ĉ))+ log(p(ĉ))}

≈ − 1
2σ2

N

∂
∂φk

∥∥∥∥∥s−
K−1

∑
k=0

nk

∑
i=1

ĉkiT(p,q,r)ki
φk

∥∥∥∥∥
2

=
1

σ2
N

nk

∑
i=1

ĉki {s− ŝ}Tki
, (5)

where {s− ŝ}Tki
indicates the residual error over the extent of kernel

φk at position T(p,q,r)ki
. Thus the functions φk are updated in Heb-

bian fashion, simply as a product of activity and residual [14, 16].
To summarize, we randomly initialize the basis functions and

we iteratively update them using the rule

φk = φk +η∆φk ,

where η is a constant learning rate and ∆φk is the update step:

∆φk =
(

∆φ (a)
k ,∆φ (v)

k

)

=

(
nk

∑
i=1

ĉ(a)
ki
{a− â}

T
(a)

rki

,
nk

∑
i=1

ĉ(v)
ki
{v− v̂}

T
(v)

(p,q,r)ki

)
. (6)

Figure 4: The two audiovisual kernels learned for the synthetic se-
quence in Fig. 3. Audio components are on the top, with time on
the horizontal axis. Video components on the bottom, with time
proceeding left to right (each image is a video frame).

After each update step the components of the audiovisual kernels
are normalized to 1. The learning is halted after a given number of
iterations M or when the change in the `2 norm of the basis functions
is smaller than 1% (whichever comes first).

4. EXPERIMENTS

4.1 A Synthetic Example
We first consider a simple synthetic example to illustrate how the
audiovisual sparse coding model works. The soundtrack consists
of three sine waves at different frequencies (Fig. 3 [Top]), and
the video shows four simple black shapes, static or moving on a
white background (Fig. 3 [Bottom]). The sequence represents three
possible audiovisual patterns: audio-only structure (Red dashed
box), visual-only structures (Green dotted) and audiovisual struc-
tures (Blue). We use our algorithm to learn an audiovisual dictio-
nary of 10 functions for this scene. The kernels have an audio com-
ponent lasting 1602 samples and a video component of size 8× 8
pixels and 6 frames in time. The algorithm learns two audiovisual
functions (the remaining 8 were not used) that are shown in Fig. 4.

It is clear, observing the results, that the emerging audiovi-
sual bases represent the two cross-modal structures highlighted in
blue in Fig. 3. Function 1 shows the audiovisual pattern on frames
26–27, with the static rectangle and the synchronous sine wave,
while function 2 depicts the moving square with the short sinusoidal
pulse associated appearing on frames 8–12. This simple experiment
suggests that our learning algorithm allows extracting meaningful
cross-modal structures from data. When learning audiovisual ker-
nels, the algorithm focuses on cross-modal structures, discarding
audio-only and video-only components. Since in natural audiovi-
sual streams, visual and auditory parts are often co-occurring, we
can learn audiovisual patterns using the proposed method.

4.2 Learning Codes for Audiovisual Speech
The aim of this experiment is to demonstrate the capability of the
learning algorithm to recover audiovisual patterns from natural sig-
nals. The training database consists of five audiovisual sequences
representing the mouth of one speaker uttering the digits from zero
to nine in English. Thus we expect the emerging audiovisual ker-
nels to represent audio structures like words or phonemes with cor-
responding video components showing movements of mouth parts
during the utterances.

Training audio tracks were at 44 kHz and down-sampled to
8 kHz and the gray-scale videos were recorded at 29.97 fps and
at a resolution of 35×55 pixels. The total length of the training se-
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Function Video Audio Perceived Audio

1 “nine”

2 “zero”

3 “seven”

4 “two”

5 “six”

6 “three”

7 “five”

8 “one”

9 “four”

10 “eight”

11 “three”

12 “zero”

13 “nine”

14 “three”

15 “four”

Figure 5: Fifteen learned audiovisual kernels. Video components are on the second column and are represented as a succession of video
frames. Audio components are on the third column. Perceived sounds are marked in the forth column.

quences is 1310 video frames, i.e. approximately 44 seconds. The
audio signal is considered as is while the video is whitened using
the procedure described in [14] to speed up the training. We learn
30 audiovisual kernels with an audio component of 2670 samples
and a video component of size 12× 12× 10. The learned dictio-
nary is shown in Fig. 5. Each function is represented as a video
component (on the left), with time proceeding left to right, and an
audio part (on the right), with time on the horizontal axis. Video
components are spatially localized and oriented edge detector fil-
ters shifting from frame to frame. They clearly represent parts of
the mouths making distinctive movements during the speech. The
audio components feature the numbers present in the training set.
Listening to the waveforms, one can hear the digits zero (functions
2, 12), one (8), two (4), three (6, 11, 14), four (9, 15), five (7), seven
(3), eight (10), nine (1, 13). Function 5 seems to be a mixture of
numbers six and eight. The digit six is difficult to learn because its
audiovisual representation has both low acoustic energy and small
corresponding lip motion. Different instances of the same digit have
either different audio characteristics, like length or frequency con-
tent (e.g. functions 6, 11 and 14 all feature a three), or different
associated video components (e.g. functions 2 and 12).

The set functions shown in Fig. 5 is qualitatively different from

the dictionary, learned on the same dataset, reported in our recent
paper [13]. The audiovisual kernels that emerge in this study are
more heterogeneous, with a great variety of visual motion patterns
and sounds. The visual functions exhibit very clear edge-like mov-
ing structures describing different visual patterns. Here the learned
audio components represent all the digits present in the training set,
which was not the case in [13]. Furthermore, the algorithm in [13],
due to de-correlation constraints between atoms, learns few spuri-
ous audiovisual kernels that do not represent any real data structure.
It should be also emphasized that the kernels learned here are in-
variant to temporal and spatial shifts, while those learned in [13] are
only time-invariant. This is probably another reason for the richness
of structures learned with our new method.

Overall, the functions learned here seem to depict more clearly
underlying data patterns. One reason for this behavior of the al-
gorithm is that the model proposed here integrates learning and
coding in a way that is statistically and biologically more consis-
tent [14, 16, 17].

4.3 Audiovisual Source Localization
Here we show that detecting the learned kernels in an audiovisual
sequence exhibiting severe acoustic and visual distracters, it is pos-
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Figure 6: (a) Sample video frame. The white cross correctly pin-
points the position of the estimated audiovisual source. (b) Audio
signal with the speech of the real speaker (blue line) and added noise
signal with SNR = 0 dB (dashed red line). The test audio track is
the sum of the two waveforms.

sible to localize the audiovisual source. We consider a clip consist-
ing of two persons in front of the camera arranged as in Fig. 6 (a).
One person (on the left) is uttering digits in English, while the other
one is mouthing exactly the same words. Strong noise (SNR = 0dB)
is mixed with the audio track by adding the signal of a male voice
pronouncing numbers in English (Fig. 6 (b)). The speaker is the
same subject whose mouth was used to train the audiovisual dictio-
nary in Fig. 5; however, the training sequences are different from
the test sequence. Such a sequence is difficult to analyze, since both
persons mouth the same words at the same time (strong visual dis-
tracter) and the audio track is a mixture of two male voices, both
uttering digits in English (strong acoustic distracter).

The audio track of the test clip is filtered with the audio com-
ponent of each learned function. For each audio function we keep
the temporal position of the maximum projection and we consider
a window of 21 frames around this time position in the video. This
restricted video patch is filtered with the corresponding video com-
ponent and the spatio-temporal position of the maximum projection
between the video signal and the video kernel is kept. Thus, for each
learned audiovisual function we obtain the location of the maximum
projection over the image plane. The locations of the maximal pro-
jections on the image plane are grouped into clusters using a hier-
archical clustering algorithm, as described in [13]. The centroid of
the cluster containing the largest number of points is kept as the es-
timated location of the sound source. We expect the position of the
estimated sound source to be close to the speaker’s mouth. Fig. 6
(a) shows a sample frame of the test sequence. The white cross in-
dicates the estimated position of the sound source over the image
plane, which coincides with the mouth of the speaker. Thus, the
learned code can detect synchronous audiovisual patterns, allowing
to localize the sound source on complex multimodal sequences.

5. SUMMARY

In this paper we have presented a new model to represent audiovi-
sual signals as sparse sums of coupled audiovisual functions that
are learned from real-world multimodal sequences. The emerg-
ing representation includes elements describing typical audiovi-
sual features in the training signals. The proposed framework has
been demonstrated on synthetic and natural data, showing that co-
occurring audio-video events can be effectively learned, extracted
and localized. Applications of the proposed model can range from
robust cross-modal source localization [13], to blind audiovisual
source separation [5], or to joint encoding of multimedia streams.

Interestingly, the framework developed here relies upon tech-
niques that have been employed for the modeling of perceptual
mechanisms [14, 16, 17]. We think that our model might relate to
what human perception does. Since an intriguing and still unre-
solved question arising in the neuroscience community concerns
the nature of cross-modal integration mechanisms in human the
brain [1, 2], we believe that our audiovisual learning model can
provide an interesting starting point for the theoretical analysis of
cross-modal interactions in human perception.
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