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ABSTRACT

Vector filtering of signals and images has many applications,
but there is little theoretical framework underpinning rather
ad-hoc approaches to the development of such filters. In this
paper we make a significant step towards improving this po-
sition by showing that the geometric operations possible on
samples or pixels can be expressed in a canonic form. In
the formalism of quaternions, this canonic form has at most
4 quaternion coefficients. In the formalism of matrices and
groups, the coefficients are 4 x 4 matrices, or members of the
General Linear Group of order 4. We show how to combine
series and parallel filters and reduce the result to the canonic
form, and we discuss the set of geometric operations possi-
ble on vector samples or pixels, thus generalising the notion
of sample scaling in classical DSP to a geometric concept of
sample modification through linear operations.

1. INTRODUCTION

Vector filters have been studied for many years, particularly
in the context of non-linear filtering, for example using or-
der statistics (e.g. the classic vector median and related fil-
ters), but there have also been some linear vector filters pub-
lished in the field of colour image processing. To date, the
approaches taken to developing linear filters have been some-
what ad-hoc based on geometric operations in signal space or
colour space without a sound theoretical framework. In this
paper we present a theoretical framework for linear vector
filters based on linear quaternion functions. This framework
gives significant insight into the set of geometrical opera-
tions that can be exploited to generalise the notion of scaling
a sample or pixel, and it also reveals a connection with the
General Linear Group of order 4, GL4(IR), that is the set of
4 x 4 matrices that transform 4-space vectors geometrically.

This paper is based on our previous work on linear
quaternion filters applied to colour images. In these filters
[1, 2], colour image pixels represented as pure quaternions
were multiplied by left and right quaternion coefficients in
a convolution. The use of left and right coefficients arises
from the non-commutative nature of quaternion multiplica-
tion, and it allows geometric operations such as rotation, di-
latation, reflection, efc. to be expressed using a quaternion
difference equation. An obvious question with a non-obvious
answer is whether, given a quaternion equation with an ar-
bitrary number of first-order terms, it is possible to find a
canonic form of the equation with some least upper bound
on the number of coefficients. In signal or image processing
terms what this means is, can an arbitrary cascade (series), or
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parallel, combination of such filters be reduced to a canonic
minimal filter? It turns out that the answer to this question,
as we show in this paper, is affirmative, and the maximum
number of quaternion coefficients needed is 4.

The starting point for the theory developed in this paper is
the discovery in 2007 by Ell [3] that a linear quaternion func-
tion has at most 4 quaternion coefficients when expressed in
a canonic form. Therefore, any linear vector filter based on
quaternion coefficients, or a series or parallel combination
of such filters, can be reduced to a sum of four convolutions.

The paper is structured as follows. In §2 we review
quaternions and the use of quaternions for representing
points in projective space. In §3 we review the result that
linear quaternion functions can be reduced to a canonic form
with at most four quaternion coefficients, show how addition
or composition of such functions (equivalent to series and
parallel combinations of filters) may be calculated to yield an
equivalent canonic filter, and show the equivalence of these
functions to GL4(R). In §4 we present an overview of the set
of geometric operations that are available using the canonic
form. In §5 we present an initial discussion of the idea that
coefficients in a filter ‘mask’ or impulse response may be lin-
ear quaternion systems (that is we regard the coefficients of
a FIR filter as linear quaternion system operators). Finally,
in §6 we discuss the practical issue of converting Cartesian
data to (and from) homogeneous coordinates and the use of
pre-filter point-wise linear quaternion operations to prepare
data for convolution filtering.

2. PRELIMINARIES

2.1 Quaternions

This work uses the hypercomplex numbers of Hamilton [4],
namely the quaternion 4-tuple (w,x,y,z) denoted in hyper-
complex form as: ¢ = w+xi+yj+ zk where w,x,y,z € R.
The hypercomplex operators follow the rule: i jk = i> = j> =
K =-1.

All quaternions, g € H, can be split into scalar and vec-
tor parts, i.e., ¢ = s+ v where s = w = S[g] is the scalar-part
and v = xi +yj + zk = V|q] is the vector-part. Conjugation
is denoted with an over-bar which negates the vector part
g = s —v. It is usual to represent 3-space vectors as quater-
nions with zero scalar part; this is the set of so-called pure
quaternions which is denoted V[HI.

2.2 Quaternion Projective Space

Full quaternions, those with non-zero scalar part, can also be
used to represent points in homogeneous coordinates. The
quaternion identity

g=s+v=s[l+vs] ()
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illustrates this point. In this form ¢ can be used to represent a
point located at the end of the vector p =v / s from the origin
with weight s. Thus in weighted-point form

qg=s[1+p].

Hence the set of quaternions can be associated with the real
projective space 3. This interpretation was discussed by
Joly [5, pp.263—4] in 1905 and MacFarlane [6, p.35] in 1906.
Under this interpretation, a unit-weight point at the origin
is denoted
g=1[1+0i+0/+0k] =1,

and a weight-less point at infinity in the (x,y,z) direction is
q=[0+xi+yj+zk|

which can be seen by letting s — 0 in equation (1). The re-
sulting pure quaternion can also be viewed as a translation
vector when added to a weighted-point.

3. LINEAR QUATERNION SYSTEMS
3.1 Quaternary Canonical Form

Real linear functions take the monomial form: f(x) = mx,
where x,m € R. Linear combinations, i.e., direct sums or
compositions, of such functions can always be reduced to
this same form. By contrast quaternion linear functions have
the multi-nomial form:

P
flg)="Y mpqn,, )
p=1

where all factors are quaternion valued, ie., g,m,,n, €
H. One would expect under functional compositions that
the number of terms in the summation can become arbi-
trarily large due to quaternion multiplication being non-
commutative. However, Ell [3] showed in 2007 that this gen-
eral multi-nomial can always be reduced to its quaternary
canonical form

flq) =Aq+Bqi+Cqj+Dqgk, (3)

where A, B,C, D € H. Section 3.3 explains how this reduction
may be done.

So, just as a quaternion can be associated with a 4-tuple
of reals as (a,b,c,d) < al +bi+cj+dk, likewise the canon-
ical linear quaternion function can be associated with a 4-
tuple of quaternions as

{A,B,C,D} < Aq+Bqi+Cqj+Dgk.

The four-tuple of quaternions will be used as a shorthand
notation for the canonical form.

3.2 Parallel & Series Combinations

The linear sum of two such functions is given by the
component-wise addition. Le., let

fi(q) =A1q+Biqi+Ciqj+Digk,
f2(q) =A2q+Baqi+Carq j+Dargk

then

f1(q)+ f2(q) = A3q+B3qi+Czq j+D3qk

where
A3 =A1+A;, B3;=B;+B,

C3;=C+C, D3=D;+D;.
The composition of two linear functions, f> (f1 (¢)), is given
by
12 (f1(q)) = Asq+B3qi+C3qj + D3gk

where
A3 =AA1 — ByB) — €y — DaDy,
B3 =A;B| + BA| — D+ DyCy,
C3 =AC1+ByD1 +CGA1 — Dy By,
D3 =AyDy — BCy + By +DoA;.
Careful examination of this composition rule reveals it has

the same structure as the standard quaternion multiplica-
tion. The composition is, of course, not commutative:
£ (fi(q) # f1(f2(q)). This aligns with the fact that geo-
metrical operations do not commute (the composition of two
rotations, for example, gives different results, in general, ac-
cording to the order in which the rotations are carried out).

3.3 Equivalence of Canonic Form and GL4(R)

The equivalence between invertible functions in quaternary
canonic form and the General Linear Group of 4 x 4 invert-
ible real matrices, GL4(R), will be used later. This equiva-
lence is shown in this section. Let p = po + p1i+ p2j+ p3k
and g = qo + q1i + q2j + g3k be two arbitrary quaternions.
Using standard hypercomplex operator product rules, the
components of the quaternion product pg = g, + ¢\ i+ g5 j +
g5k = ¢’ are

40 = Poqo — P1q1 — P242 — P343,
41 = p19o+ poq1 — P32 + P2gs,
4> = p2qo + Pog2 + p3qi — p1g3,
61/3 = P340 + poq3 — p2g91 + P192-

By gathering terms into matrix-vector notation

qg) po —p1 —p2 —p3 q0
9 | _ | P =Pz P q1
a0 P2 P3P0 —Di 9
q3 pP3 —p2 P Po q3

one can define an equivalent matrix-vector form for the
quaternion product. Let [p] and [g] denote the matrix and
vector equivalences, respectively. Since the quaternion prod-
uct is bi-linear, one can instead place the components of p
into the vector and the components of g into the matrix, but
in doing so the lower right 3 x 3 sub-matrix is transposed
from the one given above. Denote this transmuted form of
the matrix as [[g]'. Therefore, any quaternion product has
two equivalent matrix-vector forms

pa < [pllal = [a]"[p].

Hence any triple-product pgr may be arbitrarily re-ordered
in matrix form as

par < [Pl a1 ] = [p] [7] (4]

The linear quaternary equation ¢’ = Aq + Bqi + Cqj + Dqgk
can now be written in matrix-vector form as

() = {1+ BT + [T + DT ). &)
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Now, both a matrix [p] and a transmuted matrix [¢]" contain
only four degrees of freedom; one for each component of
the quaternion. Careful examination of the four terms in the
above matrix equation reveals that these matrices are inde-
pendent, giving the total of sixteen degrees of freedom nec-
essary for an arbitrary matrix. It is straightforward to start
with an arbitrary matrix {r; ;} and solve for the elements of
the four quaternions {A, B,C,D}. For details of this analysis
see [3].

It follows from Equation 4 that any quaternion multi-
nomial of the form given in Equation 2 may be reduced to
the form in Equation 3 since the sum of the terms inside the
braces in Equation 4 may be added across multiple terms in
Equation 2 then solved once to find a single set of coefficients
A,B,C,D. For details, see [3] and for a simple numerical
method see [7].

4. PROJECTIVE GEOMETRIC
TRANSFORMATIONS

4.1 Euclidean, Similarity, Affine & Perspective Trans-
formations

We now discuss the various types of geometrical transforma-
tion possible using a linear quaternion system as presented
in the previous section. We draw here on the classic text of
Bruce Meserve [8] which clearly sets out the possibilities (al-
though not using the quaternion formalism that we use here).

It is important to understand before we discuss the trans-
formations that these are to be applied to signal samples or
image pixels in the space of the samples. These are not trans-
formations to be applied to an image for example, so that
when we talk of rotation, we mean rotation of sample or pixel
values, not rotation of the image about its coordinate or in-
dex system (in the image or focal plane). For example, in
colour image processing, pixel rotation about the grey line
r = g = b changes the hue of a pixel, but not its saturation or
luminance. In vector signal processing, an example is a sig-
nal representing vibration in mutually perpendicular direc-
tions. Each sample contains information at a sampling point
about the amplitudes in each of three perpendicular direc-
tions. We may think of these sample/pixel transformations
as a generalisation of the concept of scaling: in classical
DSP with scalar sample values, the two most fundamental
operations in linear time-invariant systems are scaling of the
sample value by a constant, and delay of the sample value by
an integral number of sample periods (time-shift). Here, with
vector samples, we can obviously scale the samples, but we
can also apply other linear operations to them, such as rota-
tion about an axis, reflection about a plane, and so on. Thus
we generalise the scaling concept to include the full set of
linear geometric operations. This is what we are concerned
with in this section.

Meserve [8, §5-11] presents a hierarchy of geometric
transformations and Figure 1 depicts a simplified set of these
transformations with various subsets.

The most general transformation is projective. The affine
transformations are a subset of the projective transformations
with the property that straight lines are preserved (that is, re-
main straight) under the transformation. Reflection, scaling
and shear are examples of affine transformations. Similar-
ity transformations are a subset of the affine transformations
with the additional property that angles are preserved (thus
geometric figures are transformed to similar geometric fig-
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Figure 1: Hierarchy of transformations.
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Figure 2: Transforms using GL4(R).

ures). Uniform scaling (that is, scaling along all axes by the
same scale factor) has this property. Euclidean transforma-
tions are a subset of the similarity transformations. Transla-
tion and rotation are examples. They preserve angles as well
as straight lines.

Two additional subsets of the affine transformations are
shown in Figure 1 by dotted lines. These ‘cut across’ the
other subsets. The isometries preserve distance between
points. The linear transformations are those that obey su-
perposition. This is usually well understood in the sense of
signal processing — it means that a transformation applied to
a sum of two signals will give the same result as applying the
transformation to the two signals separately, and then sum-
ming the two results. In geometric terms it means we may
decompose a vector or point into the sum of two or more
vectors or points and obtain the same results by transform-
ing the decomposed parts separately as by transforming the
un-decomposed vectors or points.

Now a very significant point is that all the transforma-
tions shown in Figure 1 are linear when expressed in homo-
geneous coordinates, as described in §2.2, even if non-linear
in the 3-dimensional Euclidean space of the signal samples
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or image pixels. (It follows, of course, that the transforma-
tions between homogeneous coordinates and Euclidean co-
ordinates is non-linear.)

The linearity in homogeneous coordinates follows from
the equivalence between linear quaternion systems and the
General Linear Group GL4(R) which we cannot cover in
depth here. However, figure 2 illustrates the concept. This
figure shows how the various transformations are realized
using sub-matrices of a 4 x 4 matrix. There are many text-
books in computer vision and computer graphics that discuss
the use of GL4(R) for projective space transformations. For
example, see Ballard [9, pp. 477—480] or Yamaguchi [10].

5. LQS CONVOLUTION OPERATORS

In this section we explain how linear filters may be con-
structed using linear quaternion systems as the point oper-
ators (i.e. the operators that operate on individual samples
of the signal or image being processed). We are assuming
here linear time-invariant filters (signal processing) or linear
shift-invariant filters (image processing) characterised by a
finite impulse response, or a finite coefficient ‘mask’. Mak-
ing these assumptions, a filter can be represented as a convo-
lution (we assume here a one-dimensional filter for simplicity
— generalisation to two dimensions is simple):

y(n)=Y h(m)x(n—m)=hxx

ﬁ["]z

where h(m) is the impulse response of the filter. In the case
of vector signals and quaternion coefficients, we know from
63 that we need four products in the convolution:

%[ A(m)x(n—m)+B(m)x(n—m)i+
y(n) = Z <C(m)x(n—m)j+D(m)x(n—m)k )
=Axx+Bxxi+Cxxj+Dx*xk

m=1

where by A(m) we mean the m""* sample of A, and by A we

mean a finite quaternion-valued function with N quaternion
samples and similarly for B, C and D. In this way, we think of
the filter as consisting of the sum of four quaternion-valued
convolutions, three of which are multiplied on the right by
the constant values i, j and k.

An alternative, and higher-level view of the filter is to
consider it as the convolution of the signal x with a finite
linear quaternion function F = A + Bi+ Cj + Dk, like this:
y = F xx. Now, at each sample point in F, we have a linear
quaternion function which implements some geometric oper-
ation, and we regard the filter as the convolution of these ge-
ometric operations with the vector signal. This is not simply
a matter of notation, because we can now think of defining
the frequency response of the filter — it would be the Fourier
transform of F'. (We do not know how this may be done!)

Given the preceding discussion, we may now address a
more complex issue: that of filter design. There are two as-
pects to designing a vector filter which make the process non-
trivial. The first problem, which we believe we can address
using the linear quaternion system framework, is to define
the set of possible geometric operations which may be ap-
plied to sample/pixel values. The second problem, which is
more difficult, is to define a suitable impulse response for the
filter in terms of these geometric operations. We can expand

on this by way of an example: edge detectors (used mostly in
image processing) operate by scaling samples either side of
a putative edge in opposite ways so that samples either side
of an edge will add, while those that are part of a smooth
region of signal will cancel. Thus a filter with impulse re-
sponse h(n) = {—1,0,1} will detect sharp transitions in a
signal which occur over three samples. For example, if suc-
cessive samples are a,a + €,a + 2€ (part of a smooth region,
where € is a small change in signal value), then the filter out-
put centred on these three samples will be 2¢ (i.e. small).
If however, successive samples are a,a + 50,a + 100, then
the output of the filter centred on these samples will be 100,
a large value. So, it should be clear that a filter is partially
defined by the shape of its impulse response (the ‘pattern’
of values in the samples of i(n)). A vector filter, however, is
also characterized by the particular arrangement of geometric
operations across the filter impulse response. We can quote
here a specific example by Sangwine in 1998 [1] which had
the pattern of a classic image edge detector (rows of mask
coefficients with opposing sign) but the geometric operation
implemented was rotation, in different senses in the oppos-
ing rows or columns of the filter ‘mask’. It should now be
clear that the range of possibilities is enormous. We can de-
vise patterns to the filter coefficients (the layout of significant
values), and choose for each one a linear quaternion system
of arbitrary geometric effect. We might imagine filters that
twist in the sense that the signal values along the filter im-
pulse response are rotated about some axis, the amount of
rotation varying along the filter. Or perhaps the samples are
stretched in some sense, again varying along the filter, be-
fore being summed to give an output. Thus we might detect
signals with certain characteristics such as polarization in a
specified sense.

We mention one further sublety that increases again the
scope for defining interesting filters. In classical scalar signal
processing, the scaling operation includes the limiting case
where the scale factor is zero, as was mentioned above in the
case of edge detectors. We have discussed the generalization
of the scaling concept to geometric operations, and of course
scaling by zero remains an option. However, a geometric
generalization of this idea is projection of a vector onto a
plane, line, or point. (Projection of a vector onto a point at
the origin achieves the same effect as scaling by zero.) Pro-
jection onto a plane achieves a reduction from 3-dimensions
to 2. Projection onto a line gives a reduction to 1-dimension.
It may be that these operations can be usefully exploited in
designing filters.

6. APPLICATION TO FILTER DESIGN
6.1 Signal or image encoding/decoding

This paper assumes that the signals or images to be pro-
cessed have samples in a 3-dimensional signal space or
colour space. The full power of the approach presented here,
based on linear quaternion systems, requires that the samples
or pixels be encoded into homogeneous coordinates. The en-
coding is a trivial process, since all it requires is a weight
to be assigned to each sample or pixel. This can be done by
arbitrarily assigning a weight of 1 to each sample. When rep-
resented in quaternion form, as described in §2.2, the weight
is represented by the scalar part of the quaternion. So, for
example, to encode an RGB pixel with components (r, g,b)
into a quaternion representation of the equivalent homoge-
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neous coordinates, we simply encode the pixel as
L+ri+gj+bk

The decoding process requires that all the pixels be nor-
malised to the same weight. (The weights may vary as the
result of filtering operations.) Therefore, taking the same ex-
ample, we may have a pixel with value w+ i + g’ j + b'k.
We must divide through by w to obtain

/ / /

.
1+ it 2k
w w w

from which we can then obtain the pixel value

r/ gl b/
(wv e w>
by discarding the scalar part.

6.2 Pre- & Post-Filter Signal/Colour-Space Transforms

So far, we have not mentioned pre-processing or post-
processing of the signals or images to be filtered. It is
common in image processing to transform images from one
colour space to another before processing. Many of these
transformations are linear, and therefore expressible in terms
of point-wise linear quaternion operators. This means that
the transformation in and out of a colour space may be com-
bined with a filtering operation, so that we may define a fil-
ter, say, with RGB input and output images, that nevertheless
operates in effect in a different colour space such as YC,C;.
It is possible in fact to apply translations in this way when
working in homogeneous coordinates, so that offsetting the
samples or removing an offset can also be combined with fil-
tering (for example to convert from unipolar to bipolar sam-

ples).

6.3 Geometric operations

In a paper in 2007 [11], Ell formulated a number of affine
transformations including reflections, rotations, shears and
dilations (radial and axial), in quaternion terms. All of these
operations were expressed using simple quaternion formu-
lae which, not surprisingly, given the theoretical results in
this paper, can be expressed as linear quaternion systems.
Although these operations were designed in Cartesian coor-
dinates (i.e., for vectors), many of them carry over to ho-
mogeneous coordinates without change. For example, ra-
dial dilations are a set of transformations that expand 3-
dimensional space outwards from an invariant line defined
by a unit quaternion y using a scale factor &. The transfor-
mation is represented by

24+«

Dy (p)= )

(04

Pt 5 HUPH

where o@ > 0 expands space, and o < 0 compresses space.
As a simple example of what this transformation achieves,
if applied to an RGB encoded image, with the grey-line r =
g = b as the invariant line, it allows saturation to be increased
or decreased without affecting hue or luminance. It is clear
from the algebraic form of the transformation given above
that it takes the form of Equation 2 and it may therefore be
represented as a linear quaternion system as in Equation 3.

7. CONCLUSIONS

It has been shown in this paper that a very wide range of
vector filters can be developed to operate on signals or im-
ages with samples or pixels in 3-dimensional signal or colour
space. The paper has shown that linear quaternion sys-
tems operating on homogeneous coordinate representations
of the samples or pixels provides a very general linear frame-
work which is capable of representing very general geomet-
ric transformations, including many that are non-linear when
expressed in the original 3-dimensional Euclidean coordi-
nates of the samples or pixels. Thus the theory presented
in this paper opens up a large set of possible filters which
could be developed within a single mathematical framework.
Most importantly, the paper suggests that projective trans-
formations offer a new class of transformations that may be
implemented in a linear framework using homogeneous co-
ordinates.
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