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ABSTRACT

Instead of mapping colour image pixels into Euclidean vectors as
is conventionally done in colour image processing, we present the
idea of using projective space mapping based on homogeneous co-
ordinates. This approach offers a much richer set of geometric op-
erations in the colour space compared to the Euclidean geometry
operations that exist in classical colour spaces. The projective ge-
ometry of points (pixel values) is described and compared to the
classical Euclidean view of pixel values as vectors. The use of ho-
mogeneous coordinates is introduced and the geometric operations
that are possible are outlined. Then it is shown how colour image
pixel values may be transformed into and out of homogeneous coor-
dinates, based on a representation in both cases using quaternions.
We then show some examples of colour image operations that offer
potential for new types of vector filter and we discuss the possibili-
ties.

1. INTRODUCTION

In colour image processing, colour pixels are traditionally treated
as geometric vectors in a Euclidean colour space. Typically, the
three RGB colour directions become the basis vectors of the colour
space (similarly for other colour spaces such as YC,C,). This al-
lows colour image filters to be designed using Euclidean geometry,
and many non-linear and a few linear filters have been designed in
this way. A significant limitation of Euclidean spaces is the lim-
ited number of fundamental geometric operations that are available,
such as rotations, translations, dilatations, reflections. Our previ-
ous work on vector filtering has led us to the conclusion that we
need a greater repertoire of geometric operations and in this pa-
per we present an approach that offers this based on homogeneous
coordinates. Whereas in Cartesian coordinates we are limited to
Euclidean geometry, in homogeneous coordinates we can use pro-
jective geometry and this opens up some new operations that were
not previously available. Crucially, these operations are linear in
the homogeneous coordinates, offering the possibility of linear im-
plementation (for example in the Fourier transform domain) even
though the operation, when related back to the original Cartesian
coordinates, is non-linear. This offers the tantalizing possibility
of interesting new filters which may be implemented linearly, but
which are not confined to the limited set of geometric operations
available in Euclidean geometry. It is worth noting that the limited
set of Euclidean operations are still available to us in homogeneous
coordinates, so they can be combined with the richer set of opera-
tions added by the change in coordinate system. As in our previous
work, we use quaternions as an algebra that permits us to repre-
sent geometric operations as well as vector Fourier transforms and
it turns out that the quaternion algebra provides a very natural way
to handle homogeneous coordinates.

Section 2 provides a brief introduction to the use of quaternions
as a projective space and provides the distinction between points
and vectors as different entities. In §3 a practical method of en-
coding colour images in homogeneous coordinates is given. This is
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followed in §4 by a filter designed in this new framework. A short
discussion and conclusion is given in §5.

2. QUATERNION AND PROJECTIVE SPACE

In this work we use Hamilton’s quaternions in hypercomplex form
as g = w+ix+ jy+ kz, where w,x,y,z € R. The hypercomplex
operators i, j and k follow the rule

ijk=i ==k =-1

Quaternions can be split into scalar and vector parts, i.e., g =
s+ v, where the scalar part s = S[g] = w and the vector part
v=V]q] = ir+ jg+kb. Therefore the set of Euclidean vec-
tors 'V is the set of quaternions which have zero scalar part, i.e.,
V = {q € H| S[g] = 0}. In shorthand notation V = V[H].

One issue with this representation of vectors is that V is not
closed with respect to quaternion multiplication; the product of two
vectors can also result in a scalar or a full quaternion, neither of
which is a vector. This means that quaternion-based vector filters
must be carefully designed to avoid falling outside the vector set.

However, a full quaternion has an alternative interpretation of
representing a point in R? with an assigned weight. We use the
quaternion identity

g=s+v=s[l+p], wherep=vs.

In this form ¢ is used to represent a point at the end of the vector p
from the origin with weight, s. This interpretation was discussed by
Joly [1, pp.263—4] in 1905 and MacFarlane [2, p.35] in 1906'. Let
P ={qeH|S[q] #0} denote the set of all such weighted-points.
Instead of splitting H into scalar and vector parts, we have created
two disjoint subsets: points P and vectors V, i.e.,, H=PUV. In
modern terminology, we have interpreted the quaternion space H as
a real projective space P3.

Under this interpretation, a unit-weight point at the origin is
denoted

q=1[1+i0+ jO+k0] = 1.

The algebra of vectors in V € H and the algebra of (weighted) points
P € H, both described using quaternion algebra, are different in
subtle ways. For example, the direct sum of two vectors, v; and
vy, follows the parallelogram law, whereas the direct sum of two
(weighted) points, p; and p;, follows the principle of center-of-
mass as shown in figure 1. This can be seen in the following equa-
tion
q1+q2=s1(1+p1)+s2(1+p2)
= (s1+s52)[1+ (s1p1+52p2) / (51 +52)].
N——

center—o f—mass

weight

Likewise, scaling a vector v € V by « € R changes its length but
leaves its direction unchanged, whereas scaling a point p € P leaves
its position unchanged but changes its weight since o.g = as[1 + p].

'MacFarlane calls them mass-vectors after Clerk Maxwell. We prefer the
term weighted-points so that points are distinguished from vectors, avoiding
confusion with the vector-part of a quaternion.
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Figure 1: Direct sum of two vectors and two points yield different
results.

The set of vectors is closed with respect to quaternion addition
and subtraction; however, the set of weighted-points is not. For
example, the difference between two equal-weight points, ¢; and
q2, s the weightless point (i.e., the vector) that joins them as

@1 —q2=s[l+p1]—s[1+p]=0+(p1—p2).

Table 1 provides a summary of how various quaternion alge-
braic operations map elements between point and vector subsets.

Quaternion conjugation, denoted with an over-bar, by definition
negates the vector part of a quaternion. Consequentially, conjuga-
tion and negation of a vector are the same, i.e., ¥ = —v. In con-
trast, the conjugate of a weighted-point results in the point’s posi-
tion being reflected across the origin, whereas negation changes the
sign of the point’s weight, but its position remains the same, i.e.,
s[l+p]=s[l—p|# —s[l+p].

Not withstanding these differences, some algebraic combina-
tions behave identically for vectors and points. For example, given
two vectors, v and vy, their linearly weighted sum (verse direct
sum)

va=(1—a)v;+(a)v;

traces a line from v; to v, as & varies from O to 1, i.e., it draws a line
diagonally across the parallelogram defined by v; and v,. Likewise,
given two points, p; and py, their linearly weighted sum

pa=(1=0)[1+pi]+(a) [1+pa] = 1+[(1 - a) p1 + aps]

also traces the same path across the diagonal of the parallelogram
defined by points p; and p;.

Even though points and vectors are disjoint subsets, they share
a common framework when viewed as a projective space. For ex-
ample, a vector can represent a point at infinity along its direction.
This can be seen by allowing the weight s, at a point p = v/s, to
approach zero while keeping the vector-part v fixed so that its posi-
tion increases without limit. Geometrically, all the points at infinity
have been included into a single 3-space model.

The use of homogeneous coordinates is well known in the com-
puter graphics literature where it is used to allow writing of impor-
tant transformations including: rotations, scaling, skewing, transla-
tion, and perspective distortion.

Mapping Projective Space Interpretation

aoV—YV Scales vector length, direction unchanged.
ooP — 7P Scales point weight, position unchanged.
V+V -V Parallelogram law.

P+V—-P Translates point in direction of vector.
P+P—P Principle of center-of-mass.
P—P—=VorP Vifweights are equal.

VoV —=VorP Viffvectors are perpendicular.
PoP—=VorP Viffpi-pp=1

Table 1: Summary of point (P) and vector (V) algebraic mapping
operations. Here ‘o’ denotes quaternion multiplication, -’ denotes
standard vector dot-product, and o € R.

Generally data available for analysis is represented in Cartesian
not homogeneous coordinates. Hence a method of conversion be-
tween coordinate systems is needed. The next section addresses this
issue for color image data.

3. COLOUR IMAGE REPRESENTATION

A pixel at image coordinates (n,m) in an RGB image can be en-
coded as a weighted-point as

Jom =1+irnm~+ jgnm+kbum

where ry ;, is the red component, and gy, and by, are the green
and blue components of the pixel respectively. The only change
between this and previous Euclidean vector methods [3, 4] is the
addition of the unit scalar to each pixel. The choice of a unit scalar
(hence a unit weight) is made to simplify the encoding process,
otherwise the pixel values would need to be scaled by the chosen
weight. The same weight, however, must be used across the entire
image, otherwise the decoding process will not return the original
image. An image encoded in this way is referred to as being in
weighted-point form.

Decoding an image pixel in weighted-point form into colour
pixel values involves simply scaling the vector-part by the scalar-
part to determine its colour-space position as

Pnm = Vv [fn,m}/s [fn,m]

This is a point-wise operation. In this process the weight of each
point is discarded. This is not an issue since the weights were arbi-
trarily assigned during the encoding of the image.

The authors [5] have already noted the advantage of placing the
origin of the RGB colour-space at the center of the colour cube.
These include: all pixels with a common direction from mid-grey
(the origin) have the same hue; a pixel vector represents by its length
and direction how much the pixel differs from mid-grey; and finally,
all directions from the origin represent a colour. All these advan-
tages carry over to pixel points. Therefore images in this work use
a mid-grey origin for the colour space.

4. ILLUSTRATIVE EXAMPLES

In this section we provide concrete examples of filtering operations
applied to colour image processing. But first we start with the ba-
sic projective algebra as applied to whole images to highlight what
appears to be trivial aspects of the shift from Cartesian to homoge-
neous coordinates, when in fact they are not trivial in their effects.

4.1 Sum and Product of two images

All filtering operations consist of algebraic combinations (Eu-
clidean and now projective) of image pixel values. Ideally these
combinations would be related to perceptual properties of colour;
or at the least they should not induce harsh perceptual distortions.
In Cartesian coordinates the direct addition of two pixels follows
the parallelogram law, so it is common for two random coloured
pixels that their sum will fall outside the colour cube and needs to
be clipped to yield a valid colour. Since in homogeneous coordi-
nates the result is governed by the principle of center-of-mass the
addition of any two pixel values will always fall within the colour
cube. This is true since the colour cube is a closed convex shape,
hence the line between any two points is entirely contained in the
colour cube. Figure 2 shows two images (tiffany and sailboat) that
were summed and multiplied in both Cartesian and homogeneous
coordinates. As expected the Cartesian sum shows saturated values
due to the vector sum falling outside the colour cube. A valid colour
is shown after application of the necessary clipping algorithm [5] to
return them to the colour cube. In contrast the homogeneous sum
induces no such behavior. The Cartesian and homogeneous prod-
ucts show the same situation; whereas the Cartesian product is all
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Figure 2: Pixel-wise sum & product of two images (a) & (d) using both Euclidean vector v; and Projective point g; = s;[1 + p;] geometry.

but unrecognizable, the homogeneous product clearly shows both
images?.

4.2 A Projective-Space Colour Filter

The signal block diagram shown in figure 3 will be used to illustrate
some of the colour filtering features possible in projective space.
The filter design is split into three stages: a colour-discrimination
stage D, a spatial filtering stage F', and a colour-response stage R.
The colour discriminator D is designed to isolate a specific
colour feature within the input image. For example it can be used
to detect colour-specific edges such as red-to-green transitions, or
the proportion of the colour in parallel to a specific colour di-
rection. The output of the discriminator is a scalar image, i.e.,
D :H"™™ — R"™™_ The spatial filter stage F applies standard grey-
scale filtering to the discriminator output image dy, , and yields a
blending factor k. It can, for example, be used to smooth or
sharpen the discriminator output. For reasons to be shown later,
the output of this stage is normalized to the £1 range. Finally, the
colour response stage R uses two images and the principal of center-
of-mass to blend these two images proportionally to the value of
knm. One of the images is the original input image, the compan-
ion image defines which directions in colour space the blending
should move the original image. For example, if the companion
image is entirely white, then the blending factor k;, ,, determines
the input pixel’s shift toward white. But, if the companion image

2We acknowledge discussions with David Alleysson in Grenoble during
2005 in which the idea of colour image products was first introduced to us.

is entirely black, then k; ,, determines the input pixels shift toward
black. However, if the companion image is multi-coloured, then
each pixel in the input image is shifted toward its companion pixel.

Figure 4 shows the result of one such projective space colour
filter on the familiar Lena image. The discrimination stage for this
example is designed to identify yellow regions of the image. An
equation which does this is

dpm = % |fn,m — U fnml -2

where i € V[H], || = 1 and points to a colour-of-interest (COI).
What this equation does is project each pixel position in colour
space (as a vector) onto the COI, hence it represents the rela-
tive strength of the COI-component of that pixel. The image of
figure 4(c) shows the discriminator output when u is set using
(R,G,B) = (237,204,164) /255 which is from the yellow band in
the lower right-hand corner of the Lena image. As can be seen
in this figure, the white areas correspond to the yellow regions of
the image. To further simplify this example, no spatial filtering is
applied; hence the blending factor &y, ,, = dy . The final stage is
where the design comes together. The goal is to have all non-yellow
pixels pushed toward mid-grey but leave the yellowish pixels alone.
An equation which does exactly this is

&nm = (1 +kn,m)fn,m + (1 - kn,m)f_n,m7

which is the linear sum of the input image f; ,, and its compan-
ion image f; . As noted at the end of section 2, conjugating a
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Figure 3: 3-Stage Colour-Sensitive Filter Block Diagram.

weighted-point reflects the point across the origin. Since the encod-
ing process places the origin at mid-grey, this means that f;, ,, is the
opponent colour of the original image f;, ;. The opponent colour
image of Lena is shown in figure 4(b). Now, since k, , € [0,+1]
this means the output image moves each pixel which corresponds to
low yellow content (i.e., kK — 0) toward its opponent colour, along a
fixed hue due to the center-of-mass property of the projective space.
But, for pixel values with high yellow content (i.e., kK — 1), the pixel
remains closer to the original value. The results of this process are
shown in figure 4(d). All non-yellow portions are driven toward
mid-grey, but the yellow portions are unchanged.

(C) dn,m = Kn,m

(d) Output, gnm

Figure 4: Projective-space Colour Filter Example #1. This filter is
designed to highlight yellow portions of the input image by driving
all non-yellow pixels toward mid-grey.

Figure 5 shows the same filter applied to the standard peppers
image. Here the filter is used to isolate the red pixels (i.e., the COI
W is setusing (R,G,B) = (1,0,0)). This time a 3 x 3 pixel averaging
filter is used to smooth the discriminator output.

5. DISCUSSION AND CONCLUSION

In this paper we have presented the use of a quaternion based pro-
jective space to represent colour images which gives an alternative
to their representation as Euclidean vectors in RGB colour space. In
projective space, pixel values are represented as weighted-points in
homogeneous coordinates. Familiar equations in homogeneous co-

(C) kn,m

(d) Output, gy,

Figure 5: Projective Colour Filter Example #2. This filter is de-
signed to highlight red portions of the image by driving non-red
pixels to mid-grey. An eight-neighbor averaging filter is applied to
the discriminator output.

ordinates behave subtly different in Cartesian coordinates but these
differences can be exploited. For example, it was shown that the ba-
sic operations of addition and multiplication of weighted-point pix-
els do not have the same perceptual distortions as their Euclidean
vector counterparts.

Also, a non-linear filter was presented to illustrate further these
differences. This simple filter separated input colour discrimination
from output colour response as two distinct stages with the spatial
filtering operations handled by an intermediate grey-scaler filter be-
tween them. This was possible in homogeneous coordinates due to
the principle of center-of-mass and the fact that scaling a singleton
pixel in homogeneous coordinates does not change its colour; only
the relative scaling of two or more pixels alters the resulting colour.

This new representation of pixel values as weighted-points in
homogeneous coordinates extends the repertoire of linear geomet-
ric operations available for image filtering beyond rotations, dila-
tions, and reflections of pixel values in colour-space. It is known,
through fundamental geometric concepts, that linear operations
in homogeneous coordinates include translations and perspective
transforms; neither of which is a linear operation in Cartesian coor-
dinates.
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