
REINFORCEMENT LEARNING-BASED DYNAMIC SCHEDULING FOR THREAT
EVALUATION

Nimrod Lilith and Kutluyıl Doğançay

School of Electrical and Information Engineering
University of South Australia

Mawson Lakes SA 5095
phone: + (61) 8 83023320, fax: + (61) 8 83023384

email: Nimrod.Lilith@unisa.edu.au, k.dogancay@ieee.org

ABSTRACT

A novel reinforcement learning-based sensor scan optimisation
scheme is presented for the purpose of multi-target tracking and
threat evaluation from helicopter platforms. Reinforcement learn-
ing is an unsupervised learning technique that has been shown to be
effective in highly dynamic and noisy environments. The problem
is made suitable for the use of reinforcement learning by its casting
into a “sensor scheduling” framework. An innovative action ex-
ploration policy utilising a Gibbs distribution is shown to improve
agent performance over a more conventional random action selec-
tion policy. The efficiency of the proposed architecture in terms of
the prioritisation of targets is illustrated via simulation examples.

1. INTRODUCTION AND BACKGROUND

Reinforcement learning, also known as neuro-dynamic program-
ming [1], is an optimisation technique that learns the best actions
to take by interacting with the environment [2]. This paper investi-
gates the application of reinforcement learning to a particular sen-
sor scanning problem in helicopter missions. Here the sensor is an
electro-optical vision device on-board a helicopter. The sensor aims
to detect ground targets of different types (such as humans, trucks,
armoured vehicles) in a region of interest by means of scanning that
permits only one small region to be visible at a given time. Based
on mathematical modelling of target movements and target priori-
ties we examine best scanning strategies for the sensor compared
with deterministic round-robin and random scanning patterns.

Many practical problems involving a selection out of several
available options in order to maximise a reward function can be
defined as a multi-armed bandit problem [3]. Dynamic sensor al-
location is one example. Bandwidth limitations for communicating
with several sensors often impose a limit on how many sensors can
be accessed at a given time. Ideally all sensors must be utilised in
order to make the best decision. However, when only a small subset
of sensors can be accessed at a given time, a decision needs to be
made to select the “best” sensors to be employed at the next time in-
stant based on current and previous sensor selections and the reward
associated with them. Thus, the main objective of dynamic sensor
allocation is to maximise a reward function that can be obtained
from a limited number of sensors available by finding an optimal
sequence of sensor selection at discrete time instants. The applica-
tion of the multi-armed bandit approach to sensor scheduling has
been reported in [4]. A weakness of multi-armed bandits is that tar-
gets not selected are assumed to have frozen states. This restrictive
assumption is not necessary for reinforcement learning.

The dynamic sensor allocation problem has numerous applica-
tions in a wide-range of diverse fields such as electronic warfare
and telecommunications. Reinforcement learning provides an on-
line computationally inexpensive solution to dynamic programming
problems that suffer from the curse of dimensionality due to state-
space explosion. What is more, reinforcement learning, unlike dy-
namic programming, assumes no a priori knowledge of the envi-
ronment where it operates. The existing algorithms for dynamic

sensor allocation suffer from the curse of dimensionality [2] and
make restrictive assumptions such as Markovian state transitions.

In this paper we present a novel reinforcement learning-based
dynamic sensor scan optimisation scheme that prioritises individual
targets based upon threat evaluation. The adopted approach exploits
a novel hybrid exploration scheme utilising a Gibbs distribution in
an ε-greedy algorithm. The new algorithm is shown to be capable
of learning in a fully on-line manner without any training. By way
of computer simulations we demonstrate the effectiveness of the
proposed learning architecture.

2. SENSOR SCAN OPTIMISATION

Army helicopters utilise electro-optic sensors to detect and identify
different targets. Two commonly used electro-optic sensors are for-
ward looking IR (FLIR) with a range of 1–6 km range depending
on the terrain and the human eye. The targets of interest are
• humans (smallest);
• light vehicles (small);
• armoured vehicles (large);
• ADUs, i.e., air defence units (largest).

In the present study the terrain effects on target detectability are
largely ignored in an attempt to keep the problem manageable.

A FLIR sensor can operate in one of the following three field of
view specifications at a time:
• pilotage field of view 39◦ ×30◦ (wide field of view);
• medium field of view 6.2◦ ×4.6◦;
• narrow field of view 2.1◦ ×1.6◦.

An additional digital zoom is also available at field of view of 1.1◦×
0.8◦. The field of regard of FLIR is azimuth ±120◦ and elevation
−25◦, +40◦. Targets can be manually locked by the pilot using
FLIR image and automatically tracked by the FLIR system while
within the field of view. It is possible that if the pilot changes the
field of view while tracking a target or targets, automatic tracking
will fail and will have to be reset. In that case the pilot has to detect
the targets again.

High detection accuracy and wide field of view are conflicting
objectives. That is, the narrower field of view the higher detection
accuracy. The general problem of intelligent scheduling of FLIR
sensor for tracking of multiple targets is depicted in Fig. 1. The
research problem addressed in this paper is the scheduling of a nar-
row Field-Of-View (FOV) sensor for tracking multiple targets of
different types using reinforcement learning agents.

3. REINFORCEMENT LEARNING AND
DYNAMIC PROGRAMMING

Reinforcement learning (RL) [2][5], or neuro-dynamic program-
ming (NDP) [1], was originally developed as a way of describing
observations in animal behaviour and may be considered an exten-
sion of dynamic programming [6][7].By describing a problem in
terms of a Markov decision process (MDP), dynamic programming
(DP) techniques may be applied to find an optimal solution. DP

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP



Helicopter 

Pilotage 
FoV 

Med FoV Narrow FoV 

Target 1 
Target 2 Target 3 

Figure 1: Target and field of view scheduling for optimal tracking.

however requires that a complete and accurate model of the envi-
ronment is available, and this may not be the case. RL allows an
agent to learn in an uncertain environment by building up an inter-
nal model of its environment through sample interactions. As its
experience with the environment increases the learning agent may
predict with more confidence which actions will tend to lead to pre-
ferred results.

3.1 Markov Decision Processes

Let us assume we wish an agent to learn an optimal course of
choices to take in a given environment. The environment may be
in one of a finite number of states, s ∈ S, and the agent may take
one action from the set of admissible actions, a ∈ A. As a conse-
quence of taking action a in state s two things occur: firstly, a scalar
reward is received by the agent, r(s,a), taken from a reward distrib-
ution W (s,a), and secondly, the environment moves to a new state,
s′, dependent upon a set of transition probabilities:

Pr(s′ |s,a),

where

∑
s′∈S

Pr(s′ |s,a) = 1.

As the reward received and the transition to the new state s′ are both
dependent only on the previous state s and the action taken a, the
system is ‘memoryless’, i.e., it has the Markovian property, and is
described as a Markov decision process.

The optimality of the agent’s quest for a course of action will be
determined by a maximisation of received rewards, expressed over
an infinite-horizon from time t as:

Rt = rt +
∞

∑
i=1

γ i rt+i, (1)

where γ , 0 < γ < 1, is a discount parameter allowing a bounded
sum over the infinite horizon, and rt denotes the reward received at
time t, dependent on st and at and drawn from the reward function:

rt =W (st ,at). (2)

If the reward generated is stochastic in nature then its expected value
must be used, i.e. rt = E{W (st ,at)}.

3.2 Dynamic Programming

Central to the idea of DP is policy evaluation, i.e. the determination
of the relative value of a given policy. Specifically, the value of

 

ENVIRONMENT AGENT Reward: R(t) 

State: S(t) → S(t+1) 

Action: A(t) 

Figure 2: Reinforcement learning agent.

following a policy π from state s at time t, st , can be evaluated by
the rewards received:

V π (st) = W (st ,π(st))+
∞

∑
i=1

γ iW (st+i,π(st+i)), (3)

where π(st) denotes the action a taken in state st when following
policy π . This may then be expressed recursively:

Vπ (st) =W (st ,π(st)) + ∑
st+1∈S

Pr(st+1 |st ,π(st))γV π(st+1). (4)

By repeatedly sweeping over the entire state-space an agent can
update its estimated policy evaluations via equation (4), with each
complete sweep garnering a more accurate estimation under a sta-
tionary environment. The process of completely updating the values
of policies based upon all subsequent states is termed full backup.

The ability to evaluate policies enables the search for an optimal
policy. The value of following the optimal policy, π∗, from state s
can be expressed as the value of taking the optimal action in state s
and thereafter following π∗, that is:

V ∗(s) = max
a∈A

(W (s,a)+ ∑
s′∈S

Pr(s′ |s,a)γV ∗(s′) ) for all s ∈ S,

(5)
with the optimal policy itself being:

π∗(s) = max
a∈A

(W (s,a)+ ∑
s′∈S

Pr(s′ |s,a)γV ∗(s′) ). (6)

Equation (5), known as the Bellman optimality equation, allows
an agent to find an optimal policy. If the value of first taking action
a in state s and then following policy π is greater than strictly fol-
lowing policy π from state s, i.e., if

r(s,a)+ γV π(s′) > Vπ (s), (7)

then an improvement over policy π has been found. A policy that
cannot be improved upon is an optimal policy, the existence of
which is guaranteed for a discounted infinite-horizon system [8].

3.3 Reinforcement Learning

3.3.1 Introduction to Reinforcement Learning

Whilst DP is a powerful tool for solving problems characterised by
MDPs, it assumes perfect knowledge of the environment. This may
not be a realistic assumption in certain cases. RL deals with unavail-
ability of a perfect environment model by gradually taking samples
from an environment through interactions with it, over time building
up approximations of both the reward and transition probabilities of
the system. An imperfect environment model may be sufficient for
the development of a usable sub-optimal solution.

Fig. 2 shows a simple RL scheme. The environment can be
characterised by the configuration or values of a certain number of
its features, which is called its state, denoted by S(t) at time t in
Fig. 2. Each state has an intrinsic value, dependent upon a certain

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP



immediate reward or cost, denoted by R(t) at time t, which is gener-
ated when it is entered. At each discrete moment in time the agent
may take one of a number of possible actions, A(t), which affects
the next state of the system, S(t + 1), and therefore the next re-
ward/cost experienced, according to certain transition probabilities.

The agent’s choice of action, given the current state of the sys-
tem, is modified by experience, i.e., it uses its past experience of
action taken in a certain system state and reward/cost experienced
to update its decision making process for future actions. A policy
of actions to be taken given particular system states is developed
over time by the agent as it interacts with the environment. Alter-
native policies are evaluated in terms of the reward function. Each
state is associated with a value function which is an approximation
of the future rewards that may be expected starting from that par-
ticular state if an optimal policy was adhered to. As exploration of
the problem by the learning agent proceeds, the values associated
with particular states may be modified to be closer to the value of
the state that preceded it.

3.3.2 How Reinforcement Learning Agents Learn

Let us assume a problem readily described by a MDP, but a per-
fect model of the environment is not available to the agent, i.e.,
neither the transition probabilities, Pr(s′ |s,a), nor the reward func-
tion, W (st ,at), are known. Furthermore, suppose that the reward
function is stochastic in nature due to environment noise. If each
possible environment state is sampled infinitely often with records
kept of rewards garnered and state transitions experienced, then a
model can be built of the environment provided it remains station-
ary. Specifically, the estimated value of a given state s at time t,
assuming the agent takes its current estimated optimal action, may
be evaluated by a sample backup as:

Vt+1(s) =Vt(s)+α(rt + γVt(s′)−Vt (s)), (8)

where α, 0 < α ≤ 1, is a learning rate parameter, often set to 1/x
where x represents the number of times state s has been visited,
and s′ and a′ are the next state visited and action taken respectively.
If an environment is expected to be non-stationary α may be held
constant in order to provide a tracking ability. This procedure of
equation (8) allows an agent to update its estimated value by the
difference between what it was expecting to receive and what it ac-
tually did, rt + γVt(s′)−Vt(s), by making backups based upon sam-
ple interactions with the environment (albeit bootstrapping by using
its current estimate of the next state encountered). This method of
updating is termed temporal difference learning, with equation (8)
being the update method used for Sutton’s TD(0) algorithm [9].

The value of taking specific actions in a given state, i.e., the
value of a given state-action pair, may also be estimated by extend-
ing equation (8). Assuming Qt(s,a) represents the learning agent’s
estimate at time t of the value of taking action a in state s then
Qt+1(s,a) may be updated by:

Qt+1(s,a) = Qt(s,a)+α(rt + γQt(s′,a′)−Qt (s,a)), (9)

for the SARSA algorithm [2]. SARSA converges to an optimal pol-
icy with probability 1 if all admissible state-action pairs are visited
infinitely often and its policy converges to a greedy policy, given
certain assumptions. This can be achieved for example by using an
ε-greedy policy with ε → 0 as t → ∞ for both the estimation of the
value of the next state-action pair and the decision of action to take
at time t.

A process of updating the state-action value estimates for
SARSA proceeds as follows. After initialisation, the agent retrieves
its current action-value estimate of the previous state-action pair to
occur and the current state-action pair, and the reward obtained im-
mediately after the previous state-action pair was enacted. These
three values are used along with the learning rate and discount pa-
rameters to update the agent’s estimate of the previous state-action
pair, as per equation (9). The current state-action pair is then stored
as the previous state-action pair, and the reward obtained after its

enactment is stored as the reward to be used in the next update pro-
cedure.

4. TARGET MODEL

The target movements are modelled as first-order discrete-time
Markov processes. If target i is at location si(t) = [xi(t),yi(t)]T at
discrete time t ∈ Z

+, it will be at si(t +1) = si(t)+δ at time t +1
with probability pi j(t) = P(si(t +1)|si(t)), j = 0,1, . . . ,4 where

pi0(t) = P(δ = 0) (target stationary)

pi1(t) = P(δ = [0,δy]T ) (move up)

pi2(t) = P(δ = [0,−δy]T ) (move down)

pi3(t) = P(δ = [δx,0]T ) (move right)

pi4(t) = P(δ = [−δx,0]T ) (move left).

Here T denotes matrix/vector transpose. For target i, the transition
probabilities at time t, pi j(t), are represented by the vector pi(t):

pi(t) = [pi0(t), . . . , pi4(t)]T . (10)

The Markov processes are stochastic, i.e. ∑4
j=0 pi j(t) = 1 ∀i.

In general each target has a unique transition probability vector.
The transition probabilities are unknown by the helicopter. Thus
part of the challenge in sensor scheduling is implicitly to estimate
these probabilities by way of exploring. Any target that is scanned
by the sensor on-board the helicopter has a probability, π,0≤ π ≤ 1,
of being destroyed immediately after scanning. This results in envi-
ronment state transitions that have a dependence on actions taken.

Fig. 3 shows an example plot of target evolutions over 200
timesteps taken from a simulation run for nine targets with random
transition probability vectors p1(t), . . . , p9(t) where

pi j(t) =
xi j

∑4
k=0 xik

, 0 ≤ j ≤ 4, 1 ≤ i ≤ 9, ∀t (11)

and xi j is a uniformly distributed random variable over the unit in-
terval [0,1).

The field of view is assumed to be a rectangular grid with 251
points along both the x-axis and y-axis, with the x-axis ranging from
−500 to 500 m and the y-axis from 0 to 1000 m. Targets that would
move off the grid due to movement in a particular direction instead
remain on the grid by being stationary. The helicopter is at the
origin of the local coordinate system.

−500 −400 −300 −200 −100 0 100 200 300 400 500
0

100

200

300

400

500

600

700

800

900

1000

Metres

M
et

re
s

Figure 3: Simulated movements for nine targets.

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP



5. RL SENSOR SCHEDULING

An RL based sensor scan optimisation scheme is proposed which
adaptively chooses which of a number of available targets to scan
at a given time instant. Each target i has an associated type,
yi ∈ {1,2,3,4}, representing the threat priority of the target, i.e. a
target with a threat priority of 1 is considered more dangerous than
a target with a threat priority of 4, all other factors being equal. It is
considered that the most desirable target to scan is the target which
currently poses the highest threat to the helicopter. In this paper,
we consider that the threat level of a target is a combination of the
distance from the target to the helicopter and the threat priority of
the target.

The transition probabilities of targets are drawn from a random
distribution. Targets are also given a bias to move towards the heli-
copter by setting:

{pi1(t), pi2(t)} =
{{pi2(t), pi1(t)}, if pi1(t) > pi2(t),
{pi1(t), pi2(t)}, otherwise.

(12)

This formulation results in targets tending to move away from their
original locations over time.

The reward obtained by the learning agent when scanning a
target, denoted as ct , is based upon the Euclidean distance of the
scanned target from the helicopter and the target threat priority. Fur-
thermore, this value is assumed to be noisy:

ct = dit yi +σ0 g
√

dit , (13)

where dit represents the Euclidean distance of target i at time t from
the helicopter, yi represents the scanned target’s threat priority, σ0 is
a noise scaling factor, and g represents an additive Gaussian noise.

As the reward is partially based upon target distance, scanning
the closer of two targets of the same threat priority will result in
a lower reward in a noise-free environment. This allows the re-
formulation of the problem from a reward-maximisation to a cost-
minimisation, i.e. the action with the minimum estimated cost asso-
ciated with it is chosen in the case of a greedy action selection.

The update rule for the learning agent is:

Qt+1(a) = Qt(a)+α(ct + γQt(a′)−Qt(a)), (14)

where a represents the target chosen to be scanned at time t, and ct
represents the reward obtained at time t given action a. By removing
any state component from the agent’s action value estimation it is
envisaged that the learning agent may be better able to rapidly learn
optimal policies in a highly dynamic environment. A target that is
destroyed is replaced by a new target on the grid, with a new random
location and movement probabilities and a Qt value of 0.

6. SIMULATION STUDIES

The proposed RL-based sensor scan optimisation scheme was eval-
uated via a number of computer simulations. The computer simula-
tion environment consisted of a two-dimensional grid featuring 251
possible positions along each dimension. Nine mobile targets were
simulated, with movements according to the scheme described in
Section 4.

The RL-based scheme was compared with a round-robin
scheme that chose available targets sequentially according to their
target number, and a random scheme that chose targets randomly
with equal probability. The distances of each unscanned target were
unknown to the helicopter, thus it could only receive up-to-date yet
noisy distance information of a given target by actively scanning it.
Each trial was conducted for 1,000 timesteps, and the results of 100
trials were averaged and evaluated.

For the purposes of evaluation, at each action an instantaneous
cost was incurred, equal to the true distance of the target scanned
multiplied by the target threat priority. Therefore, an optimal policy,
i.e. one with a minimum total cost, would scan the highest threat

5 10 15 20 25 30 35 40 45 50

2

4

6

8

Timestep

T
ar

ge
t S

ca
nn

ed

5 10 15 20 25 30 35 40 45 50

2

4

6

8

Timestep

T
ar

ge
t S

ca
nn

ed

Figure 4: Comparison of uniform random and Gibbs exploratory
action selection.

target at every time step. Given that the evolving movement of un-
scanned targets is unavailable to the helicopter, repeatedly choosing
the initially closest target and never scanning other targets cannot be
guaranteed to result in an optimal policy. Also, given the learning
agent only has access to “noisy” distance measurements, repeated
scanning of a stationary target over time will tend to give a more
accurate measure of its true distance.

A ε-greedy action selection policy was implemented, where a
greedy action was selected with a probability of 1−ε . In the case of
a non-greedy action, a Gibbs distribution was used to select which
exploratory action to take as follows:

at =
e−Qt (a)/τ

∑i
b=1 e−Qt (b)/τ , (15)

for i targets, with the temperature parameter τ held constant at 1/ε .
This results in the agent selecting lower cost non-greedy actions
with a higher probability than higher cost non-greedy actions. The
motivation for this implementation is to achieve a reduction in the
cost of exploratory behaviour, at the expense of an even exploration
policy. Given that as τ → 0 action selections are skewed towards
greediness, it was decided to make the temperature inversely pro-
portional to ε due to the fact that for lower ε exploratory actions
should be less greedy than for higher ε . The rationale being, that
for lower ε exploratory actions are taken less frequently, thus they
should be more likely to choose previously high-cost actions, lest
those actions not be sufficiently explored. Additionally, by setting
the temperature to a function of ε only one exploration parameter
needs to be chosen. Lastly, the temperature was chosen to remain
stationary as the environment is dynamic in terms of target move-
ment and presence and thus it cannot be conjectured that the agent’s
value estimates will converge to their true values. An illustration of
the behaviour of the exploration scheme can be seen in Fig. 4, which
shows a comparison between exploration using a uniform random
distribution for exploratory action selection (upper plot) and util-
ising the Gibbs distribution for non-greedy action selection (lower
plot) for ε = 1. This scheme is innovative in that it is conventional
to use a Gibbs or Boltzmann distribution for all action selections in
a softmax action selection architecture [2], not only for exploratory
actions. This design allows a leveraging of the exploration parame-
ter ε , and its constancy due to the dynamic nature of environment,
to provide a lower-cost exploration policy without the need to se-
lect and maintain an additional agent parameter. To the best of our
knowledge, this is the first time this particular type of exploration
scheme has been used.

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP



0 100 200 300 400 500 600 700 800 900 1000
400

600

800

1000

1200

1400

1600

1800

Observations

C
os

t

 

 
Uniform Exploration (σ

0
=1)

Gibbs Exploration (σ
0
=1)

Gibbs Exploration (σ
0
=20)

Figure 5: Sensor cost for Uniform Random and Gibbs exploration,
for σ0 = 1 and σ0 = 20.

It can be noticed in Fig. 4 that the uniform random action se-
lection (upper subplot) does not obviously favour a subset of the
available actions, whilst the Gibbs action selection (lower subplot)
favours scanning targets 4 and 5. By favouring low-cost exploratory
actions not only can the cost of exploration be reduced, but actions
which may be on the threshold of becoming optimal are likely to
be more often explored, thereby possibly leading to a greater ability
for the agent to track optimal actions throughout the scenario.

The Q values of all actions were initiated to 0 to encourage early
exploration, as greedy action selection favours minimally-valued
actions. The learning rate parameter, α , was set to 0.9, and the ex-
ploration and discount parameters, ε and γ respectively, were both
set to 0.1. The probability of a target being destroyed immediately
after being scanned, π , was set to 0.1.

The true costs of the simulated sensor scan scheduling schemes
for 100 trials of 1,000 timesteps each is shown in Fig. 5. At each
time step the mean cost of all previous scan actions is calculated,
and then averaged for all trials. As can be seen, the Gibbs ex-
ploratory action selection results in a much lower cost after the ini-
tial phase of the scenarios for a noise factor of σ0 = 1. Furthermore,
even with a higher noise factor of σ0 = 20, the Gibbs non-greedy ac-
tion selection scheme still out-performs the uniform random action
selection scheme with a noise factor of σ0 = 1. Therefore, the ben-
efit of the Gibbs exploratory action scheme significantly outweighs
the overhead of much noisier data.

Next the RL-based sensor scan scheduling architecture was
compared to random target selection round-robin schemes, as
shown in Fig. 6. It may be seen in the figure that the costs of em-
ploying either a random target selection scheme (labelled ‘RAND’)
or a round-robin scheme (labelled ‘RR’) are comparable. This is
to be expected as neither scheme takes neither target distance nor
type into account and over time the random scheme is expected to
scan each available target similar number of times due to its action
choice being drawn from a uniformly distributed random function.
The RL-based sensor scan optimisation scheme exhibits a much
lower cost over the vast majority of the time period for a noise fac-
tor σ0 = 1 once the agent has learnt which targets pose the highest
threat levels. Furthermore, even for a large noise factor (σ0 = 20)
the learning agent is readily able to determine a lower-cost scan-
ning policy based upon target threat levels. This shows the learning
agent has an appreciable robustness to noise, by sampling the po-
tential targets a number of times it gains a more accurate estimation
of each target’s true threat level. It should be pointed out that the
learning agent learns its policy in a fully on-line manner, i.e. there
is no initial off-line learning period. The lack of an off-line training
period manifests two benefits: the learning agent learns indepen-

0 100 200 300 400 500 600 700 800 900 1000
400

600

800

1000

1200

1400

1600

1800

Observations

C
os

t

 

 
Cost − Rand
Cost − RR
Cost − RL (σ

0
=1)

Cost − RL (σ
0
=20)

Figure 6: Sensor cost for Round Robin, Random, and RL for σ0 = 1
and σ0 = 20.

dent of any training data and thus is unaffected by any inaccuracy
that training data may possess, and the learning agent is able to track
action value estimates and therefore adjust its policies in a dynamic
environment.

7. CONCLUSION

A novel RL-based dynamic sensor scan optimisation scheme has
been presented in this paper that prioritises individual targets based
upon an ongoing estimate of their threat level. The presented RL ar-
chitecture is designed to learn in a fully on-line manner, i.e. without
any off-line training period, and to be able to formulate an optimal
or near-optimal policy in a highly dynamic environment using only
‘noisy’ data. The proposed scheme has been shown via extensive
computer simulations to result in a greatly reduced sensor cost when
compared to round robin and random target selection schemes, and
to exhibit an appreciable robustness to noisy data measurements. It
has also been shown that an innovative exploration policy utilising
a Gibbs distribution to select non-greedy actions was able to im-
prove performance when compared to a more conventional scheme
of selecting exploratory actions via a uniform random distribution.

REFERENCES

[1] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Program-
ming. Belmont, MA: Athena Scientific, 1996.

[2] R. S. Sutton and A. G. Barto, Reinforcement Learning: An In-
troduction. Cambridge, MA: MIT Press, 1999.

[3] D. E. Goldberg, Genetic algorithms in search, optimization,
and machine learning. Reading, MA: Addison-Wesley, 1989.

[4] V. Krishnamurthy and R. J. Evans, “Hidden Markov model mul-
tiarm bandits: a methodology for beam scheduling in multitar-
get tracking,” IEEE Trans. Signal Processing, vol. 49, no. 12,
pp. 2893–2908, December 2001.

[5] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforce-
ment learning: A survey,” Journal of Artificial Intelligence Re-
search, vol. 4, pp. 237–285, 1996.

[6] D. P. Bertsekas, Dynamic Programming and Optimal Control.
Belmont, MA: Athena Scientific, 1995, vol. 1.

[7] ——, Dynamic Programming and Optimal Control. Belmont,
MA: Athena Scientific, 1995, vol. 2.

[8] R. E. Bellman, Dynamic Programming. Princeton, NJ: Prince-
ton University Press, 1957.

[9] R. S. Sutton, “Learning to predict by the methods of temporal
differences,” Machine Learning, vol. 3, pp. 9–44, 1988.

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP


