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ABSTRACT

In this paper, we propose a robust channel estimator for fast
time-varying channels. For this technique, a basis expan-
sion model (BEM) is used in order to approximate the time-
variant channel. Pilot symbol assisted modulation (PSAM)
is employed as the training scheme, and the coefficients of
the BEM are obtained via the matching pursuit (MP) algo-
rithm. Through computer simulations, it is demonstrated that
MP is able to offer a reliable channel estimate even when it
selects an inappropriate number of basis functions, whilst it
was previously reported that more basis functions than nec-
essary could cause performance degradation by enhancing
the noise. Thus, MP is robust with respect to mismatch in
the number of basis functions in the BEM. Furthermore, the
simulation results show that MP can operate well even with-
out knowledge of the Signal-to-Noise Ratio (SNR).

1. INTRODUCTION

In wireless communication systems, the high mobility of ter-
minals or the carrier frequency offset between transmitter
and receiver gives rise to a fast time-varying channel. For
this channel having a high Doppler frequency, a basis expan-
sion model (BEM) [1] has been widely used to approximate
it. The coefficients of the BEM could be obtained by the least
squares (LS) algorithm when pilot symbol assisted modula-
tion (PSAM) [2] is employed for the time-multiplexed train-
ing [3]. However, such a channel characterization scheme
has been reported to be sensitive to noise, which, when it is
high, results in performance degradation [4].

Both Zemen et al. and Tang et al. have realized this prob-
lem, and suggested their solutions individually. The first pro-
duced the optimal number of basis functions in the BEM,
i.e. the optimum model order, via mathematical analysis [5],
whilst the latter proposed the optimal training pattern, which
is the appropriate pilot positions of PSAM in the time do-
main [6]. But, both solutions have their own problems when
applied in practical situations.

Concerning the first solution, the optimal model order
highly depends on the instant Signal-to-Noise Ratio (SNR)
of a single transmission block [5]. For the fast time-varying
channel, the instantaneous value of the SNR for a block is
hard to accurately estimate, and shifts considerably from
block to block. Hence, it is difficult to exactly determine
the proper number of basis functions for any specific block.
As a consequence, the slight mismatch of the number of ba-
sis functions would cause a performance degradation of the
channel estimation. With respect to the second solution, the
pilots in the optimal training pattern are no longer uniformly
distributed and equispaced [6]. For PSAM, however, the pe-

riodic and uniform placement of the pilots is the preferred
training pattern as stated in [7].

In this paper, we propose a channel estimator which is
robust to mismatches in the number of basis functions in
the BEM for fast time-varying channels. In other words,
the technique is non-sensitive to noise when employing more
basis functions than necessary at a high Doppler frequency,
say for instance the normalized Doppler frequency to be
faTy = 0.05. Moreover, the proposed channel estimation
scheme can still provide a reliable estimate without knowl-
edge of the SNR. This scheme consists of the channel model
and the estimation algorithm. The model exploits the con-
cept of BEM, and the basis is discrete Karhunen-Lo¢ve BEM
(DKL-BEM) [8, 9], which is the discrete Karhunen-Loeve
decomposition of the bathtub-shaped Doppler power spec-
trum, i.e. Jakes Doppler spectrum. The matching pursuit
(MP) algorithm [10] is used to produce the coefficients of
the basis functions. Due to the orthogonality of the DKL-
BEM, MP has good convergence performance and does not
need to re-select the basis functions as in [11]. For PSAM,
the pilots are uniformly placed in the time domain.

The MP technique has been applied to produce the coef-
ficients of the basis functions in [11]. However, its channel
estimator is quite different from ours. Firstly, the previous
study used the polynomial basis, which has been shown to be
outperformed by DKL-BEM at high Doppler frequencies [8],
while the proposed scheme employs DKL-BEM. Secondly,
its pilot placement, which clusters at the center and each end
of the block, is entirely different from ours, which arranges
the pilots evenly throughout the block. Thirdly, its normal-
ized Doppler frequency, which is f;7; = 0.0008, is very low
compared with the value used here.

The DKL-BEM is optimal for the wireless channel of
a bathtub-shaped Doppler power spectrum, and the discrete
prolate spheroidal BEM (DPS-BEM) is optimal for that of a
rectangular power spectrum [9]. Hence, the proposed chan-
nel estimator could be simply extended to the DPS-BEM
case. Furthermore, this technique based on a flat-fading
channel could be easily extended to the orthogonal frequency
division multiplexing (OFDM) case, since OFDM can be
viewed as several parallel flat-fading channels in the fre-
quency domain.

2. PROBLEM FORMULATION

We consider a baseband-equivalent discrete-time representa-
tion of a wireless communication system over a flat-fading
channel with a single transmit and receive antenna. The re-
ceived signal sample y(n) at time n could be formulated as

y(n) = s(n) h(n) +n(n) (D
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Figure 1: Example of the training pattern P = {2,7,12,17}
defined by (2) for N =20 and J = 4.

where s(n), h(n), and 1(n) denotes the transmitted symbol,
the channel impulse response, and the complex zero-mean
Gaussian noise with variance G%, respectively, at time in-
stance n. Let us also define f; as the maximum Doppler
frequency of the channel, 75 as the symbol duration, N as
the number of the symbols in a transmission block, J as the
number of pilots within a block. Thus, there are N—J data
symbols in a block.

In this study, the pilots of the PSAM are uniformly dis-
tributed throughout the transmission block, which is speci-
fied by the index set

N N
P:HijJrﬂJUe{o,...,J—l}} 2)

Fig. 1 shows an example for the pilot placement defined in

@.

2.1 Basis Expansion Model

Recently, the BEM technique has been widely used to ap-
proximate the time-varying channel since it is able to trans-
late a time-varying sequence into a few constant coefficients
with the aid of basis functions.

ho(n) = Y caqaln) 3)
d=0

where /. (n) is the time-variant sequence; ¢, and g4(n) rep-
resents the d-th constant coefficient and basis function at time
n, respectively.
. . D—1 .
By truncating /e(n) into h(n) = Y.;- c4qa(n) and in-
serting it into (1):

y(n) =

D-1
s(n) { Y ca qaz(n)} +n(n)
d=0

D—1
Y s(n)caqa(n)+n(n) )
d=0

Hence, the transmission over the entire block can be rep-
resented in the form of the matrix as

y = Sh+n
= SQc+n 5

where y = [y(0),y(1),---,y(N—1)]" is the N x 1 vector con-
sisting of the received symbols; S is the N x N diagonal
matrix with [s(0),s(1),---,s(N—1)] as its diagonal; h =
[h(0),h(1),--- ,A(N—1)]" is the vector of the channel im-
pulse response; 1 is the N x 1 vector of the noise; Q is the
N x D matrix of the basis functions, with Q being:

90(0) 71(0) gp-1(0)
_ qo(1) q1(1) gp-1(1)
QO(I\"—l) 611(1\"—1) ‘ID—I(N_I)

and ¢ = [cg, ¢, ,Cp ]T is the D x 1 vector of the constant
coefficients in the BEM.

In this study, the basis function in Q is the DKL-BEM
[9], which is the discrete Karhunen-Loeve (DKL) decompo-
sition of the bathtub-shaped Doppler power spectrum. The
total number of necessary basis functions is determined by
D =[2N f;T;] + 1, and doubling it would be beneficial [3].

With the help of the BEM, the channel impulse response
has been expanded into a sum of basis functions, i. e. h =
Qc. And (5) can be further developed to

y=Gc+n (6)

where G is the product of the transmitted symbols and the
basis functions, defined as G = S Q.

At this point, the channel characterization problem has
been converted to the identification of the coefficients in
BEM, i.e. the estimation of c, if y and G are known. In
order to obtain parameters c, one of the possible solutions is
to use PSAM.

2.2 Subsampled at the Pilot Position

According to PSAM, the transmitted pilot symbols are per-
fectly known at the receiver. So, all the matrices in (5) and
(6) can be subsampled at the pilot positions.

Yo = Sphy+mp
= S5pQpc+mp
= Gpc+np @)

where y, = [y(po),¥(p1)," y(ps_1)]” is the J x 1 vector
collecting the received symbols at the pilot position; S is the
J x J diagonal matrix with [s(po),s(p1),- - ,s(ps—1)] as its di-
agonal; h = [A(po),h(p1),--- ,h(ps_1)]" is the J x 1 vector of
the channel impulse response at the pilot structure; 17,, Qp,
and G, are the subsampled version of 7, Q, andG, respec-
tively, according to the training pattern.

It is interesting to notice that the coefficient vector c is
not affected by the subsampling of the transmission block.
At this moment, if the constant parameters ¢ could be accu-
rately determined by some method, the entire channel state
information h would be reproduced successfully. In contrast
to the work in [4,5,9], where the LS algorithm is used for the
estimation of c, here the MP algorithm is adopted. Finally,
the estimated coefficients ¢ along with the basis functions
serve to recover the channel impulse response h by

h=Qe ®

Since the coefficient vector ¢ might be sparse having
some very small quantities, it is not necessary to estimate all
the entries accurately. In contrast, to identify and estimate the
significant elements, which provide the predominant contri-
bution to the channel state information, in the vector ¢, would
be a reasonable idea.

3. MATCHING PURSUIT

The basic MP algorithm was first proposed in [10]. Its goal is
to approximate the observation signal via a linear combina-
tion of the elements over a large redundant dictionary. These
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elements are selected one after another according to which
one best matches the signal structure at each iteration.

yp = G’pé ©)

where Gp =[g,[0],8p[1],- - ,8p[D—1]] is the dictionary, and
goli] = [5(po)qi(po),5(p1)gi(p1), -+ -5(Ps—1)qi(ps—1)]" is the
element.

Let the residual of the observation vector after the m-th
iteration be represented by yp(’”), with yp(o) = yp. The in-
dices of the m selected vectors are stored in the index set
Kin = [k],kz, e ,km].

At the m-th iteration, the MP algorithm selects k,, by
finding the candidate vector which is best aligned with the
residual yp('""), as well as having the longest projection of

yp "), that is

2
), goll]))|

[ENGIR

Consequently, the corresponding coefficient is produced
by

Hyp

km = argmlax , where [ ¢ K, (10)

(m—1)
&, = <Yp agp[km” (11

ng[km]||2

In our case, the MP algorithm has been modified in order
to guarantee that the picked elements are never re-selected
and that the produced coefficients are never re-estimated.
This is because the elements are approximately orthogonal,
and the modification can speed up the convergence and avoid
the re-selection problem. In order to do so, the index of the
selected vectors, after being stored in K,,,, are removed from
the redundant dictionary. As a result, at each iteration a new
vector is picked up. A similar modification has been adopted
in [11].

The residual vector yp(’”) is then updated by

(m) = yp(m_l) - ékm gp [km] (12)

In our study, the process terminates when m is larger than
the given maximum iteration, N,, i.e. the number of identi-
fied basis functions also known as the model order. Further-
more, there is no necessity for the usual stopping criterion
associated with MP, because the total number of basis func-
tions can be approximately determined by the Doppler power
spectrum [3].

Yp

4. SIMULATION STUDY

In this section, the proposed channel estimator is compared
with the LS technique in terms of the estimation accuracy,
i.e. mean square error (MSE),

1 N—1 . )
MSE = N’;)Vz(n)fh(nﬂ (13)

as well as the bit error rate (BER) when PSAM is employed.
In PSAM, the estimated channel is used to scale and rotate
the decision boundary in order to detect the data symbols [2].
The comparison is conducted under the condition that the
BEM of both MP and LS is given the same number of basis
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Figure 2: MSE vs N, under the different SNR, when MP is
used.
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Figure 3: BER vs N, under the different SNR, when MP is
used.

functions, N,. However, the MP and LS may select indi-
vidual basis functions differently, because the MP adaptively
selects N, significant basis from the dictionary of D basis
functions according to their individual projection contribu-
tion, while the LS uses the fixed N, basis which have the first
N, largest eigenvalues in the DKL-BEM.

The modulation scheme used is quadrature phase shift
keying (QPSK), and SNR = 1/ GTZI. The block consists of
80 data symbols and 20 pilot symbols, which are uniformly
placed according to (2). The normalized maximum Doppler
frequency of the flat-fading channel is f;T; = 0.05. As far as
the BEM is concerned, the total number of basis functions is
[2N f; T;] + 1 = 11, and it would be beneficial to double the
total number of the candidate basis so as to obtain a more pre-
cise approximation. Hence, D =2 [2N f; T;] + 1 = 21 basis
are employed in this paper. In order to prevent (7) from being
underdetermined, N, varies from 1 to 20 since there are only
20 pilots. The stochastic channel for the simulations is gen-
erated based on the classical Jakes Doppler spectrum. The
simulation results are averaged over 10° transmission blocks.
Moreover, we assume that the receiver side has the perfect
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Figure 4: MSE vs N, under the different SNR, when LS is
used.
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Figure 5: BER vs N, under the different SNR, when LS is
used.

knowledge of the actual normalized Doppler frequency.

Fig. 2 shows the performance of MP with respect to the
model order, N,, under different SNRs in terms of MSE. The
label “noise-free” means noise is not present, i.e. 02 =0.1It
is observed that, as more basis functions are selecteg by MP,
the performance of the channel estimator improves and then,
after a turning point, it levels out. Furthermore, it is noticed
that the performance is always convergent as the model or-
der increases, even for different SNRs. The corresponding
BER performance has a similar behaviour as it can be seen
in Fig. 3. In Fig. 4, the MSE performance of LS against N, is
shown. We observe that in the LS case the performance does
not stay at any level even though there exists a turning point
as well. Before the turning point the performance becomes
better, and afterwards it gets worse. Thus, the performance
of the LS technique is affected by the model order, and it
is sensitive to the order mismatch. In other words, when the
number of basis functions is different from the optimal model
order, which is the N, at the turning point, the performance
degrades. The specific value of the optimal model order is
dependent on the SNR, as reported in [5]. For example, as

107 H - * -MP,SNR =30dB T
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Figure 6: MSE vs N,. The performance comparison between
MP and LS for SNR = 30dB and noise-free case.
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Figure 7: BER vs N,. The performance comparison between
MP and LS for SNR = 30dB and noise-free case.

seen in Fig. 4, when SNR = 30dB, the optimal model order
is 14, and when SNR = 20dB, the optimal model order is 13.
As shown in Fig. 5 the performance in terms of BER behaves
similarly to that in terms of MSE.

To aid comparison, the performance of MP and LS is pre-
sented together in a single figure as Fig. 6. For the noise-
free case, the LS performance always decreases, while for
the MP it goes down initially but then stays constant. In the
presence of noise, corresponding to SNR equal to 30dB, the
MP method outperforms LS before the turning point. On the
turning point, LS has a more accurate result than MP. How-
ever, after the turning point, the performance of LS becomes
significantly worse, while that of the MP holds at some level,
thus showing its robustness. This phenomenon indicates that
MP is robust to mismatches in the number of basis functions,
while LS is sensitive to the mismatch. Furthermore, for both
noise-free and noisy cases, MP outperforms LS when the
model order is smaller than 12. The reason is that MP adap-
tively selects the predominant basis, whilst LS only uses the
fixed basis set. Moreover, the observation that MP under all
SNRs can level off means it could still produce reliable es-
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Figure 8: MSE vs actual normalized Doppler frequency.
The performance comparison between MP and LS, when
the actual Doppler frequency varies within [0.040,0.060],
SNR = 30dB. N, is {10,14}, and N, = 14 is optimal for
LS under SNR = 30dB.

timates without knowledge of the SNR, whilst LS requires
the exact knowledge of the SNR in order to perform effec-
tively. In Fig. 7, the BER curves of both MP and LS follow
the similar behaviours as the MSE curves.

In the simulations above, the perfect knowledge of the
Doppler frequency is assumed. In the real world, however,
the Doppler frequency can not be estimated precisely. Still,
the actual Doppler frequency could be approximately ob-
tained in a controllable manner. Hence, in this study, we as-
sume a 20% mismatch of the target frequency, which means
the actual normalized Doppler frequency varies from 0.04 to
0.06 while the estimator is fixed at 0.05.

Fig. 8 and Fig. 9 presents the performance comparison
of MP and LS with respect to the Doppler frequency mis-
matches in terms of MSE and BER when the model order is
{10,14}. Tt is noticed that both MP and LS have similar per-
formance degradations under mismatches in the Doppler fre-
quency. When the actual Doppler frequency is smaller than
the one assumed in the BEM, the performance of the chan-
nel estimator is close to that without frequency mismatches.
When the actual Doppler frequency is larger than the as-
sumption, both of the two suffer from performance degra-
dations.

5. CONCLUSION

A channel estimator has been proposed which is robust to
mismatches in the number of basis functions in BEM for fast
time-varying channels. In other words, the technique is non-
sensitive to noise at high Doppler frequencies, for example,
the normalized Doppler frequency of f;T; = 0.05. More-
over, the proposed channel estimator could provide reliable
estimates even without knowledge of the SNR. All of these
points have been verified by simulation results.
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